Loading [MathJax]/extensions/tex2jax.js

1

17
13

文字

分享

1
17
13

2021 年《Science》年度十大科學突破

PanSci_96
・2021/12/29 ・5289字 ・閱讀時間約 11 分鐘

轉眼就來到 2021 年的尾聲。今年,《Science》雜誌評選的「年度十大科學突破」橫跨眾多領域,包括 AI、天文、物理、生物、醫學,以及備受矚目的能源議題,趕快來看看究竟是哪十項突破吧!

十大突破之首——利用 AI 預測蛋白質結構

AI 預測兩種蛋白質如何在酵母菌中形成參與修復 DNA 的複合物。圖/SCIENCE

蛋白質是組成生物體不可或缺的分子。在 1950 年代,科學家透過分析 X 射線繪製蛋白質結構。然而,既有的方法在繪製成本上過於高昂,往往得耗費數年時間,因此在 1970 年代,科學家開始運用計算機建模,預測蛋白質的折疊方式。直到 2018 年,Google 旗下的 DeepMind 團隊開發了 AI 軟體「阿爾法摺疊」(AlphaFold),使得該領域研究取得突破性進展。

多虧這項 AI 技術,科學家得以精準、快速、大量繪製蛋白質結構。今年 7 月,DeepMind 團隊宣布他們成功分析了 350,000 種人體蛋白質,佔所有已知人體蛋白質的 44%,更預計在明年發布所有已知物種的蛋白質結構,約莫 1 億個。團隊也正在進行更進一步的研究,預測這些蛋白質如何在生物體內相互作用,用來製作新型抗病毒藥物。

在這 COVID-19 肆虐的大疫之年,科學家更利用阿爾法摺疊模擬 Omicron 變種病毒,研究棘蛋白突變帶來的影響,試圖找出中和抗體失效的原因。AI 預測蛋白質結構的技術不僅徹底革新分子生物學領域,也勢必在醫學領域大放異彩!

探勘古代洞穴,解鎖 DNA 寶庫

在墨西哥 Chiquihuite 洞穴記錄沉積物樣本的研究員。圖/SCIENCE

誰說沒有化石就不能研究古生物?科學家今年踏足古代洞穴,採集土壤裡的人類細胞核 DNA,藉此重建古代生態系,釐清世界各地穴居人的身份。在美國,Satsurblia 洞穴存有尼安德塔人未知譜系的女性 DNA;在西班牙,Estatuas 洞穴中的土壤 DNA 揭露 8 萬至 11.3 萬年前人類的遺傳特徵,證實在 10 萬年前的冰河時期結束後,某個尼安德塔人譜系取代了其他眾多人類譜系。

-----廣告,請繼續往下閱讀-----

除了人類以外,這種研究方法還可以運用在其他生物上,比如在墨西哥 Chiquihuite 洞穴中,有研究員採集到 1.2 萬年前的黑熊 DNA。與現代熊 DNA 比對後,科學家發現黑熊在上個冰河時期結束後,向北遷徙到阿拉斯加。

「核融合反應」的歷史性突破

192 道雷射光聚在微小的燃料芯塊周圍,準備進行融合反應。圖/SCIENCE

太陽之所以能發光發熱,供給地球能量,都要歸功於太陽內部不斷進行著的核融合反應。長期以來,科學家為了解決地球能源不足的問題,不斷嘗試人工進行核融合反應,可是要達到足夠產生融合反應的壓力和溫度非常困難(請參考:融合能量增益因子/維基百科)。今年,美國國家點火設施(NIF)運用 1.9 兆焦耳的雷射脈衝,壓縮胡椒粒大小的氘(氫的同位素),產出 1.35 兆焦耳的能量,遠高於先前實驗獲得的 17 萬焦耳。

目前,NIF 仍持續進行實驗,試圖藉由更換燃料或調整雷射脈衝數值來提高能量產出,找出能夠最大化能量轉換比例的組合。未來,或許融合反應能夠成為供給地球能源的主流方法!

