0

0
0

文字

分享

0
0
0

馬祖藍眼淚:從海岸奇景到顯微鏡下的祕密

顯微觀點_96
・2025/08/10 ・2064字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

每年春夏,馬祖的海面上經常暈著一片神祕夢幻的淡藍色螢光,隨著海浪明暗閃爍。這便是被美國 CNN 列為「世界 15 大自然奇景」的「藍眼淚」自然奇觀。

但藍眼淚可不只是攝影玩家眼中的浪漫美景,更是一種與生態與科學研究緊密關聯的海洋生物現象。這些閃爍的藍色光點其實是一種稱為夜光蟲(Noctiluca scintillans)的甲藻門單細胞生物,受到海浪、自然風甚至人為驚擾而發出淡淡藍光,需要在沒有光害的環境下才能清楚看見。以前在馬祖當地常將藍眼淚稱為「丁香水」或「海耀」,因為清明到立夏前後是馬祖漁民捕撈丁香魚的季節,而當看到微弱藍光在水面閃耀,就會大量出現以夜光蟲為食物的丁香魚群聚集。

馬祖藍眼淚林瑞興
馬祖藍眼淚。攝影/林瑞興

夜光蟲是什麼?顯微鏡下的藍色魔法

國立臺灣海洋大學在馬祖北竿設立分部,並推動「馬祖海域海洋生態整體調查計畫」,開啟「藍眼淚」的研究以及培植技術的研發,希望解開「藍眼淚」之謎。

-----廣告,請繼續往下閱讀-----

海大研究團隊在「藍眼淚」經常出現的介壽澳口沿岸水域進行採水,利用毛細管在解剖顯微鏡下將發光生物進行單細胞分離培養,證實夜光蟲是造成馬祖「藍眼淚」的主要發光生物。

夜光蟲是一種單細胞渦鞭毛藻,具有一橫向鞭毛和一個觸手。蟲體呈現腎形或球狀,直徑大小僅介於 200 至 2000 μm(微米)。

夜光蟲分為兩個類群,一種是體內有內共生藻(Protoeuglena noctilucae),可不攝食,靠共生藻光合作用提供能量存活的綠夜光蟲;另一種是體內不存在共生藻的紅夜光蟲。而馬祖發現的夜光蟲屬於紅夜光蟲。

每隻夜光蟲大約含有 104 個發光源,每個發光源大小為 0.5-1.5 µm,大約可放出 105 個光子。發光時間約可持續 80 毫秒(ms,10-3 秒),一閃即過,因此我們常看到海面一片藍的景象通常是長期曝光的效果。

-----廣告,請繼續往下閱讀-----

不過夜光蟲發光的目的尚不清楚,有研究認為黑暗中發出生物光可對外敵產生威嚇作用,或吸引更大型的生物來攻擊夜光蟲的攝食者。另外一種說法是生物光在黑暗中可作為識別同種生物的標誌以進行交配,或是做為吸引餌料的工具。但可以確定的是,當受到外力刺激夜光蟲便會發光。因此當船前進時,在船隻兩側的便會聚集許多小光點;或當浪拍打時,也會出現閃閃點點的藍色螢光。

藍眼淚大爆發 有性生殖是重要關鍵

除了發光機制,海大研究團隊持續針對藍眼淚進行研究;尤其是為何在特定時節,馬祖藍眼淚會「大爆發」。

通常每年 4 月至 6 月前往馬祖的機票都極為搶手,因為這正是藍眼淚的最佳觀賞季節;但事實上,3 至 9 月都可說是馬祖藍眼淚的觀賞期。

過去認為夜光蟲是因為無性生殖而出現爆發期,但根據海洋大學發表於《Frontiers in Marine Science的研究指出,有性生殖其實扮演更重要的角色。

-----廣告,請繼續往下閱讀-----
藍眼淚的主要發光生物為夜光蟲。攝影/楊雅棠
藍眼淚的主要發光生物為夜光蟲。攝影/楊雅棠

當水溫低於攝氏 27 度時,閩江水帶入豐富陸源性無機營養鹽進入馬祖周遭水域,造成矽藻,也就是夜光蟲的餌料大量快速成長,進而引發夜光蟲數目快速增加。

但是當夜光蟲經歷一段爆發性成長、周圍獵物數量突然下降時,它們便會「感受到壓力」,轉變為另一種細胞型態—配子母細胞(gametocyte),並產生 256 到 1024 個原始配子(progametes)。這些配子結合成合子後沉入水底、暫時停止發育,等待來季重新復甦。

