Loading [MathJax]/extensions/tex2jax.js

1

28
4

文字

分享

1
28
4

【2022 年諾貝爾生理或醫學奬】復現尼安德塔人消逝的 DNA,也映襯我們何以為人

寒波_96
・2022/10/06 ・8169字 ・閱讀時間約 17 分鐘

人對自身歷史的好奇歷久彌新。最近十年古代 DNA 研究大行其道,光是發表於 Cell、Nature、Science 的論文就多到要辛苦讀完,加上其他期刊更是眼花撩亂。「古代遺傳學」的衝擊毋庸置疑,開創者帕波(Svante Pääbo)足以名列歷史偉人;然而,得知 2022 年諾貝爾生理或醫學獎由他一人獨得 ,還是令人吃驚——諾貝爾獎竟然會頒給人類演化學家?

諾貝爾獎有物理獎、有化學獎,但是沒有生物學獎,而是「生理或醫學獎」。帕波獲獎的理由是:「發現滅絕人類的基因組以及研究人類演化」。乍看和生理或醫學沒有關係,深入思考……好像還真的沒有什麼關係。

偷用強者我朋友的感想:「應該就是選厲害的。第一個和生理或醫學無關的生理或醫學獎得主,聽起來滿屌的」。

帕波直接的貢獻非常明確,在他的努力下,重現消失數萬年的尼安德塔人(Neanderthal)基因組。他為什麼想要這樣做,過程中經歷什麼困難,發現又有什麼意義呢?

-----廣告,請繼續往下閱讀-----

喜愛古埃及的演化遺傳學家

帕波公元 1955 年在瑞典出生,獲獎時 67 歲。他從小對古埃及有興趣,大學時選擇醫學仍不忘古埃及,但是一生都在追求新奇的帕波,嫌埃及研究的步調太慢,後來走上科學研究之路。1980 年代初博士班時期,他使用當時最高端的分子生物學手段探討免疫學,成果發表於 Cell 等頂尖期刊,可謂免疫學界的頂級新秀。

然而,他始終無法忘情逝去的世界。1984 年美國的科學家獲得斑驢的 DNA 片段,轟動一時。斑驢已經滅絕一百年,能夠由其遺骸取得古代 DNA,令博士生帕波大為震撼。他很快決定結合自己的專業與興趣,嘗試由古埃及木乃伊取得 DNA,並且獨立將結果發表於 Nature 期刊。

古代 DNA。圖/取自 參考資料 1

博士畢業後,帕波義無反顧地轉換領域,遠渡美國追隨加州柏克萊大學的威爾森(Allan Wilson)。威爾森在 1970 年代便開始探討分子演化,後來又根據不同人類族群間粒線體 DNA 的差異,估計非洲以外的人群,分家只有幾萬年,支持智人出非洲說。

帕波正式投入相關研究後意識到,從古代樣本取樣 DNA 的汙染問題相當嚴重。這邊「汙染」的意思是,並非抓到樣本內真正的古代 DNA 目標,而是周圍環境、實驗操作者等來源的 DNA;包括他自己之前的木乃伊 DNA,很可能也不是真正的古代 DNA。另一大問題是,生物去世後 DNA 便會開始崩潰,經歷成千上萬年後,樣本中即使仍有少量遺傳物質殘存,含量也相當有限。

-----廣告,請繼續往下閱讀-----

帕波投入不少心血改善問題。例如那時新發明的 PCR 能精確並大量複製 DNA,他馬上用於自己的題目(更早前是利用細菌,細菌繁殖時順便生產 DNA)。多年嘗試後,他決定放棄埃及木乃伊(埃及木乃伊的基因組在 2017 年成功),改以遺傳與智人差異較大的尼安德塔人為研究對象。

取得數萬年前尼安德塔人的 DNA

根據現有的證據,尼安德塔人是距今約 4 萬到 40 多萬年前的古人類。確認為尼安德塔人的第一件化石,於 1856 年在德國的尼安德谷發現,並以此得名(之前 2 次更早出土化石卻都沒有意識到)。這是我們所知第一種,不是智人的古代人類(hominin)。