COVID-19 口服藥「莫納皮拉韋」問世

默克藥廠研發的 COVID-19 口服藥「莫納皮拉韋」。圖/SCIENCE

COVID-19 口服藥終於問世啦!今年秋季,美國默克(Merck)藥廠發布數據,證明其研發的 COVID-19 口服藥「莫納皮拉韋」(Molnupiravir)可將未接種疫苗者的重症和死亡率降低 30%;如果在出現症狀的 3 日內服用輝瑞開發的口服藥 PF-07321332,則可降低 89% 住院率。

-----廣告,請繼續往下閱讀-----

雖然口服藥無法取代疫苗接種,卻扮演非常關鍵的角色。若是 Omicron 變異株造成大量突破性感染,或許口服藥就能接棒,防堵病毒擴散。

創傷後壓力症候群的新興療法——搖頭丸

正在進行 MDMA 治療的創傷後壓力症候群患者。圖/SCIENCE

什麼?搖頭丸還能治病?沒錯!這份發表在《Nature Medicine》的研究證實搖頭丸的主要成分「3,4-亞甲基二氧基甲基苯丙胺」(MDMA)可以減輕創傷後壓力症候群(PTSD)患者的症狀,而且效果十分顯著。該研究將 76 名受試者分成 MDMA 組和安慰劑組,接受 3 次療程,發現 MDMA 組有 67% 的病患試後不再符合 PTSD 的診斷標準,而安慰劑組僅有 32%。

可是這項結果也引起了對於雙盲實驗的質疑,因為試後有高達 90% 的受試者表示他們其實知道自己的組別,這可能大幅影響症狀改善的機率。目前正在進行更大型的實驗,若實驗結果確定 MDMA 能治療 PTSD,預計將在 2023 年提交美國食品藥物管理局(FDA)批准上市。

開發單株抗體,對抗各類傳染性疾病

單株抗體(紅色和藍色)對抗 COVID-19 病毒(紫色球狀物)假想圖。圖/SCIENCE

單株抗體(mAb,簡稱單抗)是融合腫瘤細胞與免疫細胞製造而成的人工抗體,不但有腫瘤細胞不斷分裂的能力,也有免疫細胞產生抗體的能力——簡單來說,單抗可以大量製造相同的抗體,更有效地打擊病毒。除了往年的伊波拉病毒、炭疽病、狂犬病單抗以外,今年也順利合成了瘧疾、愛滋病和呼吸道合胞病毒(RSV)的單抗。目前,科學家正在積極開發更多種類的單抗,首要目標是打擊流感、茲卡病毒和巨細胞病毒(CMV),使得這項新技術有望成為打擊傳染病的「標配」。

-----廣告,請繼續往下閱讀-----

「洞察號」揭密火星內部結構

地震波顯示火星有一層薄薄的地殼、地函和液態核心。圖/SCIENCE

自 2018 年「洞察號」(InSight)登陸火星至今,科學家蒐集 35 筆地震數據,藉以估計火星的地殼厚度、地函結構和地核大小。今年的數據分析結果出爐後,發現這顆紅色行星的平均地殼厚度不到 40 公里,地函非常淺,而且只有一層(不像地球有上、下兩層地函),地核特別巨大,佔了火星體積一半,主要組成元素是低密度的液態鐵和液態鎳,以及硫、氧、碳和氫等較輕元素。這是人類首次使用地震數據探測其他行星的內部結構,也是探索神秘火星的一大步。

改寫粒子物理學模型的繆子實驗

繆子在美國費米實驗室的磁場中旋轉。圖/SCIENCE

在 1960 年代,粒子物理學家提出理論解釋強核力、弱核力和電磁力,這三種理論被稱為標準模型。然而,科學家今年發現「繆子」(Muon)——一種比電子更重、更不穩定的粒子——其實際測得的 g 值(自旋角動量與磁性大小之間的關係)比標準模型所預測的還要大,且兩者的誤差範圍沒有交集。

目前,眾多科學家正在美國費米實驗室(FNAL)進一步分析實驗數據。假如繆子實驗沒有任何閃失,這樣的結果將撼動物理學界,徹底改寫擁有 50 年歷史的標準模型。

CRISPR 基因編輯——確實能在體內發揮療效!