海大研究團隊使用解剖顯微鏡和立體顯微鏡針對夜光蟲、配子母細胞、綠藻(夜光蟲的餌料),每 24 小時進行計數,以計算實驗期間有性生殖率的變化。

研究結果發現,有性生殖率或配子體母細胞濃度的上升僅發生在獵物濃度發生大幅變化時,通常發生在夜光蟲族群成長的指數期之後。當餌料濃度降至 400 個細胞/毫升以下時,配子體母細胞數量會顯著增加,從夜光蟲總族群的 1%(或更少)增加到近 10%。也就是說,獵物濃度的突然下降會誘導更多的夜光蟲轉變為配子體母細胞。

-----廣告,請繼續往下閱讀-----

馬祖的藍眼淚不僅是自然界奇觀,更是探究海洋生態系中夜光蟲與環境互動的科學視窗。下次前往馬祖「追淚」時,不妨想像一下藍光的真實身影。

參考資料:

  • Lee, J. L., Chiang, K., & Tsai, S. (2021). Sexual Reproduction in Dinoflagellates—The Case of Noctiluca Scintillans and Its Ecological Implications. Frontiers in Marine Science8, 1–17.
  • 蔡昇芳、吳律瑩、蔣國平。夜光蟲(Noctiluca scintillans)數量變化與環境的關係。國立臺灣海洋大學海洋環境與生態研究所與海洋中心。
  • 解開馬祖藍眼淚之謎──夜光蟲
  • 維基百科

延伸閱讀:

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
2014諾貝爾化學獎–如何將光學顯微鏡變成奈米顯微鏡
諾貝爾化學獎譯文_96
・2014/10/09 ・5279字 ・閱讀時間約 10 分鐘 ・SR值 554 ・八年級

本文由台大化學蔡蘊明教授譯自諾貝爾化學獎委員會公佈給大眾的新聞稿(2014/10/9)
PanSci 編輯部轉載並編輯修改自台大化學網站

艾瑞克・貝齊格(Eric Betzig),史蒂芬・海爾(Stefan W. Hell)以及威廉・莫納(William E. Moerner)等三人得到了2014年的諾貝爾化學獎,這是因為他們越過了一個科學上設想的限制,也就是光學顯微鏡的解析度永遠無法比 0.2 微米更精確。但如今,利用分子的螢光,科學家現在可以監看在細胞內部分子之間的相互作用;他們可以觀察與疾病相關的蛋白質之聚集,也可以在奈米的尺度裡追蹤細胞分裂。

紅血球細胞、細菌、酵母菌細胞以及游動精子:當科學家在十七世紀第一次開始在顯微鏡下研究活體組織時,一個新的世界在他們的眼前打開。這是微生物學出世之際,從此之後,光學顯微鏡成為生命科學家工具箱裡面最重要的工具之一。其它的顯微鏡術,例如電子顯微鏡,其所需的準備方法最終會殺死細胞。

發亮的分子越過了物理的屏障

然而,有一段很長的時間,物理條件限制了光學顯微鏡所能解析的結構的大小。在1873年,顯微鏡學家恩斯特・阿貝(Ernst Abbe)發表了一個方程式,證明了光學顯微鏡的解析度是如何受到光的波長,以及一些其它的因素所限制。這導致科學家在二十世紀的大半時間裡,相信光學顯微鏡是永遠無法用來觀察那些比所用的光之波長的一半還小的物體,也就是 0. 2微米 (200奈米;微米 = 10-6 米 = 10 3 奈米) (圖一)。在這樣的狀況下,細胞裡一些胞器的輪廓,例如細胞的發電機粒線體,雖可以看到,但是幾乎不可能分辨更小的物體,因此如果想要追蹤細胞裡蛋白質分子之間的相互作用,就無法做到,這好比能看到一個城市的建築物,但卻無法看出市民如何的生活,和如何為其生存而努力。為了瞭解一個細胞如何的運作,你必須能追蹤個別的分子如何的工作。

fig01_chinese
圖一 在十九世紀末葉,恩斯特・阿貝(Ernst Abbe)定義了光學顯微鏡的解析度約為光波長的一半,差不多是0.2微米(200奈米),這意味著科學家能夠區別一個完整的細胞以及一些細胞內的胞器,不過他們將永遠無法分辨小到如一個正常大小的病毒,或是一個單一的蛋白質分子。

-----廣告,請繼續往下閱讀-----

儘管阿貝的方程式依然成立,但繞射極限的障礙仍被克服了。艾瑞克・貝齊格,史蒂芬・海爾以及威廉・莫納等三人之所以獲得2014年的諾貝爾化學獎,就是因為他們利用螢光分子,將光學顯微鏡帶進了另一個境界。理論上,不再存在有太小而無法觀察的結構。就結果而言,光學顯微鏡變成了奈米顯微鏡。

如何規避阿貝繞射極限的故事,要分成兩條路線來說;兩個基於不同的原理所各自獨立發展出的方法,都獲得成功。讓我們回溯到1993年,在芬蘭西南部的一個學生公寓裡,史蒂芬・海爾在翻閱一本量子光學的教科書時,得到了一個很棒的點子。

對阿貝繞射極限的青春叛逆面對了懷疑

自從海爾在1990年從德國海德堡大學取得博士學位之後,他就一直在尋找方法,來規避阿貝在超過一個世紀以前所訂下的限制。挑戰一個已經建立的理論,這樣的想法雖很誘人,但是在德國的資深科學家們,以懷疑面對他的熱情,導致了海爾往寒冷的北方尋找庇護所。一位在芬蘭特爾庫(Turku)大學研究螢光顯微鏡術的教授,給了海爾在其研究小組工作的一個職位。海爾相信一定有一個機會能夠克服阿貝的繞射極限,而當他讀到那本量子光學課本裡面「受激放射」的字語時,在他的腦海裡浮現了一個新的想法:「在那個瞬間,曙光在我腦際出現,我終於找到一個實際的觀念來追求一條真正的線索。」這是他於2009年自己的說明 ,讓我們進入他的想法一探究竟。

解答:用奈米大小的手電筒掃描樣品

在特爾庫大學,海爾在進行稱為螢光顯微鏡術的研究,那是一種利用螢光分子來讓細胞顯像的技術。舉例來說,他們可以使用只與特定細胞DNA偶合之專一螢光抗體,再用一個短暫的脈衝光來激發螢光抗體,這可以讓抗體短暫並持續一段時間。而如果抗體的確與DNA偶合,它們就會在細胞當中放瑩光,因為DNA是塞在細胞核裡面的。利用這個方法,科學家們可以看到某些分子的位置,但是他們只能定出一群聚集在一起的分子之位置,例如一些糾纏在一起的多股DNA,但是因為解析度太低,而無法分辨單股的DNA,這就好像你可以看到一卷紗線,但卻無法看出紗線是如何纏繞的。

-----廣告,請繼續往下閱讀-----

當海爾讀到受激放射時,他體認到應該可以設計一種範圍為奈米大小的手電筒,能夠對著樣品以一次一個奈米的方式掃描。利用受激放射,科學家們可以將分子的螢光淬滅(quench),當他們將一道雷射光束照在那些發光的的分子上時,它們會立刻失去能量而變暗。在1994年,海爾發表了一篇論文概略說明了他的想法,他規劃的方法稱為受激放射消去法(stimulated emission depletion,簡稱STED),利用一道脈衝光將所有的螢光分子激發(開始發光),同時利用另一道脈衝光將所有的螢光分子淬滅,但是只有在中間的一個奈米尺度大小的體積之內除外(圖二),因此只會取得在這個體積之內的螢光。透過對樣品的掃描以及同時對光線強度的測量,就可以取得一張清楚的圖像。每一次被容許放出螢光的體積愈小,最後得到的影像解析度就愈高,因此在理論上,光學顯微鏡在解析度方面就不再有限制了。

fig02_chinese

在德國發展頭一個奈米手電筒

海爾的理論文章並未立刻的激起一場騷動,但是的確有趣到讓海爾在位於哥廷根的馬克斯・卜蘭克生物物理化學研究所,得到一個職位。在接下來的數年裡,他讓自己的想法開花結果;他設計了一個STED顯微鏡,於2000年,已經能夠展示真的可以實際的運用他的想法,其中之一是用來取得一張大腸桿菌的圖像,並具有用光學顯微鏡從來無法達到的解析度(圖三)。

fig03_chinese

STED 顯微鏡從收集一大堆很小的體積所放出的光,然後集合成一張整體的圖像,相對的比較,另一種原理也得到了成功,那被稱為單分子顯微鏡術,需要將許多張圖像重疊在一起。艾瑞克・貝齊格與威廉・莫納(大家都用W. E.稱呼他)各自獨立的,以不同的基礎觀念切入,促成這項技術的發展。這項技術的基礎,是在莫納成功的觀測到一個小的螢光分子時所奠定。

W. E. 莫納 ― 首先觀測到單一的螢光分子

在大部分的化學方法中,例如量測吸收和螢光,科學家們是同時觀察上百萬的分子,在這些實驗中所得到的結果,反映的只是一種典型平均化的分子表現,但科學家們不得不接受這種困境,因為沒有別的可能性。不過有很長的一段時間,他們夢想著能夠量測每一個單一的分子,因為有愈豐富愈詳盡的資訊,就愈可能去瞭解譬如疾病是如何的發展。

-----廣告,請繼續往下閱讀-----

在1989年,莫納成為全球第一位科學家能夠量測單一分子對光的吸收,那是一項具有關鍵性的成就。當時他正在位於美國加州聖荷西的IBM研究中心工作,那個實驗打開了一扇通往新未來的大門,並且啟發了許多化學家將注意力轉移到單分子的身上,其中之一就是艾瑞克・貝齊格,接著會在稍後說明他的成就。

八年之後,莫納朝單分子顯微鏡邁出了第二步,那是運用之前諾貝爾獎在2008年所表彰過的綠色螢光蛋白質(GFP)。

分子大小的燈一開一關

在1997年,莫納進入了在加州大學的聖地牙哥分校,那正是後來獲得諾貝爾桂冠的錢永健所在的學校,當時錢永健正嘗試要讓GFP放出像彩虹般的各種螢光。這個綠色螢光蛋白質是從一種螢光水母身上分離出來的,它的好處在於能讓細胞裡面的其它蛋白質顯像。科學家們先利用基因科技,將綠色螢光蛋白質偶合到其它的蛋白質上,那綠色的螢光就會暴露出這個被標記的蛋白質位在何處。

莫納發現有一種GFP可隨意點亮或關掉,當他用488奈米波長的光去激發蛋白質的時候,蛋白質就開始發出螢光,但一個短暫的時間之後就會熄滅,在這之後無論他再用多強的光去照射這個蛋白質,它也不會發光,不過他後來發現當光的波長改為405奈米時,這個蛋白質就會恢復生機,當蛋白質重新活化後,它又會放出488奈米波長的螢光。

-----廣告,請繼續往下閱讀-----

莫納將這些可被激發的蛋白質均勻的散佈在一個膠質內,讓每個蛋白質之間的距離大於0.2微米的阿貝繞射極限,因為它們稀疏的散開來,一個普通的光學顯微鏡就可以區辨每一個發亮的分子 ― 它們就好像一堆具有開關的小燈泡,這項結果發表在1997年的“自然”期刊上。

透過這個發現,莫納展示了可以透過光學的方式,控制單一分子們的螢光,這解決了一個貝齊格在兩年之前所想到的問題。

對學術感到疲乏 ― 但仍爲阿貝的繞射極限而著迷

與海爾一樣,貝齊格也爲了越過阿貝繞射極限的想法而著迷。在1990年代初期,他正在美國紐澤西州的貝爾實驗室,研究一種新的光學顯微鏡術,稱為近場顯微鏡術。在此法中,光線是從一個非常薄的尖端所釋出,這個尖端與樣品之間的距離只有幾個奈米,雖然這種顯微鏡術也可以克服阿貝繞射極限,但是此法具有一些主要的弱點,舉例來說,因為放出的光範圍太短(只能深入約一百奈米),以至於無法看到細胞表面之下的結構。

貝齊格在1995年得到一個結論,那就是近場顯微鏡術無法更進一步的改善,此外他在學術界感覺不太自在,因此決定結束他的研究生涯;即便不知下一步要何去何從,他毅然辭職,但是阿貝繞射極限仍在他的心中。步行在一個寒冷的冬天裡,他想到了一個新的點子;是否可能用具有不同性質的分子,那些發出不同顏色之螢光的分子,來克服阿貝繞射極限?

-----廣告,請繼續往下閱讀-----

貝齊格已經能用近場顯微鏡術觀測到單分子的螢光,與許多人一樣,貝齊格受到莫納的啟發,他開始仔細考慮,如果使用幾種會放出不同螢光的分子,例如紅色、黃色和綠色,是否可以利用普通的光學顯微鏡得到相同的解析度。他的點子是讓顯微鏡每一次用不同顏色的光來記錄影像,如果同一種顏色的分子都是均勻的散佈,而且相互之間的距離大於阿貝繞射極限的規範,它們的位置將可精確的決定。接著當這些影像重疊起來時,完整的圖像將具有遠超過阿貝繞射極限的解析度,紅色、黃色和綠色的分子雖然相互的距離只不過幾個奈米,但仍能區別,如此就能克服阿貝繞射極限。不過,仍有一些實際的困難,例如缺乏那些具有不同光學性質之分子,其差異要大到足以相互區別。

在1995年,貝齊格在 Optical Letters 這份期刊上發表了上述想法之理論,隨即離開了學術界,並進入了他父親開的公司。

被綠色螢光蛋白質引誘回到顯微鏡術

貝齊格完全的脫離學術界,已經有許多年了,但是有一天,一個對科學的渴望突然又復甦了。回顧科學文獻時,他第一次看到綠色螢光蛋白質的論文,體認到有一個蛋白質,能讓其它的蛋白質在細胞內顯像,活化了貝齊格對如何克服阿貝繞射極限的想法。

真正的突破發生在2005年,當時他偶然發現到那種可以隨意活化的螢光蛋白質,很類似那些莫納在1997年,於單分子的層次所觀察到的螢光蛋白質。貝齊格知道,這個分子正是可以實現他在十年前所想到的那個主意,所需要的工具。這種螢光分子並不需要具有不同的顏色,它們還是可以在不同的時間發出螢光。

-----廣告,請繼續往下閱讀-----

藉著影像的重疊超越阿貝繞射極限

只不過一年之後,與研究可激發螢光蛋白質的科學家合作,貝齊格展示了他的想法的確可以付諸實現。在一些例子當中,他們將會發光的蛋白質接在溶體(lysosome)的膜上面,溶體是細胞裡的回收站,現在用一道脈衝光來激發出蛋白質的螢光,因為使用的脈衝很弱,所以只能讓部分的分子開始發出螢光,由於它們的數目很少,幾乎所有發光分子之間的距離均大於0.2微米的阿貝繞射極限,因此每一個發光的蛋白質之位置都可以在顯微鏡下登錄。一會兒之後,當螢光消失時,他們重新激發另一組蛋白質,同樣的,使用的脈衝弱到只能讓部分的分子發出螢光,同時這一組圖像被登錄下來,這個步驟一直不斷的重複。
fig04_chinese

當貝齊格將所有的影像重疊起來時,得到了一張溶體膜的超高解析圖像,它的解析度遠遠的超過了阿貝繞射極限。接著,貝齊格將這一份開創性的工作,於2006年發表在“科學”期刊上。

fig05_chinese
圖五 中間的圖是溶體(lysosome)膜的圖像,這是貝齊格用單分子顯微鏡,最初所取得的幾個圖像之一。在左邊是相同的圖,但是用傳統的顯微鏡所取得的。在右邊則是將膜的圖像放大,請注意此圖的尺度是0.2微米,等同於阿貝繞射極限,其解析度改進了許多倍。此圖取自於 Science 313:1642-1645。

這幾位得獎者仍企圖在描繪生命最深層的奧秘

這些由艾瑞克・貝齊格,史蒂芬・海爾以及威廉・莫納等三人所開發的方法,發展出了幾個現在爲全世界各地所使用的奈米顯微鏡技術。這三位得獎者仍然活躍在這個不僅龐大,而且一直在增長的科學社群中,將創新的矛頭對著奈米顯微鏡術的領域,當他們將功能強大的奈米顯微鏡瞄準在生命中最小的零件時,他們也同時取得了最尖端的知識。史蒂芬・海爾爲了對腦突觸有更好的瞭解,窺探了活的神經細胞內部;威廉・莫納研究了與杭丁頓氏症(舞蹈症)有關的蛋白質;艾瑞克・貝齊格追蹤了在胚胎中細胞的分裂,這些只是眾多例子當中的幾個。有一件事情是肯定的,2014年的諾貝爾化學桂冠得主們,對發展人類最重要的知識,已經奠定了基石。

-----廣告,請繼續往下閱讀-----

 

  • 本文譯自諾貝爾化學獎委員會公佈給大眾的新聞稿,原文可自官方網站取得。
  • 若有興趣閱讀進階的資料,請由此網址取得。

*特別感謝現於美國德州農工大學攻讀博士的曹一允(我2008年的專題生)熱血相挺,幫我將圖片中文化;另外感謝現於本系李弘文教授實驗室,攻讀碩士學位的林宇軒幫我校稿。多年來幫我將譯文置於台大化學系網頁的黃俊輝先生業已退休,感謝接替他的蔡明軒幫忙。

 

編按:蔡教授歷年翻譯的諾貝爾化學獎得主貢獻簡介

-----廣告,請繼續往下閱讀-----
諾貝爾化學獎譯文_96
15 篇文章 ・ 24 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

0
0

文字

分享

0
0
0
馬祖藍眼淚:從海岸奇景到顯微鏡下的祕密
顯微觀點_96
・2025/08/10 ・2064字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

每年春夏,馬祖的海面上經常暈著一片神祕夢幻的淡藍色螢光,隨著海浪明暗閃爍。這便是被美國 CNN 列為「世界 15 大自然奇景」的「藍眼淚」自然奇觀。

但藍眼淚可不只是攝影玩家眼中的浪漫美景,更是一種與生態與科學研究緊密關聯的海洋生物現象。這些閃爍的藍色光點其實是一種稱為夜光蟲(Noctiluca scintillans)的甲藻門單細胞生物,受到海浪、自然風甚至人為驚擾而發出淡淡藍光,需要在沒有光害的環境下才能清楚看見。以前在馬祖當地常將藍眼淚稱為「丁香水」或「海耀」,因為清明到立夏前後是馬祖漁民捕撈丁香魚的季節,而當看到微弱藍光在水面閃耀,就會大量出現以夜光蟲為食物的丁香魚群聚集。