對於古人類化石,一百多年來都是由考古與型態分析。帕波帶著遺傳學工具投入,不但增進考古和古人類學的知識,也拓展了遺傳學的領域。他後來前往德國的慕尼黑大學,幾年後又被挖角到馬克斯普朗克研究所,領導萊比錫新成立的人類演化部門,多年來培養出整個世代的科學家,也改變我們對人類演化的認知。

不同個體的粒線體 DNA 之間差異,智人與黑猩猩最多,智人與智人最少,智人與尼安德塔人介於期間。圖/取自 參考資料 2

帕波在 1996 年首度取得尼安德塔人的 DNA 片段,來自粒線體。他為了確認結果,邀請一位美國小女生重複實驗,驗證無誤,她就是後來也成為一方之霸的史東(Anne Stone)。比較這段長度 105 個核苷酸的片段,尼安德塔人與智人間的差異,明顯超過智人與智人。

-----廣告,請繼續往下閱讀-----

然而,粒線體只有 16500 個核苷酸,絕大部分遺傳訊息其實藏在細胞核的染色體中。想認識尼安德塔人的遺傳全貌,非得重現細胞核的基因組。

可是一個細胞內有數百套粒線體,只有 2 套基因組,因此粒線體 DNA 的含量為細胞核數百倍;而且染色體合計超過 30 億個核苷酸,數量無比龐大。可以說,細胞核基因組可供取材的 DNA 量少,需要復原的訊息又多,比粒線體更難好幾個次元。

方法學與時俱進:從 PCR 到次世代定序

一開始,帕波與合作者使用 PCR,但是帕波知道這是死路一條。取樣 DNA 會破壞材料,尼安德塔人的化石有限;PCR 一次又只能復原幾百核苷酸,要完成 30 億的目標遙遙無期。

帕波持續努力克服難關。2000 年人類基因組首度問世,採取「霰彈槍」定序法,大幅提升效率;也就是將 DNA 序列都打碎,一次定序一大堆片段,再由電腦程式拼湊。帕波因此和 454 生命科學公司合作,改用新的次世代定序法,偵測化石中的古代 DNA。2006 年發表的論文可謂里程碑,報告次世代定序得知的 100 萬個尼安德塔人核苷酸,足以進行一些基因體學的分析。

-----廣告,請繼續往下閱讀-----

帕波當時在美國的合作者魯賓(Edward Rubin)持續使用 PCR,雙方分歧愈來愈大,終於分道揚鑣。所以很可惜地,2010 年尼安德塔人基因組論文發表時,魯賓沒有參與到最後。這是人類史上第一次,取得滅絕生物大致完整的基因組,也是帕波獲頒諾貝爾獎的直接理由。

帕波戰隊。圖/取自 The Neandertal Genome Project

鐵證:尼安德塔人與智人有過遺傳交流

這份拼湊多位尼安德塔人的基因組,儘管品質不佳,卻足以解答一個問題:尼安德塔人與智人有過混血嗎?答案是有,卻和本來想的不一樣。尼安德塔人沒有長居非洲,主要住在歐洲、西南亞、中亞,也就是歐亞大陸的西部。假如與智人有過混血,歐洲人應該最明顯。結果並非如此。

帕波的組隊能力無與倫比,他廣邀各領域的菁英參與計畫,不只取得 DNA 資料,也陸續研發許多分析資料的手法,其中以哈佛大學的瑞克(David Reich)最出名。

分析得知,非洲以外,歐洲、東亞、大洋洲的人,基因組都有 1% 到 4% 能追溯到尼安德塔人(後來修正為 2% 左右)。所以雙方傳承至今的混血,發生在智人離開非洲以後,又向各地分家以前;並非尼安德塔人主要活動的歐洲。

-----廣告,請繼續往下閱讀-----

首度由 DNA 定義古代新人類:丹尼索瓦人

復原古代基因組的工作相當困難,不過引進次世代定序後,從不可能的任務降級為難題,尼安德塔人重出江湖變成時間問題。出乎意料,同樣在 2010 年,帕波戰隊又發表另外 2 篇論文,描述一種前所未知的古人類:丹尼索瓦人(Denisovan)。不是藉由化石,而是首度由 DNA 得知新的古代人種。

根據細胞核基因組,尼安德塔人、丹尼索瓦人的親戚關係最近,智人比較遠,三群人類間有過多次遺傳交流。圖/取自 參考資料 1

丹尼索瓦人得名於出土化石的遺址(地名來自古時候當地隱士的名字),位於西伯利亞南部的阿爾泰地區,算是中亞。帕波對這兒並不陌生,之前俄羅斯科學家在這裡發現過尼安德塔人化石,而且由於乾燥與寒冷,預計化石中的古代 DNA 保存狀況應該不錯。

帕波戰隊對丹尼索瓦洞穴中的一件小指碎骨定序,首先拼裝出粒線體,驚訝地察覺到這不是智人,卻也不是尼安德塔人,接下來的細胞核基因組重複證實此事。它們變成前後 2 篇論文,帕波出名的不喜歡物種爭論,不使用學名,所以直稱其為「丹尼索瓦人」。

還有幾顆丹尼索瓦洞穴出土的牙齒也尋獲粒線體,而且這些臼齒特別大,型態前所未見。奇妙的是,丹尼索瓦人粒線體、基因組的遺傳史不一樣;和智人、尼安德塔人相比,尼安德塔人的粒線體比較接近智人,細胞核基因組卻比較接近丹尼索瓦人。

-----廣告,請繼續往下閱讀-----

這反映古代人類群體間的遺傳交流相當複雜,不只是智人、尼安德塔人,也不只有過一次。後來又在丹尼索瓦洞穴發現一位爸爸是丹尼索瓦人、媽媽是尼安德塔人的混血少女,更是支持不同人群遺傳交流的直接證據。

遠觀丹尼索瓦洞穴。圖/取自論文〈Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave〉的 Supplementary information

回溯分歧又交織的人類演化史

重現第一個尼安德塔人基因組後,帕波戰隊持續改進定序與分析的技術,也獲得更多樣本,深入不同族群的分家年代、彼此間的混血比例等問題,新知識不斷推陳出新。

丹尼索瓦人方面,如今仍無法確認他們的活動範圍,不過很可能是歐亞大陸偏東部的廣大地區。一如尼安德塔人,丹尼索瓦人也與智人有過遺傳交流。

最初估計某些大洋洲人配備 4% 到 6% 的丹尼索瓦人血緣,後來修正為 2% 左右(不同方法估計的結果不一樣,總之和尼安德塔血緣差不多)。不同智人具備丹尼索瓦 DNA 的比例差異頗大,某些大洋洲人之外,東亞族群也具備些許,歐亞大陸西部的人卻幾乎沒有。

-----廣告,請繼續往下閱讀-----
到帕波獲得諾貝爾獎為止,古代 DNA 最早的紀錄是超過一百萬年的西伯利亞古代象。圖/最早古代 DNA,超過一百萬年的西伯利亞象

至今年代最古早的人類 DNA,來自西班牙的胡瑟裂谷(Sima de los Huesos),距今 43 萬年左右(最早的是超過一百萬年的古代象,由受到帕波啟發的其餘團隊發表)。根據 DNA 特徵,胡瑟裂谷人的細胞核基因組更接近尼安德塔人,可以視作初期的尼安德塔人族群。然而,他們的粒線體卻更像丹尼索瓦人。

帕波開發的研究方法,不只針對消逝的智人近親,也能用於古代智人與其他生物,累積一批數萬年前智人的基因組。釐清近期的混血事件外,還能探討不同人群當初分家的時期。估計尼安德塔人、丹尼索瓦人約在 40 多萬年前分家,他們和智人的共同祖先,又能追溯到距今 50 到 80 萬年的範圍。

智人何以為智人?遠古血脈的傳承,磨合,新適應

消逝幾萬年的尼安德塔人、丹尼索瓦人,皆為智人的極近親。由於數萬年前的遺傳交流,仍有一部分近親血脈流傳於智人的體內。這些血脈經過數萬年,早已融入成為我們的一部分。

人,人,人,人呀。圖/取自 參考資料 2

智人的某些基因與基因調控,受到遠古混血影響。最出名的案例,莫過於青藏高原族群(圖博人或藏人)的 EPAS1 基因繼承自丹尼索瓦人,比智人版本的基因更有利於適應缺氧。另外也觀察到許多案例,與免疫、代謝等功能有關。

近年 COVID-19(武漢肺炎、新冠肺炎)席捲世界,觀察到感染者的症狀輕重受到遺傳差異影響;其中至少兩處 DNA 片段,一處會增加、另一處降低住院的機率,都可以追溯到尼安德塔人的遠古混血。

非洲外每個人都有 1% 到 2% 血緣來自尼安德塔人,不同人遺傳到的片段不一樣。將不同智人個體的片段拼起來,大概能湊出 40% 尼安德塔人基因組(不同算法有不同結果),也就是說,當初進入智人族群的尼安德塔 DNA 變異,不少已經失傳。

失傳可能是機率問題,某一段 DNA 剛好沒有智人繼承。但是也可能是由於尼安德塔 DNA 變異,對智人有害或是遺傳不相容,而被天擇淘汰。遺傳重組之故,智人基因組上每個位置,繼承到尼安德塔變異的機率應該差不多;可是相比於體染色體,X 染色體的比例卻明顯偏低;這意謂智人的 X 染色體,不適合換上尼安德塔版本。

例如 2022 年發表的論文,比較 TKTL1 基因上的差異對智人、尼安德塔人神經發育的影響。圖/取自〈Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals

智人之所以異於非人者幾希?藉由比較智人的極近親尼安德塔人,能深入思考這個大哉問。是哪些遺傳改變讓智人誕生,後來又衍生出什麼不可取代的遺傳特色?另一方面也能反思,某些我們以為專屬智人的特色,其實並非智人的專利。

分析遺傳序列,畢竟只是鍵盤辦案,一向雄心壯志的帕波,當然想要更進一步解答疑惑。比方說,尼安德塔人、智人間某處 DNA 差異對神經發育有什麼影響?體外培養細胞、模擬器官發育的新穎技術,如今也被帕波引進人類演化學的領域。

瑞典與愛沙尼亞之子,德國製造,替人類做出卓越貢獻的人

回顧完帕波到得獎時的精彩成就,他的工作與生理或醫學有哪些關係,各位讀者可以自行判斷。我還是覺得沒什麼直接關係,如遠古混血影響病毒感染的重症機率這種事,那些 DNA 變異最初是否源自尼安德塔人,其實無關緊要。不過多少還是有些影響,像是為了研究古代基因組而研發出的基因體學分析方法,應該也能用於生醫領域。

《尋找失落的基因組》台灣翻譯本。

帕波 2014 年時發表回憶錄《尋找失落的基因組》,自爆許多內幕。台灣的翻譯出過兩版,可惜目前絕版了。我在 2015 年、2019 年各寫過一篇介紹。書中有許多值得玩味之處,不同讀者會看到不同重點,有興趣可以找來閱讀,看看有什麼啟發。

主題是諾貝爾獎就不能不提,帕波得獎也讓諾貝爾新添一組父子檔,他的爸爸伯格斯特龍(Sune Karl Bergström)是 1982 年生理或醫學獎得主。為什麼父子不同姓?因為他是隨母姓的私生子,父子間非常不熟。

他的媽媽卡琳.帕波(Karin Pääbo)是愛沙尼亞移民瑞典的化學家,2007 年去世前曾在訪問提及,她兒子在 13、14 歲時從埃及旅遊回來,對科學產生興趣。帕波獲頒諾貝爾獎後受訪提到,可惜媽媽已經去世,無法與她分享榮耀。移民異國討生活的單親媽媽,能夠養育出得到諾貝爾獎的兒子,也可謂偉大成就。

人類演化的議題弘大淵博,但是究其根本,依然要回歸到一代一代的傳承。每個人都無比渺小,卻也是全人類中的一份子,親身參與其中。諾貝爾生理或醫學獎 2022 年的頒獎選擇,乍看突兀,仔細思索卻頗有深意。帕波的研究也許很不生理或醫學,卻再度強化諾貝爾奬設立的精神:「獎勵替人類做出卓越貢獻的人」。

  • 帕波得獎後接受電話訪問:

延伸閱讀

  1. Press release: The Nobel Prize in Physiology or Medicine 2022. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  2. Advanced information. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  3. Geneticist who unmasked lives of ancient humans wins medicine Nobel
  4. Ancient DNA pioneer Svante Pääbo wins Nobel Prize in Physiology or Medicine
  5. Nature 論文蒐集「Nobel Prize in Physiology or Medicine 2022
  6. Estonian descendant Svante Pääbo awarded Nobel prize

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
寒波_96
193 篇文章 ・ 1101 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
從一片荒蕪到綠色星球:細菌與光合作用如何重塑地球——《你的身體怎麼來的?》
商周出版_96
・2025/01/27 ・3861字 ・閱讀時間約 8 分鐘

喜出望外

海中糟粕化為盎然綠意

這個星球現在仰仗光合作用運轉。

──史緹耶可.戈盧比奇(Stjepko Golubic)

四十億年前,地球的陸塊相當單調,黑色、褐色、灰色的岩石上一片荒蕪,火山朝著無氧的大氣噴發毒素,人類乘坐時光機回到那時間點會立刻窒息。當時地球上僅有的生命形態是細菌,以及比英文句號還小得多的單細胞生物。然而若往前快轉幾十億年,來到距今僅三億五千萬年前後,會發現大氣中氧含量接近人類已經習慣了的百分之二十一,這是個很奢華的數字。

那個年代,海洋中滿是巨大生物四處洄游,植物入侵陸地並為人類的演化鋪路。地球從無法居住的荒土蛻變為藍綠色的生命樂園,這麼戲劇性的轉折是什麼力量在背後推動?

種種因素之中有一項特別醒目:直到一九六〇年代人類才開始意識到光合作用的力量不下於各種地質學事件,改造這顆星球的手段神祕且驚奇,非常難以想像。

地球從荒土到生命樂園的蛻變,歸功於光合作用的出現。圖 / unsplash

改造過程中,光合作用或許曾經引發大規模生物滅絕。科學家一度認為其威力能夠與核戰浩劫相提並論,使這顆行星被寒冰覆蓋化作巨型雪球。但同時光合作用又輔助、甚至促成「不可能」的演化捷徑,進而提高生命多樣性,最終使植物甚至人類得以存在。科學家如何研究太古時代的自然變動?而光合作用又如何將地球鬧得天翻地覆?

-----廣告,請繼續往下閱讀-----

疊層石背後的生命故事

十九世紀末期,有人找到能夠追溯光合作用悠久歷史的第一條線索。那時候沒有任何證據指向距今大約五億五千萬年的寒武紀之前有生命存在,然而一八八二年冬天美國大峽谷深處名叫查爾斯.沃爾科特(Charles Walcott)的岩石收藏家改變了一切,後來還當上史密森尼學會的主席。

沃爾科特的故鄉是化石天堂紐約州由提卡市(Utica)。小時候他生得瘦瘦高高,喜歡在父母的農場以及附近未來岳父擁有的採石場內找化石,十八歲離開校園之後先去五金行當店員,卻自己閱讀教科書、研究化石並撰寫論文、與著名地質學家通信來維繫心中熱情。他曾經蒐集古代海洋生物三葉蟲的化石標本,品質在全世界而言也是數一數二,後來慷慨出售給了哈佛大學。

沃爾科特的勘探技巧十分高明,也藉此就職於新成立的美國地質調查局。一八八二年十一月,地質調查局局長、同時自己也是探險家的約翰.威斯利.鮑威爾(John Wesley Powell)要求沃爾科特勘測迄今為止無法進入的大峽谷深處。

鮑威爾之前嘗試過,但只能乘坐小木舟趁漂流時稍微觀察最底層岩石,後來他就在偶爾有「刺骨寒霧、雪花飛旋」的地方紮營監督,帶人修建一條從峽谷邊緣延伸到下方三千英尺(約九百一十四公尺)處溫暖地帶的陡峭馬徑,並且讓時年三十三歲的沃爾科特帶著三名工人和足夠支撐三個月的食物、九匹上鞍的騾子沿著那條臨時小徑進入谷底。

-----廣告,請繼續往下閱讀-----

「高原之後就會積滿雪,」鮑威爾告訴他:「春天之前你和搬運工無法離開峽谷。希望這段時間裡,你能好好研究地層序列,盡量收集化石。祝好運!」

對沃爾科特而言,這是千載難逢的機會。他已經發現一些已知的最古老化石,例如神似甲殼類但奇形怪狀的三葉蟲。此外,達爾文發表《物種起源》不過四十年前,但因為缺乏最原始的動植物或細菌化石而遭到很多抨擊。批評者仗著沒有化石這點堅稱所有物種都是神造,懷疑論者也要求達爾文證明古代有過更單純的生物,可惜他只能委婉表示若生物體很小就不容易留下化石,希望有朝一日會出現。

充滿驚喜的山谷

沃爾科特深知達爾文的窘境。他沿著陡峭原始小徑下降到幾乎沒有生命跡象的大峽谷谷底,然後用心觀察周遭環境。山谷、懸崖,除了石頭還是石頭,但這一隅紅色天地很得他喜愛,不過同行的化石收集家、廚師和馱獸管理員就未必能夠分享那份悸動了。

他們沿著八百英尺(約兩百四十四公尺)峭壁吃力前行,其中一段就是現在的南科維山徑(NankoweapTrail),一般認為是大峽谷裡最危險的路線,河流地形坡陡水急即使沿岸也難以行走,有時候不得不自己開路以求深入。後來一頭騾子死亡、另外兩頭受傷。旅程中至少一次,沃爾科特筆中的墨水結凍了,但又必須在篝火邊融冰為水給騾子飲用。但最可怕的其實是死寂與孤獨,才三個星期就導致那位化石收集家夥伴憂鬱求去。但沃爾科特不同,能來到谷底他太興奮了,堅持了七十二天才踏上歸途。

-----廣告,請繼續往下閱讀-----

有一天他爬上爬下,對部分岩石中層層線條感到好奇,乍看很像切開的包心菜。這些圖案極不尋常,所以沃爾科特認定是生物,後來將其命名為藍綠菌(最初曾視為藻類)。他還聯想到自己在紐約州看過來自寒武紀時期的類似化石,取「隱含生命」的含義命名為隱藻化石(Cryptozoön)。然而大峽谷的情況有點不同,這些化石明顯可見,卻又位於更古老的岩層內,因此歷史比任何其他已發現的化石都久遠。

沃爾科特在大峽谷的古老岩層中發現了類似藍綠菌的化石,命名為隱藻化石,揭示比已知更古老的生命存在。圖 / unsplash

沃爾科特後來在蒙大拿州等地持續發現同樣古老的隱藻化石,接著其他古生物學家也在前寒武紀岩石內察覺到疑似化石的特殊圖案,種種線索指向最原始生命形式的證據可能保存在寒武紀前的石頭裡。即便如此懷疑論調不斷,尤其某個長期存在爭議的標本被證明了並非化石,而是火山石灰岩經過壓力和高溫形成獨特的礦物沉積。

隱藻化石的爭議:解鎖前寒武紀生命的證據

一九三〇年代,沃爾科特去世的四年後,劍橋大學最具影響力的古植物學家蘇厄德(Albert Charles Seward)決定加入辯論,卻在後來被古生物學家肖普夫(William Schopf)形容是「讓煮熟的鴨子飛了」。蘇厄德在史稱「隱藻化石爭議」的事件中嚴格審視前寒武紀化石證據,得出結論認為這完全是一廂情願,所謂的化石與現存物種之間沒有明顯關係,大型結構並未顯示出由較小細胞組成的特徵。

他主張沃爾科特在隱藻化石找到的環狀圖案可能是海底富含鈣質的淤泥沉積,人類本來就不該期望細菌這樣微小的生物會被保存在化石,最後又語重心長告誡科學家:有些尋找化石的人太過一頭熱,他們宣稱找到特別古老的標本時不能輕信。

-----廣告,請繼續往下閱讀-----

地位如此卓著的人物提出警告,導致地質學家不願再從岩石尋找距今約五億年以上的化石,畢竟找到的機率幾乎等於零。久而久之許多人認定了生命在地球上的歷史很短,這顆星球的前面四十億年、其歷史的九成之中根本沒有生命存在。微生物學家史緹耶可.戈盧比奇指出許多科學家以「前寒武紀」一詞指稱生命尚未問世的太古時期,其實這是陷入「現有工具檢測不到就代表不存在」的思考偏誤,將缺乏證據直接視為否定證據了。

時間來到二十年後的一九五〇年代中期,澳洲年輕研究生布萊恩.洛根(Brian Logan)隨地質學教授菲利普.普萊福德(Philip Playford)探索了位置偏遠的鯊魚灣,也就是澳洲西北海岸一片孤立的鹹水潟湖。站在這兒的海灘,淺藍色海水退潮時會露出如夢似幻的奇景:數百顆三英尺(約九十一公分)高的圓柱狀岩石林立,彼此間距很小,彷彿堅硬粗糙如石塊的蘑菇聚集叢生。

兩人詳細調查了這片怪異石陣,然後意識到理解沃爾科特隱藻化石的關鍵。眼前這些不僅是活化石,還能回答一個經典謎語:什麼東西既死又活?石頭表面曾經活著,是藍綠菌累積起來形成網罩般的構造。海水進出時,這層菌網會捕捉沉積物。而藍綠菌死亡後,沉積物固定在原位如海綿狀的石塔,於是又有新的細菌附著其上、形成新的一層網罩。

細菌以同樣方式在太古海洋中創造出沃爾科特的隱藻化石,現在稱為疊層石,語源是希臘文stroma(層)和lithos(岩)。目前只有鯊魚灣等少數幾個地方能找到疊層石,環境對其他多數生物過於鹹澀無法生存。但另一方面,已經化石化的古老疊層石則在世界各地皆有發現。

-----廣告,請繼續往下閱讀-----

澳洲地質學家偶然發現還活著的疊層石,同時美國兩位地質學家史坦利.泰勒(Stanley Tyler)和埃爾索.巴洪(Elso Barghoorn)也宣布找到了蘇厄德口中不存在的化石標本,其中微生物有單細胞也有多細胞,藍綠菌絲也包括在內,而且這些化石都有大約二十億年歷史。「許多人很震驚的,」戈盧比奇表示:「原本以為生命在寒武紀才爆發,之前什麼都沒有。寒武紀應該是起點才對。」但現在普遍接受最古老的疊層石化石上微生物活在三十五億年前,依舊是地球誕生的十億年之後。達爾文和沃爾科特應該很欣慰。

哪種細菌造出最古老的疊層石?無法確定是已經會行光合作用的藍綠菌,抑或是它們的祖先。不過藍綠菌至少二十四億年前已經存在於海洋。

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
1

文字

分享

0
1
1
貓咪也會學鳥叫?揭秘貓貓發出「喀喀聲」背後的可能原因
F 編_96
・2024/12/24 ・2480字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

貓是一種神秘而又引人注目的動物,牠們看似深居簡出,但擁有多元的聲音表達:從吸引人類注意的「喵喵叫」,到面對威脅時的「嘶嘶聲」與低沉的「咆哮」。

延伸閱讀:貓咪為什麼總愛對人喵喵叫?看貓如何用聲音征服人類的心

然而,細心的貓奴們可能會注意到,貓有時會對著窗外的鳥兒或屋內小動物玩具,發出一種獨特的「卡卡聲」或「咯咯聲」。這種聲音既像牙齒打顫,又好似一陣陣輕微的顫鳴,卻很難歸類到常見的喵叫或咆哮裡。這種名為「chatter」的行為,究竟在貓的生活中扮演什麼角色?目前科學界尚未對此有定論,但有幾種廣為討論的假說,或許能為我們提供一些思考方向。

卡卡叫:情緒的釋放或表達?

有些貓行為專家推測,貓咪在看到獵物(如窗外的鳥、老鼠)卻無法接近時,會因「欲捕無法」的挫折感或興奮感,發出這種「卡卡聲」。就像人類遇到障礙時,可能會發出抱怨的咕噥聲或乾著急的嘆息聲一樣,貓咪的「喀喀聲」也可能只是把當下的情緒外顯,並非有特別針對人或其他動物的溝通目的。

  • 情緒假說
    • 挫折:當貓看見鳥兒在窗外飛舞卻無法撲殺,內心焦躁,遂用聲音抒發。
    • 興奮:或許貓在準備捕獵時也感到高度亢奮,因此嘴部不自覺抖動並出聲。
貓咪的「喀喀聲」可能源於挫折或興奮情緒,表達捕獵受阻的內在反應。圖/envato