RNA(藍色)將 DNA 切割酶(白色)引導至目標(橙色)。圖/SCIENCE

去年,科學家運用 CRISPR 基因編輯技術,在實驗室修改造血幹細胞,治癒鐮刀型貧血和乙型(β 型)地中海貧血。今年,科學家更大膽了,直接在人體內部署 CRISPR!研究結果顯示,這種基因編輯技術可以有效減少一種有毒的肝臟蛋白質數量,甚至改善遺傳性失明患者的視力,讓兩名幾乎完全失明的患者能夠感覺到光線,並且在昏暗的光線下避開障礙物。

-----廣告,請繼續往下閱讀-----

體外胚胎培養——研究生命體早期發育歷程

在罐中成長的小鼠胚胎可以幫助科學家更了解人類發育的早期階段。圖/SCIENCE

透過研究胚胎,科學家得以找出先天性缺陷和流產的原因,但礙於倫理學和法律規範,目前對於體外胚胎培養的了解並不多。今年,有團隊利用誘導性多能幹細胞(Induced pluripotent stem cell,簡稱 iPS 細胞)成功複製人類的囊胚(受精後準備孵化及著床的胚胎),另外有團隊發現皮膚細胞經 iPS 細胞誘導、轉化後,也可以產生類似囊胚的結構,作為體外胚胎實驗的替代品。

除了十大科學突破以外……

《SCIENCE》今年也特別列出三項影響科學發展的重大阻礙,包括難解的氣候議題、備受爭議的癌症新藥,以及在疫情之下遭受猛烈砲火抨擊的科學家。

越來越熱!減碳目標恐難以達成

這座位於德國博克斯貝格(Boxberg)的燃煤電廠預計 2038 年才會關閉。圖/SCIENCE

自從工業革命以來,全球氣溫升幅達到了 1.2°C,近年極端氣候事件更是層出不窮。對此,今年的聯合國氣候變遷大會(COP26)達成多項協議,包括將全球氣溫升幅限制在 1.5°C 以內、確立碳交易市場架構,以及減少碳排放量。然而,全球經濟現在依然大幅仰賴化石燃料,況且聯合國協議不具約束力,是否能達成減碳目標,必須取決於各國政策制訂。

充滿爭議的阿茲海默症新藥「Aduhelm」

正子斷層掃描(PET)顯示 Aduhelm 能有效清除 β 類澱粉蛋白斑塊。圖/SCIENCE

美國食品藥物管理局(FDA)近 20 年來首次核准阿茲海默症藥物,即百健(Biogen)藥廠開發的 Aduhelm。經臨床實驗證實,這種藥物能清除異常堆積在患者腦內的「β 類澱粉蛋白斑塊」,也就是失智症發病和惡化的原因。照理說,這是患者和家屬期盼以久的好消息,卻被不少大型醫院和醫學中心拒絕採用,因為在兩項大型臨床實驗中,只有一項實驗證明其改善認知功能的療效勝過安慰劑,卻沒有證據顯示 Aduhelm 有顯著的改善效果。

當疫情碰上政治形態——夾縫中求生存的科學家

比利時病毒學家範蘭斯特(Marc Van Ranst)收到來自極右派狙擊手柯寧斯(Jürgen Conings)的死亡威脅後躲避自保。圖/SCIENCE

長期以來,科學家遭受攻擊的事件層出不窮,但在今年,對於 COVID-19 的政治分歧引發大眾對科學家前所未有的敵意,包括各種形式的恐嚇、抗議和死亡威脅。遭受威脅的有美國首席防疫專家佛奇(Anthony Fauci)、英國首席醫療官惠提(Chris Whitty),以及世界各地的學者和防疫工作者。

-----廣告,請繼續往下閱讀-----

《Nature》訪問 321 名研究人員,發現有超過 50% 的人信譽受到攻擊,15% 的人收到死亡威脅,甚至有許多人從此辭去他們熱愛的研究工作。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
PanSci_96
1262 篇文章 ・ 2418 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
月子中心群聚風險高!一人感染呼吸道融合病毒(RSV)可傳五人,寶寶最危險
careonline_96
・2025/05/07 ・2274字 ・閱讀時間約 4 分鐘

圖 / 照護線上

「年紀越小,感染病毒與併發重症的風險就越高!尤其是未滿六個月前的嬰兒」台中榮民總醫院兒科主任陳伯彥醫師表示,對新生嬰幼兒來說,因為免疫系統尚在發育,容易受到各種病毒的威脅。在後疫情時代,群聚感染更是需要慎重看待的議題。

群聚感染指的是在同一環境中,至少有兩名或以上人員先後出現相似症狀或感染同一病原,這容易造成病毒快速且具規模的傳播,常發生於月子中心等產後護理之家、幼兒園、長照機構等場所。陳伯彥醫師提到,現在很多產後護理機構都美輪美奐,重視舒適環境與設備,有許多共用空間與團康活動。但因為人流複雜、若陪伴探望家屬有輕微症狀、家中有大寶等都可能讓病毒入侵,若無妥善做到分區照護與管控,群聚感染就很容易爆發。