馬祖藍眼淚林瑞興
馬祖藍眼淚。攝影/林瑞興

夜光蟲是什麼?顯微鏡下的藍色魔法

國立臺灣海洋大學在馬祖北竿設立分部,並推動「馬祖海域海洋生態整體調查計畫」,開啟「藍眼淚」的研究以及培植技術的研發,希望解開「藍眼淚」之謎。

-----廣告,請繼續往下閱讀-----

海大研究團隊在「藍眼淚」經常出現的介壽澳口沿岸水域進行採水,利用毛細管在解剖顯微鏡下將發光生物進行單細胞分離培養,證實夜光蟲是造成馬祖「藍眼淚」的主要發光生物。

夜光蟲是一種單細胞渦鞭毛藻,具有一橫向鞭毛和一個觸手。蟲體呈現腎形或球狀,直徑大小僅介於 200 至 2000 μm(微米)。

夜光蟲分為兩個類群,一種是體內有內共生藻(Protoeuglena noctilucae),可不攝食,靠共生藻光合作用提供能量存活的綠夜光蟲;另一種是體內不存在共生藻的紅夜光蟲。而馬祖發現的夜光蟲屬於紅夜光蟲。

每隻夜光蟲大約含有 104 個發光源,每個發光源大小為 0.5-1.5 µm,大約可放出 105 個光子。發光時間約可持續 80 毫秒(ms,10-3 秒),一閃即過,因此我們常看到海面一片藍的景象通常是長期曝光的效果。

-----廣告,請繼續往下閱讀-----

不過夜光蟲發光的目的尚不清楚,有研究認為黑暗中發出生物光可對外敵產生威嚇作用,或吸引更大型的生物來攻擊夜光蟲的攝食者。另外一種說法是生物光在黑暗中可作為識別同種生物的標誌以進行交配,或是做為吸引餌料的工具。但可以確定的是,當受到外力刺激夜光蟲便會發光。因此當船前進時,在船隻兩側的便會聚集許多小光點;或當浪拍打時,也會出現閃閃點點的藍色螢光。

藍眼淚大爆發 有性生殖是重要關鍵

除了發光機制,海大研究團隊持續針對藍眼淚進行研究;尤其是為何在特定時節,馬祖藍眼淚會「大爆發」。

通常每年 4 月至 6 月前往馬祖的機票都極為搶手,因為這正是藍眼淚的最佳觀賞季節;但事實上,3 至 9 月都可說是馬祖藍眼淚的觀賞期。

過去認為夜光蟲是因為無性生殖而出現爆發期,但根據海洋大學發表於《Frontiers in Marine Science的研究指出,有性生殖其實扮演更重要的角色。

-----廣告,請繼續往下閱讀-----
藍眼淚的主要發光生物為夜光蟲。攝影/楊雅棠
藍眼淚的主要發光生物為夜光蟲。攝影/楊雅棠

當水溫低於攝氏 27 度時,閩江水帶入豐富陸源性無機營養鹽進入馬祖周遭水域,造成矽藻,也就是夜光蟲的餌料大量快速成長,進而引發夜光蟲數目快速增加。

但是當夜光蟲經歷一段爆發性成長、周圍獵物數量突然下降時,它們便會「感受到壓力」,轉變為另一種細胞型態—配子母細胞(gametocyte),並產生 256 到 1024 個原始配子(progametes)。這些配子結合成合子後沉入水底、暫時停止發育,等待來季重新復甦。

海大研究團隊使用解剖顯微鏡和立體顯微鏡針對夜光蟲、配子母細胞、綠藻(夜光蟲的餌料),每 24 小時進行計數,以計算實驗期間有性生殖率的變化。

研究結果發現,有性生殖率或配子體母細胞濃度的上升僅發生在獵物濃度發生大幅變化時,通常發生在夜光蟲族群成長的指數期之後。當餌料濃度降至 400 個細胞/毫升以下時,配子體母細胞數量會顯著增加,從夜光蟲總族群的 1%(或更少)增加到近 10%。也就是說,獵物濃度的突然下降會誘導更多的夜光蟲轉變為配子體母細胞。

-----廣告,請繼續往下閱讀-----

馬祖的藍眼淚不僅是自然界奇觀,更是探究海洋生態系中夜光蟲與環境互動的科學視窗。下次前往馬祖「追淚」時,不妨想像一下藍光的真實身影。

參考資料:

  • Lee, J. L., Chiang, K., & Tsai, S. (2021). Sexual Reproduction in Dinoflagellates—The Case of Noctiluca Scintillans and Its Ecological Implications. Frontiers in Marine Science8, 1–17.
  • 蔡昇芳、吳律瑩、蔣國平。夜光蟲(Noctiluca scintillans)數量變化與環境的關係。國立臺灣海洋大學海洋環境與生態研究所與海洋中心。
  • 解開馬祖藍眼淚之謎──夜光蟲
  • 維基百科

延伸閱讀:

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
奈米測溫貼片高精準描繪體表溫度
NanoScience
・2013/10/07 ・910字 ・閱讀時間約 1 分鐘 ・SR值 553 ・八年級

resize_1380552081

美國研究人員利用奈米感知器陣列製作出第一個可撓穿戴式溫度計。根據該研究團隊,此具高靈敏度的貼片狀裝置可測得體表皮膚溫度僅數mK的變化,未來可望使用於醫療院所或居家環境。

伊利諾大學厄巴納香檳分校(UIUC) John Rogers研究團隊製作出兩種類型的測溫元件。第一種感應器陣列包含長20 µm寬20 nm的金箔片,藉由其電阻值變化觀察溫度,製作上採用了標準微影製程技術。第二種裝置則由複用(multiplexed)感應器陣列所構成,感應器基於圖案化摻雜的矽奈米薄膜二極體,並利用二極體開啟電壓(turn-on voltage)的變化來量測溫度的改變。相同的是,兩種元件都沉積於具彈性的聚酰亞胺(polyimide)塑膠薄膜上。此積體感應器的柔軟度、厚度以及密度等物理性質接近人體皮膚,因此,病患幾乎感受不到穿戴於身上的溫度計。除此之外,此附著於皮膚上的貼片溫度計可承受捏擰或扭轉並且不至造成損傷。裝置由感應器節點陣列構成,每一陣列皆能量測局部溫度達mK的準確度。

如此高靈敏度可用來觀察血流內熱量如何流動以及舒張與收縮時血管中溫度的改變。這些測量能提供大量關於心血管健康狀況的資訊。尤有甚者,通入電流流經這些感應器能產生焦耳熱(Joule heating),並能將此熱量施加於皮膚上。同步監控溫度可使研究人員測量出皮膚的熱導率,接著藉此推算皮膚含水量。此外加熱能也可能用來在某些情形下幫助傷口復原。

由於元件被包覆於聚酰亞胺塑膠微米級厚的夾層中,感應器陣列能抵抗濕氣並為電性絕緣。這代表著即使病人發燒或大量出汗時,仍不影響體溫量測。就靈敏度和繪製皮膚溫度分佈的能力而言,此裝置效能可比擬今日常見於醫療院所的熱感應相機,並且具有價格低廉與體積輕薄的優勢。對於穿戴此測溫貼片的病患,不僅其行為活動不受影響,而且在進行溫度測量時也無須維持靜止。

-----廣告,請繼續往下閱讀-----

Rogers表示,目前此裝置須仰賴外部電源供應動力,倘若未來能把電源直接整合入感應器陣列中,譬如使用可伸縮電池、超級電容以及其他儲能元件等,將非常適合許多不同的應用,可供醫療場所或一般住家使用。該團隊目前正著手測試病人實際配戴該測溫貼片時的效果及情形,同一時間並積極開發完全無須使用線路的元件。詳見Nature Materials|doi:10.1038/nmat3755

轉載自 奈米科學網 

-----廣告,請繼續往下閱讀-----
NanoScience
68 篇文章 ・ 4 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。