要在科學上驗證「情緒假說」並不容易,因為需要同時測量貓咪行為和生理指標。例如,研究人員可能需要測量貓咪在卡卡叫時的壓力荷爾蒙變化,才能確認牠們究竟是帶著正面興奮,或是負面挫折的情緒。不過,由於貓的獨立特質,實驗設計往往困難重重,樣本量要足夠也不容易,所以至今沒有定論。

-----廣告,請繼續往下閱讀-----

增強嗅覺?貓咪的「第二鼻子」

另一種說法則認為,貓咪發出「卡卡聲」時,可能同時開啟了其位於口腔上顎的「犁鼻器」(vomeronasal organ),也稱作「賈氏器官(Jacobson’s organ)」。這個感知器官能捕捉一般鼻腔聞不到的化學分子,如費洛蒙或特定氣味分子,因此對貓的求偶、社交和獵捕行為都非常重要。

  • 嗅覺假說
    • 張口呼吸:如果貓咪一邊「咯咯咯」地開合上下顎,可能在嘗試讓空氣(及其中所含的氣味分子)進入犁鼻器。
    • 蒐集更多環境資訊:在確定下手前,更完整的嗅覺分析或能提高牠們獵捕成功率,或是幫助判斷環境中是否有其他潛在威脅或機會。

然而,要科學驗證「增強嗅覺假說」同樣不簡單。研究人員不僅要觀察貓咪在卡卡叫時的行為,也需要測量牠們是否真的打開了更大的氣道,並在那個同時有效使用犁鼻器。這些行為與生理測量都必須在相對可控卻又不影響貓自由行動的實驗環境中進行,實務上難度頗高。

聲音模仿:貓咪的「偽鳥叫」?

貓咪的「卡卡聲」或許是為了模仿獵物的聲音,讓獵物降低警戒。圖/envato

第三種最有趣也最具「野性色彩」的假說,是「模仿獵物聲音」。在野外,一些中南美洲的小型貓科動物(例如:長尾虎貓,又稱美洲豹貓或瑪家貓,Margay)曾被觀察到,在捕獵小猴群時,發出類似猴子叫聲的音調;有些當地原住民族群也傳說,叢林裡的某些捕食者會模仿目標獵物的聲音來誘捕。由此推測,家貓看到鳥兒時發出的「卡卡聲」,可能包含些微模仿鳥兒啁啾的元素,試圖降低獵物警戒或甚至吸引獵物靠近。

  • 模仿假說
    • 案例參考:野生貓科動物曾出現學習或偽裝聲音的紀錄。
    • 家貓可能繼承的行為:家貓的祖先——北非野貓(African wildcat)及其他小型貓科物種,是否具備聲音模仿能力?這在生物演化研究上仍是未解之謎。
    • 缺乏大規模觀察:由於小型野生貓科動物研究資料有限,且家貓實驗更不易做大樣本長期追蹤,最終導致此理論尚未獲得廣泛實證。

貓咪行為研究的挑戰:野性祖先的重要性

探討貓咪行為,常常需要回溯至野生祖先的棲地環境。家貓(Felis catus)普遍被認為源自北非野貓(Felis lybica),然而,野貓習性的研究本就不多,尤其是關於聲音與捕獵策略更是資料有限。我們想知道「為什麼家貓會卡卡叫」,首先要確定:「牠們的野性祖先或其他小型貓科,也有同樣的行為嗎?」若有,家貓則可能繼承自古老基因;若無,則可能是家貓在與人類共處的環境中演化出的新行為。

-----廣告,請繼續往下閱讀-----
如果要探查家貓「卡卡叫」的原因,還需要了解其祖先或其他小型貓科是否具有類似行為。圖/envato

再者,貓在實驗室中的「不可控」因素相當多。貓不像狗般樂於服從人類指令,常有自己的規律與個性。要在實驗情境下穩定地誘發貓的「卡卡叫」行為、同時檢測牠們的生理和心理反應,並確保每隻貓的個體差異都被考慮到,這些都對研究團隊是極大考驗。

對於許多貓奴來說,貓咪坐在窗邊,一邊盯著外頭的鳥兒或松鼠,一邊發出獨特的「卡卡聲」,是一幕既可愛又神祕的風景。究竟牠們是在抒發情緒、強化嗅覺、抑或真的在「假扮鳥叫」以誘捕獵物?目前沒有確切的答案。然而,也正因為這層未知,貓貓才更顯得迷人。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