嬰幼兒最常見感染病毒RSV 傳染力極高

常見的嬰幼兒群聚感染病毒包括呼吸道融合病毒、COVID-19、流感病毒、腸病毒、輪狀病毒、流行性腦脊髓膜炎等。其中以呼吸道融合病毒(Respiratory syncytial virus, RSV)最為常見。陳伯彥醫師表示,研究統計資料表示,約九成嬰幼兒在2歲前都有感染過 RSV,因 RSV 具有高度傳染性,一名感染者可傳染給五位,主要透過飛沫與接觸等方式傳染。從觀察來看,台灣一年四季都有案例,其中在夏秋兩季達到高峰,四、五月雨季也會多一些。

嬰幼兒慎防呼吸道融合病毒
圖 / 照護線上

RSV 無終生免疫 嬰幼兒重症嚴重恐致命 

陳伯彥醫師指出,每個人都可能感染 RSV,不過兩歲以下的嬰幼兒、早產兒與慢性肺病、先天性心臟等高風險族群更容易因感染併發急重症,住院比例很高。特別是感染 RSV 後也不會產生終生免疫,仍有機會再次感染。

-----廣告,請繼續往下閱讀-----

感染 RSV 的常見初期症狀包括鼻塞、咳嗽、喉嚨痛、發燒等。因嬰幼兒的氣管細小,容易因為 RSV 感染而堵塞,造成嬰幼兒出現喘鳴、發出咻咻聲、呼吸急促甚至呼吸窘迫、發紺等情況。RSV 潛伏期約3天,病程進展快速,從像感冒的症狀演變成重症不到一週,容易導致下呼吸道感染,發展成細支氣管炎、肺炎等嚴重併發症,若心肺功能較差,還會危及生命。部分患者可能出現續發性的細菌感染或中耳炎,讓整個住院治療時間拖更長,短則十天,嚴重者甚至要在加護病房接受插管治療,治療期間可能長達兩週以上。

對於 RSV 感染後的治療,陳伯彥醫師表示,考量到嬰兒身體發育狀況,擴張劑、類固醇、與抗生素這些治療方式都不建議使用,主要採取支持性療法,給予氧氣、補充水分及營養,慢慢對抗病毒。「因為RSV沒有特效藥來專門治療,目前的防治策略是大力呼籲預防勝於治療。」

呼吸道融合病毒預防勝於治療
圖 / 照護線上

由於成人在感染 RSV 後的症狀較輕微,可能在不知不覺中將病毒傳染給嬰幼兒。建議家長、照顧者要戴口罩、勤洗手,特別是嬰幼兒容易有唾液、鼻涕沾附物體,環境加強消毒非常重要,也可檢視托嬰機構是否有做好消毒與分區照護控制管理。另一方面,可以選擇替嬰幼兒施打單株抗體。陳伯彥醫師說明,目前尚無嬰幼兒使用的 RSV 疫苗,單株抗體與疫苗不同,是直接打抗體到身體提供保護。雖然保護期比起疫苗透過抗原產生的自發抗體較短,但對於容易受到急重症威脅的嬰幼兒是非常重要的有效防護措施。

呼吸道融合病毒預防重點提醒
圖 / 照護線上

群聚感染高風險環境 接種單株抗體保護嬰幼兒

目前除了針對早產兒、慢性肺病、先天性心臟病等高風險族群,有健保的短效型單株抗體之外,也已有可適用於一般嬰幼兒的自費長效型單株抗體,單次施打提供六個月以上的保護力,可以在嬰幼兒免疫系統發育期給予及時支援。根據臨床數據,健康嬰兒施打長效型單株抗體後,可減少併發重症,並降低八成住院率,家長也免於工作請假日夜看顧,大幅減輕照護壓力和經濟負擔。

-----廣告,請繼續往下閱讀-----

陳伯彥醫師表示,國外會在明顯的 RSV 流行季來臨前替嬰幼兒接種。但台灣無顯著的流行季,且考量 RSV 的高傳染性與後續健康威脅,建議高風險族群一定要盡早施打。此外,父母送嬰幼兒送到月子中心或托嬰機構等群聚感染高風險的場所之前,都可以考慮接種單株抗體,以降低感染與重症的風險。萬一不幸發生 RSV 群聚感染,也可以盡快施打,能快速產生肺部保護性抗體,降低急重症產生。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
227 篇文章 ・ 315 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia