Loading [MathJax]/extensions/tex2jax.js

1

28
4

文字

分享

1
28
4

【2022 年諾貝爾生理或醫學奬】復現尼安德塔人消逝的 DNA,也映襯我們何以為人

寒波_96
・2022/10/06 ・8169字 ・閱讀時間約 17 分鐘

人對自身歷史的好奇歷久彌新。最近十年古代 DNA 研究大行其道,光是發表於 Cell、Nature、Science 的論文就多到要辛苦讀完,加上其他期刊更是眼花撩亂。「古代遺傳學」的衝擊毋庸置疑,開創者帕波(Svante Pääbo)足以名列歷史偉人;然而,得知 2022 年諾貝爾生理或醫學獎由他一人獨得 ,還是令人吃驚——諾貝爾獎竟然會頒給人類演化學家?

諾貝爾獎有物理獎、有化學獎,但是沒有生物學獎,而是「生理或醫學獎」。帕波獲獎的理由是:「發現滅絕人類的基因組以及研究人類演化」。乍看和生理或醫學沒有關係,深入思考……好像還真的沒有什麼關係。

偷用強者我朋友的感想:「應該就是選厲害的。第一個和生理或醫學無關的生理或醫學獎得主,聽起來滿屌的」。

帕波直接的貢獻非常明確,在他的努力下,重現消失數萬年的尼安德塔人(Neanderthal)基因組。他為什麼想要這樣做,過程中經歷什麼困難,發現又有什麼意義呢?

-----廣告,請繼續往下閱讀-----

喜愛古埃及的演化遺傳學家

帕波公元 1955 年在瑞典出生,獲獎時 67 歲。他從小對古埃及有興趣,大學時選擇醫學仍不忘古埃及,但是一生都在追求新奇的帕波,嫌埃及研究的步調太慢,後來走上科學研究之路。1980 年代初博士班時期,他使用當時最高端的分子生物學手段探討免疫學,成果發表於 Cell 等頂尖期刊,可謂免疫學界的頂級新秀。

然而,他始終無法忘情逝去的世界。1984 年美國的科學家獲得斑驢的 DNA 片段,轟動一時。斑驢已經滅絕一百年,能夠由其遺骸取得古代 DNA,令博士生帕波大為震撼。他很快決定結合自己的專業與興趣,嘗試由古埃及木乃伊取得 DNA,並且獨立將結果發表於 Nature 期刊。

古代 DNA。圖/取自 參考資料 1

博士畢業後,帕波義無反顧地轉換領域,遠渡美國追隨加州柏克萊大學的威爾森(Allan Wilson)。威爾森在 1970 年代便開始探討分子演化,後來又根據不同人類族群間粒線體 DNA 的差異,估計非洲以外的人群,分家只有幾萬年,支持智人出非洲說。

帕波正式投入相關研究後意識到,從古代樣本取樣 DNA 的汙染問題相當嚴重。這邊「汙染」的意思是,並非抓到樣本內真正的古代 DNA 目標,而是周圍環境、實驗操作者等來源的 DNA;包括他自己之前的木乃伊 DNA,很可能也不是真正的古代 DNA。另一大問題是,生物去世後 DNA 便會開始崩潰,經歷成千上萬年後,樣本中即使仍有少量遺傳物質殘存,含量也相當有限。

-----廣告,請繼續往下閱讀-----

帕波投入不少心血改善問題。例如那時新發明的 PCR 能精確並大量複製 DNA,他馬上用於自己的題目(更早前是利用細菌,細菌繁殖時順便生產 DNA)。多年嘗試後,他決定放棄埃及木乃伊(埃及木乃伊的基因組在 2017 年成功),改以遺傳與智人差異較大的尼安德塔人為研究對象。

取得數萬年前尼安德塔人的 DNA

根據現有的證據,尼安德塔人是距今約 4 萬到 40 多萬年前的古人類。確認為尼安德塔人的第一件化石,於 1856 年在德國的尼安德谷發現,並以此得名(之前 2 次更早出土化石卻都沒有意識到)。這是我們所知第一種,不是智人的古代人類(hominin)。

對於古人類化石,一百多年來都是由考古與型態分析。帕波帶著遺傳學工具投入,不但增進考古和古人類學的知識,也拓展了遺傳學的領域。他後來前往德國的慕尼黑大學,幾年後又被挖角到馬克斯普朗克研究所,領導萊比錫新成立的人類演化部門,多年來培養出整個世代的科學家,也改變我們對人類演化的認知。

不同個體的粒線體 DNA 之間差異,智人與黑猩猩最多,智人與智人最少,智人與尼安德塔人介於期間。圖/取自 參考資料 2

帕波在 1996 年首度取得尼安德塔人的 DNA 片段,來自粒線體。他為了確認結果,邀請一位美國小女生重複實驗,驗證無誤,她就是後來也成為一方之霸的史東(Anne Stone)。比較這段長度 105 個核苷酸的片段,尼安德塔人與智人間的差異,明顯超過智人與智人。

-----廣告,請繼續往下閱讀-----

然而,粒線體只有 16500 個核苷酸,絕大部分遺傳訊息其實藏在細胞核的染色體中。想認識尼安德塔人的遺傳全貌,非得重現細胞核的基因組。

可是一個細胞內有數百套粒線體,只有 2 套基因組,因此粒線體 DNA 的含量為細胞核數百倍;而且染色體合計超過 30 億個核苷酸,數量無比龐大。可以說,細胞核基因組可供取材的 DNA 量少,需要復原的訊息又多,比粒線體更難好幾個次元。

方法學與時俱進:從 PCR 到次世代定序

一開始,帕波與合作者使用 PCR,但是帕波知道這是死路一條。取樣 DNA 會破壞材料,尼安德塔人的化石有限;PCR 一次又只能復原幾百核苷酸,要完成 30 億的目標遙遙無期。

帕波持續努力克服難關。2000 年人類基因組首度問世,採取「霰彈槍」定序法,大幅提升效率;也就是將 DNA 序列都打碎,一次定序一大堆片段,再由電腦程式拼湊。帕波因此和 454 生命科學公司合作,改用新的次世代定序法,偵測化石中的古代 DNA。2006 年發表的論文可謂里程碑,報告次世代定序得知的 100 萬個尼安德塔人核苷酸,足以進行一些基因體學的分析。

-----廣告,請繼續往下閱讀-----

帕波當時在美國的合作者魯賓(Edward Rubin)持續使用 PCR,雙方分歧愈來愈大,終於分道揚鑣。所以很可惜地,2010 年尼安德塔人基因組論文發表時,魯賓沒有參與到最後。這是人類史上第一次,取得滅絕生物大致完整的基因組,也是帕波獲頒諾貝爾獎的直接理由。

帕波戰隊。圖/取自 The Neandertal Genome Project

鐵證:尼安德塔人與智人有過遺傳交流

這份拼湊多位尼安德塔人的基因組,儘管品質不佳,卻足以解答一個問題:尼安德塔人與智人有過混血嗎?答案是有,卻和本來想的不一樣。尼安德塔人沒有長居非洲,主要住在歐洲、西南亞、中亞,也就是歐亞大陸的西部。假如與智人有過混血,歐洲人應該最明顯。結果並非如此。

帕波的組隊能力無與倫比,他廣邀各領域的菁英參與計畫,不只取得 DNA 資料,也陸續研發許多分析資料的手法,其中以哈佛大學的瑞克(David Reich)最出名。

分析得知,非洲以外,歐洲、東亞、大洋洲的人,基因組都有 1% 到 4% 能追溯到尼安德塔人(後來修正為 2% 左右)。所以雙方傳承至今的混血,發生在智人離開非洲以後,又向各地分家以前;並非尼安德塔人主要活動的歐洲。

-----廣告,請繼續往下閱讀-----

首度由 DNA 定義古代新人類:丹尼索瓦人

復原古代基因組的工作相當困難,不過引進次世代定序後,從不可能的任務降級為難題,尼安德塔人重出江湖變成時間問題。出乎意料,同樣在 2010 年,帕波戰隊又發表另外 2 篇論文,描述一種前所未知的古人類:丹尼索瓦人(Denisovan)。不是藉由化石,而是首度由 DNA 得知新的古代人種。

根據細胞核基因組,尼安德塔人、丹尼索瓦人的親戚關係最近,智人比較遠,三群人類間有過多次遺傳交流。圖/取自 參考資料 1

丹尼索瓦人得名於出土化石的遺址(地名來自古時候當地隱士的名字),位於西伯利亞南部的阿爾泰地區,算是中亞。帕波對這兒並不陌生,之前俄羅斯科學家在這裡發現過尼安德塔人化石,而且由於乾燥與寒冷,預計化石中的古代 DNA 保存狀況應該不錯。

帕波戰隊對丹尼索瓦洞穴中的一件小指碎骨定序,首先拼裝出粒線體,驚訝地察覺到這不是智人,卻也不是尼安德塔人,接下來的細胞核基因組重複證實此事。它們變成前後 2 篇論文,帕波出名的不喜歡物種爭論,不使用學名,所以直稱其為「丹尼索瓦人」。

還有幾顆丹尼索瓦洞穴出土的牙齒也尋獲粒線體,而且這些臼齒特別大,型態前所未見。奇妙的是,丹尼索瓦人粒線體、基因組的遺傳史不一樣;和智人、尼安德塔人相比,尼安德塔人的粒線體比較接近智人,細胞核基因組卻比較接近丹尼索瓦人。

-----廣告,請繼續往下閱讀-----

這反映古代人類群體間的遺傳交流相當複雜,不只是智人、尼安德塔人,也不只有過一次。後來又在丹尼索瓦洞穴發現一位爸爸是丹尼索瓦人、媽媽是尼安德塔人的混血少女,更是支持不同人群遺傳交流的直接證據。

遠觀丹尼索瓦洞穴。圖/取自論文〈Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave〉的 Supplementary information

回溯分歧又交織的人類演化史

重現第一個尼安德塔人基因組後,帕波戰隊持續改進定序與分析的技術,也獲得更多樣本,深入不同族群的分家年代、彼此間的混血比例等問題,新知識不斷推陳出新。

丹尼索瓦人方面,如今仍無法確認他們的活動範圍,不過很可能是歐亞大陸偏東部的廣大地區。一如尼安德塔人,丹尼索瓦人也與智人有過遺傳交流。

最初估計某些大洋洲人配備 4% 到 6% 的丹尼索瓦人血緣,後來修正為 2% 左右(不同方法估計的結果不一樣,總之和尼安德塔血緣差不多)。不同智人具備丹尼索瓦 DNA 的比例差異頗大,某些大洋洲人之外,東亞族群也具備些許,歐亞大陸西部的人卻幾乎沒有。

-----廣告,請繼續往下閱讀-----
到帕波獲得諾貝爾獎為止,古代 DNA 最早的紀錄是超過一百萬年的西伯利亞古代象。圖/最早古代 DNA,超過一百萬年的西伯利亞象

至今年代最古早的人類 DNA,來自西班牙的胡瑟裂谷(Sima de los Huesos),距今 43 萬年左右(最早的是超過一百萬年的古代象,由受到帕波啟發的其餘團隊發表)。根據 DNA 特徵,胡瑟裂谷人的細胞核基因組更接近尼安德塔人,可以視作初期的尼安德塔人族群。然而,他們的粒線體卻更像丹尼索瓦人。

帕波開發的研究方法,不只針對消逝的智人近親,也能用於古代智人與其他生物,累積一批數萬年前智人的基因組。釐清近期的混血事件外,還能探討不同人群當初分家的時期。估計尼安德塔人、丹尼索瓦人約在 40 多萬年前分家,他們和智人的共同祖先,又能追溯到距今 50 到 80 萬年的範圍。

智人何以為智人?遠古血脈的傳承,磨合,新適應

消逝幾萬年的尼安德塔人、丹尼索瓦人,皆為智人的極近親。由於數萬年前的遺傳交流,仍有一部分近親血脈流傳於智人的體內。這些血脈經過數萬年,早已融入成為我們的一部分。

人,人,人,人呀。圖/取自 參考資料 2

智人的某些基因與基因調控,受到遠古混血影響。最出名的案例,莫過於青藏高原族群(圖博人或藏人)的 EPAS1 基因繼承自丹尼索瓦人,比智人版本的基因更有利於適應缺氧。另外也觀察到許多案例,與免疫、代謝等功能有關。

近年 COVID-19(武漢肺炎、新冠肺炎)席捲世界,觀察到感染者的症狀輕重受到遺傳差異影響;其中至少兩處 DNA 片段,一處會增加、另一處降低住院的機率,都可以追溯到尼安德塔人的遠古混血。

非洲外每個人都有 1% 到 2% 血緣來自尼安德塔人,不同人遺傳到的片段不一樣。將不同智人個體的片段拼起來,大概能湊出 40% 尼安德塔人基因組(不同算法有不同結果),也就是說,當初進入智人族群的尼安德塔 DNA 變異,不少已經失傳。

失傳可能是機率問題,某一段 DNA 剛好沒有智人繼承。但是也可能是由於尼安德塔 DNA 變異,對智人有害或是遺傳不相容,而被天擇淘汰。遺傳重組之故,智人基因組上每個位置,繼承到尼安德塔變異的機率應該差不多;可是相比於體染色體,X 染色體的比例卻明顯偏低;這意謂智人的 X 染色體,不適合換上尼安德塔版本。

例如 2022 年發表的論文,比較 TKTL1 基因上的差異對智人、尼安德塔人神經發育的影響。圖/取自〈Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals

智人之所以異於非人者幾希?藉由比較智人的極近親尼安德塔人,能深入思考這個大哉問。是哪些遺傳改變讓智人誕生,後來又衍生出什麼不可取代的遺傳特色?另一方面也能反思,某些我們以為專屬智人的特色,其實並非智人的專利。

分析遺傳序列,畢竟只是鍵盤辦案,一向雄心壯志的帕波,當然想要更進一步解答疑惑。比方說,尼安德塔人、智人間某處 DNA 差異對神經發育有什麼影響?體外培養細胞、模擬器官發育的新穎技術,如今也被帕波引進人類演化學的領域。

瑞典與愛沙尼亞之子,德國製造,替人類做出卓越貢獻的人

回顧完帕波到得獎時的精彩成就,他的工作與生理或醫學有哪些關係,各位讀者可以自行判斷。我還是覺得沒什麼直接關係,如遠古混血影響病毒感染的重症機率這種事,那些 DNA 變異最初是否源自尼安德塔人,其實無關緊要。不過多少還是有些影響,像是為了研究古代基因組而研發出的基因體學分析方法,應該也能用於生醫領域。

《尋找失落的基因組》台灣翻譯本。

帕波 2014 年時發表回憶錄《尋找失落的基因組》,自爆許多內幕。台灣的翻譯出過兩版,可惜目前絕版了。我在 2015 年、2019 年各寫過一篇介紹。書中有許多值得玩味之處,不同讀者會看到不同重點,有興趣可以找來閱讀,看看有什麼啟發。

主題是諾貝爾獎就不能不提,帕波得獎也讓諾貝爾新添一組父子檔,他的爸爸伯格斯特龍(Sune Karl Bergström)是 1982 年生理或醫學獎得主。為什麼父子不同姓?因為他是隨母姓的私生子,父子間非常不熟。

他的媽媽卡琳.帕波(Karin Pääbo)是愛沙尼亞移民瑞典的化學家,2007 年去世前曾在訪問提及,她兒子在 13、14 歲時從埃及旅遊回來,對科學產生興趣。帕波獲頒諾貝爾獎後受訪提到,可惜媽媽已經去世,無法與她分享榮耀。移民異國討生活的單親媽媽,能夠養育出得到諾貝爾獎的兒子,也可謂偉大成就。

人類演化的議題弘大淵博,但是究其根本,依然要回歸到一代一代的傳承。每個人都無比渺小,卻也是全人類中的一份子,親身參與其中。諾貝爾生理或醫學獎 2022 年的頒獎選擇,乍看突兀,仔細思索卻頗有深意。帕波的研究也許很不生理或醫學,卻再度強化諾貝爾奬設立的精神:「獎勵替人類做出卓越貢獻的人」。

  • 帕波得獎後接受電話訪問:

延伸閱讀

  1. Press release: The Nobel Prize in Physiology or Medicine 2022. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  2. Advanced information. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  3. Geneticist who unmasked lives of ancient humans wins medicine Nobel
  4. Ancient DNA pioneer Svante Pääbo wins Nobel Prize in Physiology or Medicine
  5. Nature 論文蒐集「Nobel Prize in Physiology or Medicine 2022
  6. Estonian descendant Svante Pääbo awarded Nobel prize

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
從一片荒蕪到綠色星球:細菌與光合作用如何重塑地球——《你的身體怎麼來的?》
商周出版_96
・2025/01/27 ・3861字 ・閱讀時間約 8 分鐘

喜出望外

海中糟粕化為盎然綠意

這個星球現在仰仗光合作用運轉。

──史緹耶可.戈盧比奇(Stjepko Golubic)

四十億年前,地球的陸塊相當單調,黑色、褐色、灰色的岩石上一片荒蕪,火山朝著無氧的大氣噴發毒素,人類乘坐時光機回到那時間點會立刻窒息。當時地球上僅有的生命形態是細菌,以及比英文句號還小得多的單細胞生物。然而若往前快轉幾十億年,來到距今僅三億五千萬年前後,會發現大氣中氧含量接近人類已經習慣了的百分之二十一,這是個很奢華的數字。

那個年代,海洋中滿是巨大生物四處洄游,植物入侵陸地並為人類的演化鋪路。地球從無法居住的荒土蛻變為藍綠色的生命樂園,這麼戲劇性的轉折是什麼力量在背後推動?

種種因素之中有一項特別醒目:直到一九六〇年代人類才開始意識到光合作用的力量不下於各種地質學事件,改造這顆星球的手段神祕且驚奇,非常難以想像。

地球從荒土到生命樂園的蛻變,歸功於光合作用的出現。圖 / unsplash

改造過程中,光合作用或許曾經引發大規模生物滅絕。科學家一度認為其威力能夠與核戰浩劫相提並論,使這顆行星被寒冰覆蓋化作巨型雪球。但同時光合作用又輔助、甚至促成「不可能」的演化捷徑,進而提高生命多樣性,最終使植物甚至人類得以存在。科學家如何研究太古時代的自然變動?而光合作用又如何將地球鬧得天翻地覆?

-----廣告,請繼續往下閱讀-----

疊層石背後的生命故事

十九世紀末期,有人找到能夠追溯光合作用悠久歷史的第一條線索。那時候沒有任何證據指向距今大約五億五千萬年的寒武紀之前有生命存在,然而一八八二年冬天美國大峽谷深處名叫查爾斯.沃爾科特(Charles Walcott)的岩石收藏家改變了一切,後來還當上史密森尼學會的主席。

沃爾科特的故鄉是化石天堂紐約州由提卡市(Utica)。小時候他生得瘦瘦高高,喜歡在父母的農場以及附近未來岳父擁有的採石場內找化石,十八歲離開校園之後先去五金行當店員,卻自己閱讀教科書、研究化石並撰寫論文、與著名地質學家通信來維繫心中熱情。他曾經蒐集古代海洋生物三葉蟲的化石標本,品質在全世界而言也是數一數二,後來慷慨出售給了哈佛大學。

沃爾科特的勘探技巧十分高明,也藉此就職於新成立的美國地質調查局。一八八二年十一月,地質調查局局長、同時自己也是探險家的約翰.威斯利.鮑威爾(John Wesley Powell)要求沃爾科特勘測迄今為止無法進入的大峽谷深處。

鮑威爾之前嘗試過,但只能乘坐小木舟趁漂流時稍微觀察最底層岩石,後來他就在偶爾有「刺骨寒霧、雪花飛旋」的地方紮營監督,帶人修建一條從峽谷邊緣延伸到下方三千英尺(約九百一十四公尺)處溫暖地帶的陡峭馬徑,並且讓時年三十三歲的沃爾科特帶著三名工人和足夠支撐三個月的食物、九匹上鞍的騾子沿著那條臨時小徑進入谷底。

-----廣告,請繼續往下閱讀-----

「高原之後就會積滿雪,」鮑威爾告訴他:「春天之前你和搬運工無法離開峽谷。希望這段時間裡,你能好好研究地層序列,盡量收集化石。祝好運!」

對沃爾科特而言,這是千載難逢的機會。他已經發現一些已知的最古老化石,例如神似甲殼類但奇形怪狀的三葉蟲。此外,達爾文發表《物種起源》不過四十年前,但因為缺乏最原始的動植物或細菌化石而遭到很多抨擊。批評者仗著沒有化石這點堅稱所有物種都是神造,懷疑論者也要求達爾文證明古代有過更單純的生物,可惜他只能委婉表示若生物體很小就不容易留下化石,希望有朝一日會出現。

充滿驚喜的山谷

沃爾科特深知達爾文的窘境。他沿著陡峭原始小徑下降到幾乎沒有生命跡象的大峽谷谷底,然後用心觀察周遭環境。山谷、懸崖,除了石頭還是石頭,但這一隅紅色天地很得他喜愛,不過同行的化石收集家、廚師和馱獸管理員就未必能夠分享那份悸動了。

他們沿著八百英尺(約兩百四十四公尺)峭壁吃力前行,其中一段就是現在的南科維山徑(NankoweapTrail),一般認為是大峽谷裡最危險的路線,河流地形坡陡水急即使沿岸也難以行走,有時候不得不自己開路以求深入。後來一頭騾子死亡、另外兩頭受傷。旅程中至少一次,沃爾科特筆中的墨水結凍了,但又必須在篝火邊融冰為水給騾子飲用。但最可怕的其實是死寂與孤獨,才三個星期就導致那位化石收集家夥伴憂鬱求去。但沃爾科特不同,能來到谷底他太興奮了,堅持了七十二天才踏上歸途。

-----廣告,請繼續往下閱讀-----

有一天他爬上爬下,對部分岩石中層層線條感到好奇,乍看很像切開的包心菜。這些圖案極不尋常,所以沃爾科特認定是生物,後來將其命名為藍綠菌(最初曾視為藻類)。他還聯想到自己在紐約州看過來自寒武紀時期的類似化石,取「隱含生命」的含義命名為隱藻化石(Cryptozoön)。然而大峽谷的情況有點不同,這些化石明顯可見,卻又位於更古老的岩層內,因此歷史比任何其他已發現的化石都久遠。

沃爾科特在大峽谷的古老岩層中發現了類似藍綠菌的化石,命名為隱藻化石,揭示比已知更古老的生命存在。圖 / unsplash

沃爾科特後來在蒙大拿州等地持續發現同樣古老的隱藻化石,接著其他古生物學家也在前寒武紀岩石內察覺到疑似化石的特殊圖案,種種線索指向最原始生命形式的證據可能保存在寒武紀前的石頭裡。即便如此懷疑論調不斷,尤其某個長期存在爭議的標本被證明了並非化石,而是火山石灰岩經過壓力和高溫形成獨特的礦物沉積。

隱藻化石的爭議:解鎖前寒武紀生命的證據

一九三〇年代,沃爾科特去世的四年後,劍橋大學最具影響力的古植物學家蘇厄德(Albert Charles Seward)決定加入辯論,卻在後來被古生物學家肖普夫(William Schopf)形容是「讓煮熟的鴨子飛了」。蘇厄德在史稱「隱藻化石爭議」的事件中嚴格審視前寒武紀化石證據,得出結論認為這完全是一廂情願,所謂的化石與現存物種之間沒有明顯關係,大型結構並未顯示出由較小細胞組成的特徵。

他主張沃爾科特在隱藻化石找到的環狀圖案可能是海底富含鈣質的淤泥沉積,人類本來就不該期望細菌這樣微小的生物會被保存在化石,最後又語重心長告誡科學家:有些尋找化石的人太過一頭熱,他們宣稱找到特別古老的標本時不能輕信。

-----廣告,請繼續往下閱讀-----

地位如此卓著的人物提出警告,導致地質學家不願再從岩石尋找距今約五億年以上的化石,畢竟找到的機率幾乎等於零。久而久之許多人認定了生命在地球上的歷史很短,這顆星球的前面四十億年、其歷史的九成之中根本沒有生命存在。微生物學家史緹耶可.戈盧比奇指出許多科學家以「前寒武紀」一詞指稱生命尚未問世的太古時期,其實這是陷入「現有工具檢測不到就代表不存在」的思考偏誤,將缺乏證據直接視為否定證據了。

時間來到二十年後的一九五〇年代中期,澳洲年輕研究生布萊恩.洛根(Brian Logan)隨地質學教授菲利普.普萊福德(Philip Playford)探索了位置偏遠的鯊魚灣,也就是澳洲西北海岸一片孤立的鹹水潟湖。站在這兒的海灘,淺藍色海水退潮時會露出如夢似幻的奇景:數百顆三英尺(約九十一公分)高的圓柱狀岩石林立,彼此間距很小,彷彿堅硬粗糙如石塊的蘑菇聚集叢生。

兩人詳細調查了這片怪異石陣,然後意識到理解沃爾科特隱藻化石的關鍵。眼前這些不僅是活化石,還能回答一個經典謎語:什麼東西既死又活?石頭表面曾經活著,是藍綠菌累積起來形成網罩般的構造。海水進出時,這層菌網會捕捉沉積物。而藍綠菌死亡後,沉積物固定在原位如海綿狀的石塔,於是又有新的細菌附著其上、形成新的一層網罩。

細菌以同樣方式在太古海洋中創造出沃爾科特的隱藻化石,現在稱為疊層石,語源是希臘文stroma(層)和lithos(岩)。目前只有鯊魚灣等少數幾個地方能找到疊層石,環境對其他多數生物過於鹹澀無法生存。但另一方面,已經化石化的古老疊層石則在世界各地皆有發現。

-----廣告,請繼續往下閱讀-----

澳洲地質學家偶然發現還活著的疊層石,同時美國兩位地質學家史坦利.泰勒(Stanley Tyler)和埃爾索.巴洪(Elso Barghoorn)也宣布找到了蘇厄德口中不存在的化石標本,其中微生物有單細胞也有多細胞,藍綠菌絲也包括在內,而且這些化石都有大約二十億年歷史。「許多人很震驚的,」戈盧比奇表示:「原本以為生命在寒武紀才爆發,之前什麼都沒有。寒武紀應該是起點才對。」但現在普遍接受最古老的疊層石化石上微生物活在三十五億年前,依舊是地球誕生的十億年之後。達爾文和沃爾科特應該很欣慰。

哪種細菌造出最古老的疊層石?無法確定是已經會行光合作用的藍綠菌,抑或是它們的祖先。不過藍綠菌至少二十四億年前已經存在於海洋。

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
1

文字

分享

0
1
1
貓咪也會學鳥叫?揭秘貓貓發出「喀喀聲」背後的可能原因
F 編_96
・2024/12/24 ・2480字 ・閱讀時間約 5 分鐘

F 編按:本文編譯自 Live Science

貓是一種神秘而又引人注目的動物,牠們看似深居簡出,但擁有多元的聲音表達:從吸引人類注意的「喵喵叫」,到面對威脅時的「嘶嘶聲」與低沉的「咆哮」。

延伸閱讀:貓咪為什麼總愛對人喵喵叫?看貓如何用聲音征服人類的心

然而,細心的貓奴們可能會注意到,貓有時會對著窗外的鳥兒或屋內小動物玩具,發出一種獨特的「卡卡聲」或「咯咯聲」。這種聲音既像牙齒打顫,又好似一陣陣輕微的顫鳴,卻很難歸類到常見的喵叫或咆哮裡。這種名為「chatter」的行為,究竟在貓的生活中扮演什麼角色?目前科學界尚未對此有定論,但有幾種廣為討論的假說,或許能為我們提供一些思考方向。

卡卡叫:情緒的釋放或表達?

有些貓行為專家推測,貓咪在看到獵物(如窗外的鳥、老鼠)卻無法接近時,會因「欲捕無法」的挫折感或興奮感,發出這種「卡卡聲」。就像人類遇到障礙時,可能會發出抱怨的咕噥聲或乾著急的嘆息聲一樣,貓咪的「喀喀聲」也可能只是把當下的情緒外顯,並非有特別針對人或其他動物的溝通目的。

  • 情緒假說
    • 挫折:當貓看見鳥兒在窗外飛舞卻無法撲殺,內心焦躁,遂用聲音抒發。
    • 興奮:或許貓在準備捕獵時也感到高度亢奮,因此嘴部不自覺抖動並出聲。
貓咪的「喀喀聲」可能源於挫折或興奮情緒,表達捕獵受阻的內在反應。圖/envato

要在科學上驗證「情緒假說」並不容易,因為需要同時測量貓咪行為和生理指標。例如,研究人員可能需要測量貓咪在卡卡叫時的壓力荷爾蒙變化,才能確認牠們究竟是帶著正面興奮,或是負面挫折的情緒。不過,由於貓的獨立特質,實驗設計往往困難重重,樣本量要足夠也不容易,所以至今沒有定論。

-----廣告,請繼續往下閱讀-----

增強嗅覺?貓咪的「第二鼻子」

另一種說法則認為,貓咪發出「卡卡聲」時,可能同時開啟了其位於口腔上顎的「犁鼻器」(vomeronasal organ),也稱作「賈氏器官(Jacobson’s organ)」。這個感知器官能捕捉一般鼻腔聞不到的化學分子,如費洛蒙或特定氣味分子,因此對貓的求偶、社交和獵捕行為都非常重要。

  • 嗅覺假說
    • 張口呼吸:如果貓咪一邊「咯咯咯」地開合上下顎,可能在嘗試讓空氣(及其中所含的氣味分子)進入犁鼻器。
    • 蒐集更多環境資訊:在確定下手前,更完整的嗅覺分析或能提高牠們獵捕成功率,或是幫助判斷環境中是否有其他潛在威脅或機會。

然而,要科學驗證「增強嗅覺假說」同樣不簡單。研究人員不僅要觀察貓咪在卡卡叫時的行為,也需要測量牠們是否真的打開了更大的氣道,並在那個同時有效使用犁鼻器。這些行為與生理測量都必須在相對可控卻又不影響貓自由行動的實驗環境中進行,實務上難度頗高。

聲音模仿:貓咪的「偽鳥叫」?

貓咪的「卡卡聲」或許是為了模仿獵物的聲音,讓獵物降低警戒。圖/envato

第三種最有趣也最具「野性色彩」的假說,是「模仿獵物聲音」。在野外,一些中南美洲的小型貓科動物(例如:長尾虎貓,又稱美洲豹貓或瑪家貓,Margay)曾被觀察到,在捕獵小猴群時,發出類似猴子叫聲的音調;有些當地原住民族群也傳說,叢林裡的某些捕食者會模仿目標獵物的聲音來誘捕。由此推測,家貓看到鳥兒時發出的「卡卡聲」,可能包含些微模仿鳥兒啁啾的元素,試圖降低獵物警戒或甚至吸引獵物靠近。

  • 模仿假說
    • 案例參考:野生貓科動物曾出現學習或偽裝聲音的紀錄。
    • 家貓可能繼承的行為:家貓的祖先——北非野貓(African wildcat)及其他小型貓科物種,是否具備聲音模仿能力?這在生物演化研究上仍是未解之謎。
    • 缺乏大規模觀察:由於小型野生貓科動物研究資料有限,且家貓實驗更不易做大樣本長期追蹤,最終導致此理論尚未獲得廣泛實證。

貓咪行為研究的挑戰:野性祖先的重要性

探討貓咪行為,常常需要回溯至野生祖先的棲地環境。家貓(Felis catus)普遍被認為源自北非野貓(Felis lybica),然而,野貓習性的研究本就不多,尤其是關於聲音與捕獵策略更是資料有限。我們想知道「為什麼家貓會卡卡叫」,首先要確定:「牠們的野性祖先或其他小型貓科,也有同樣的行為嗎?」若有,家貓則可能繼承自古老基因;若無,則可能是家貓在與人類共處的環境中演化出的新行為。

-----廣告,請繼續往下閱讀-----
如果要探查家貓「卡卡叫」的原因,還需要了解其祖先或其他小型貓科是否具有類似行為。圖/envato

再者,貓在實驗室中的「不可控」因素相當多。貓不像狗般樂於服從人類指令,常有自己的規律與個性。要在實驗情境下穩定地誘發貓的「卡卡叫」行為、同時檢測牠們的生理和心理反應,並確保每隻貓的個體差異都被考慮到,這些都對研究團隊是極大考驗。

對於許多貓奴來說,貓咪坐在窗邊,一邊盯著外頭的鳥兒或松鼠,一邊發出獨特的「卡卡聲」,是一幕既可愛又神祕的風景。究竟牠們是在抒發情緒、強化嗅覺、抑或真的在「假扮鳥叫」以誘捕獵物?目前沒有確切的答案。然而,也正因為這層未知,貓貓才更顯得迷人。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