網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

1

8
6

文字

分享

1
8
6

2021 年《Science》年度十大科學突破

PanSci_96
・2021/12/29 ・5282字 ・閱讀時間約 11 分鐘

轉眼就來到 2021 年的尾聲。今年,《Science》雜誌評選的「年度十大科學突破」橫跨眾多領域,包括 AI、天文、物理、生物、醫學,以及備受矚目的能源議題,趕快來看看究竟是哪十項突破吧!

十大突破之首——利用 AI 預測蛋白質結構

AI 預測兩種蛋白質如何在酵母菌中形成參與修復 DNA 的複合物。圖/SCIENCE

蛋白質是組成生物體不可或缺的分子。在 1950 年代,科學家透過分析 X 射線繪製蛋白質結構。然而,既有的方法在繪製成本上過於高昂,往往得耗費數年時間,因此在 1970 年代,科學家開始運用計算機建模,預測蛋白質的折疊方式。直到 2018 年,Google 旗下的 DeepMind 團隊開發了 AI 軟體「阿爾法摺疊」(AlphaFold),使得該領域研究取得突破性進展。

多虧這項 AI 技術,科學家得以精準、快速、大量繪製蛋白質結構。今年 7 月,DeepMind 團隊宣布他們成功分析了 350,000 種人體蛋白質,佔所有已知人體蛋白質的 44%,更預計在明年發布所有已知物種的蛋白質結構,約莫 1 億個。團隊也正在進行更進一步的研究,預測這些蛋白質如何在生物體內相互作用,用來製作新型抗病毒藥物。

在這 COVID-19 肆虐的大疫之年,科學家更利用阿爾法摺疊模擬 Omicron 變種病毒,研究棘蛋白突變帶來的影響,試圖找出中和抗體失效的原因。AI 預測蛋白質結構的技術不僅徹底革新分子生物學領域,也勢必在醫學領域大放異彩!

探勘古代洞穴,解鎖 DNA 寶庫

在墨西哥 Chiquihuite 洞穴記錄沉積物樣本的研究員。圖/SCIENCE

誰說沒有化石就不能研究古生物?科學家今年踏足古代洞穴,採集土壤裡的人類細胞核 DNA,藉此重建古代生態系,釐清世界各地穴居人的身份。在美國,Satsurblia 洞穴存有尼安德塔人未知譜系的女性 DNA;在西班牙,Estatuas 洞穴中的土壤 DNA 揭露 8 萬至 11.3 萬年前人類的遺傳特徵,證實在 10 萬年前的冰河時期結束後,某個尼安德塔人譜系取代了其他眾多人類譜系。

除了人類以外,這種研究方法還可以運用在其他生物上,比如在墨西哥 Chiquihuite 洞穴中,有研究員採集到 1.2 萬年前的黑熊 DNA。與現代熊 DNA 比對後,科學家發現黑熊在上個冰河時期結束後,向北遷徙到阿拉斯加。

「核融合反應」的歷史性突破

192 道雷射光聚在微小的燃料芯塊周圍,準備進行融合反應。圖/SCIENCE

太陽之所以能發光發熱,供給地球能量,都要歸功於太陽內部不斷進行著的核融合反應。長期以來,科學家為了解決地球能源不足的問題,不斷嘗試人工進行核融合反應,可是要達到足夠產生融合反應的壓力和溫度非常困難(請參考:融合能量增益因子/維基百科)。今年,美國國家點火設施(NIF)運用 1.9 兆焦耳的雷射脈衝,壓縮胡椒粒大小的氘(氫的同位素),產出 1.35 兆焦耳的能量,遠高於先前實驗獲得的 17 萬焦耳。

目前,NIF 仍持續進行實驗,試圖藉由更換燃料或調整雷射脈衝數值來提高能量產出,找出能夠最大化能量轉換比例的組合。未來,或許融合反應能夠成為供給地球能源的主流方法!

COVID-19 口服藥「莫納皮拉韋」問世

默克藥廠研發的 COVID-19 口服藥「莫納皮拉韋」。圖/SCIENCE

COVID-19 口服藥終於問世啦!今年秋季,美國默克(Merck)藥廠發布數據,證明其研發的 COVID-19 口服藥「莫納皮拉韋」(Molnupiravir)可將未接種疫苗者的重症和死亡率降低 30%;如果在出現症狀的 3 日內服用輝瑞開發的口服藥 PF-07321332,則可降低 89% 住院率。

雖然口服藥無法取代疫苗接種,卻扮演非常關鍵的角色。若是 Omicron 變異株造成大量突破性感染,或許口服藥就能接棒,防堵病毒擴散。

創傷後壓力症候群的新興療法——搖頭丸

正在進行 MDMA 治療的創傷後壓力症候群患者。圖/SCIENCE

什麼?搖頭丸還能治病?沒錯!這份發表在《Nature Medicine》的研究證實搖頭丸的主要成分「3,4-亞甲基二氧基甲基苯丙胺」(MDMA)可以減輕創傷後壓力症候群(PTSD)患者的症狀,而且效果十分顯著。該研究將 76 名受試者分成 MDMA 組和安慰劑組,接受 3 次療程,發現 MDMA 組有 67% 的病患試後不再符合 PTSD 的診斷標準,而安慰劑組僅有 32%。

可是這項結果也引起了對於雙盲實驗的質疑,因為試後有高達 90% 的受試者表示他們其實知道自己的組別,這可能大幅影響症狀改善的機率。目前正在進行更大型的實驗,若實驗結果確定 MDMA 能治療 PTSD,預計將在 2023 年提交美國食品藥物管理局(FDA)批准上市。

開發單株抗體,對抗各類傳染性疾病

單株抗體(紅色和藍色)對抗 COVID-19 病毒(紫色球狀物)假想圖。圖/SCIENCE

單株抗體(mAb,簡稱單抗)是融合腫瘤細胞與免疫細胞製造而成的人工抗體,不但有腫瘤細胞不斷分裂的能力,也有免疫細胞產生抗體的能力——簡單來說,單抗可以大量製造相同的抗體,更有效地打擊病毒。除了往年的伊波拉病毒、炭疽病、狂犬病單抗以外,今年也順利合成了瘧疾、愛滋病和呼吸道合胞病毒(RSV)的單抗。目前,科學家正在積極開發更多種類的單抗,首要目標是打擊流感、茲卡病毒和巨細胞病毒(CMV),使得這項新技術有望成為打擊傳染病的「標配」。

「洞察號」揭密火星內部結構

地震波顯示火星有一層薄薄的地殼、地函和液態核心。圖/SCIENCE

自 2018 年「洞察號」(InSight)登陸火星至今,科學家蒐集 35 筆地震數據,藉以估計火星的地殼厚度、地函結構和地核大小。今年的數據分析結果出爐後,發現這顆紅色行星的平均地殼厚度不到 40 公里,地函非常淺,而且只有一層(不像地球有上、下兩層地函),地核特別巨大,佔了火星體積一半,主要組成元素是低密度的液態鐵和液態鎳,以及硫、氧、碳和氫等較輕元素。這是人類首次使用地震數據探測其他行星的內部結構,也是探索神秘火星的一大步。

改寫粒子物理學模型的繆子實驗

繆子在美國費米實驗室的磁場中旋轉。圖/SCIENCE

在 1960 年代,粒子物理學家提出理論解釋強核力、弱核力和電磁力,這三種理論被稱為標準模型。然而,科學家今年發現「繆子」(Muon)——一種比電子更重、更不穩定的粒子——其實際測得的 g 值(自旋角動量與磁性大小之間的關係)比標準模型所預測的還要大,且兩者的誤差範圍沒有交集。

目前,眾多科學家正在美國費米實驗室(FNAL)進一步分析實驗數據。假如繆子實驗沒有任何閃失,這樣的結果將撼動物理學界,徹底改寫擁有 50 年歷史的標準模型。

CRISPR 基因編輯——確實能在體內發揮療效!

RNA(藍色)將 DNA 切割酶(白色)引導至目標(橙色)。圖/SCIENCE

去年,科學家運用 CRISPR 基因編輯技術,在實驗室修改造血幹細胞,治癒鐮刀型貧血和乙型(β 型)地中海貧血。今年,科學家更大膽了,直接在人體內部署 CRISPR!研究結果顯示,這種基因編輯技術可以有效減少一種有毒的肝臟蛋白質數量,甚至改善遺傳性失明患者的視力,讓兩名幾乎完全失明的患者能夠感覺到光線,並且在昏暗的光線下避開障礙物。

體外胚胎培養——研究生命體早期發育歷程

在罐中成長的小鼠胚胎可以幫助科學家更了解人類發育的早期階段。圖/SCIENCE

透過研究胚胎,科學家得以找出先天性缺陷和流產的原因,但礙於倫理學和法律規範,目前對於體外胚胎培養的了解並不多。今年,有團隊利用誘導性多能幹細胞(Induced pluripotent stem cell,簡稱 iPS 細胞)成功複製人類的囊胚(受精後準備孵化及著床的胚胎),另外有團隊發現皮膚細胞經 iPS 細胞誘導、轉化後,也可以產生類似囊胚的結構,作為體外胚胎實驗的替代品。

除了十大科學突破以外……

《SCIENCE》今年也特別列出三項影響科學發展的重大阻礙,包括難解的氣候議題、備受爭議的癌症新藥,以及在疫情之下遭受猛烈砲火抨擊的科學家。

越來越熱!減碳目標恐難以達成

這座位於德國博克斯貝格(Boxberg)的燃煤電廠預計 2038 年才會關閉。圖/SCIENCE

自從工業革命以來,全球氣溫升幅達到了 1.2°C,近年極端氣候事件更是層出不窮。對此,今年的聯合國氣候變遷大會(COP26)達成多項協議,包括將全球氣溫升幅限制在 1.5°C 以內、確立碳交易市場架構,以及減少碳排放量。然而,全球經濟現在依然大幅仰賴化石燃料,況且聯合國協議不具約束力,是否能達成減碳目標,必須取決於各國政策制訂。

充滿爭議的阿茲海默症新藥「Aduhelm」

正子斷層掃描(PET)顯示 Aduhelm 能有效清除 β 類澱粉蛋白斑塊。圖/SCIENCE

美國食品藥物管理局(FDA)近 20 年來首次核准阿茲海默症藥物,即百健(Biogen)藥廠開發的 Aduhelm。經臨床實驗證實,這種藥物能清除異常堆積在患者腦內的「β 類澱粉蛋白斑塊」,也就是失智症發病和惡化的原因。照理說,這是患者和家屬期盼以久的好消息,卻被不少大型醫院和醫學中心拒絕採用,因為在兩項大型臨床實驗中,只有一項實驗證明其改善認知功能的療效勝過安慰劑,卻沒有證據顯示 Aduhelm 有顯著的改善效果。

當疫情碰上政治形態——夾縫中求生存的科學家

比利時病毒學家範蘭斯特(Marc Van Ranst)收到來自極右派狙擊手柯寧斯(Jürgen Conings)的死亡威脅後躲避自保。圖/SCIENCE

長期以來,科學家遭受攻擊的事件層出不窮,但在今年,對於 COVID-19 的政治分歧引發大眾對科學家前所未有的敵意,包括各種形式的恐嚇、抗議和死亡威脅。遭受威脅的有美國首席防疫專家佛奇(Anthony Fauci)、英國首席醫療官惠提(Chris Whitty),以及世界各地的學者和防疫工作者。

《Nature》訪問 321 名研究人員,發現有超過 50% 的人信譽受到攻擊,15% 的人收到死亡威脅,甚至有許多人從此辭去他們熱愛的研究工作。

文章難易度
所有討論 1
PanSci_96
974 篇文章 ・ 442 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。


0

1
0

文字

分享

0
1
0

隱翅蟲的毒液生化武器,演化上如何組裝而成?

寒波_96
・2022/01/17 ・3910字 ・閱讀時間約 8 分鐘

隱翅蟲是一群小型甲蟲的總稱;牠們以毒聞名,卻不見得都具有毒性。有些隱翅蟲會生產毒液儲存在身體裡,需要時噴射攻擊。毒液不只是嚇唬人的工具,像是跟螞蟻搶地盤這類場合,生化武器能發揮實在的優勢。

本文沒有真實隱翅蟲的圖像,閱讀時不用擔心。

隱翅蟲毒液的用途之一:攻擊螞蟻。圖/參考資料 1

隱翅蟲的毒液包含毒素和溶劑兩部分,有意思的是,兩者是獨立生產;溶劑本身沒有毒,毒素單獨存在也沒多少毒性。兩者極為依賴彼此,生產線卻是獨立運作,此一狀況是怎麼形成的?一項新研究投入大筆資源,便探討其演化過程。

「毒」加「液」才有毒液

這項研究探討的隱翅蟲叫作 Dalotia coriaria,為求簡化,本文之後稱之為「隱翅蟲」。它的毒素並非導致隱翅蟲皮膚炎的隱翅蟲素 (pederin) ,切莫混淆。

隱翅蟲的毒液發射器位於背上,體節的 A6、A7 之間,這兒有部分表皮細胞特化成儲存囊壁,並分泌脂肪酸衍生物作為溶劑。而毒素為配備苯環的化學物質 benzoquinone(苯醌),簡稱 BQ;另有一群細胞專門生產 BQ,再運送到儲存囊,和其中的脂肪酸衍生物混合後形成毒液。

生產毒素和溶劑的細胞,是兩類完全不一樣的細胞,各有不同的演化歷史。隱翅蟲的祖先,沒有毒素也沒有溶劑,兩者都可謂演化上的創新 (novelty) 。

一類細胞製毒,另一類細胞產液,兩者合作才有毒液。圖/參考資料 1

論文將生產溶劑的細胞稱為「溶劑細胞」;分析成分得知溶劑總共有 4 種,是碳數介於 10 到 12 的脂肪酸衍生物。合成脂肪酸,本來就是各種生物的必備技能,但是溶劑細胞製作的脂肪酸衍生物,原料並非一般常見的脂肪酸。

脂肪酸的合成,都是以 2 個碳的基礎材料開始,作為類似 PCR 中引子 (primer) 的角色,然後由 FAS(全名 fatty acid synthase)這類酵素一次加上 2 個碳,2、4、6、8 碳一直加上去。人類的 FAS 通常會製作長度為 16 碳的棕櫚酸,昆蟲則會造出 14、16、18 碳的最終產物。

隱翅蟲的溶劑細胞中,脂肪酸衍生物只有 10 到 12 個碳,比 FAS 一般的產物更短。奇妙的是,這兒的脂肪酸並非由 14 或 16 個碳縮短而來,而是溶劑細胞內 FAS 的最終產物直接就是 12 個碳。

隱翅蟲毒液的組成物,碳鏈長度介於 10 到 12 個碳,4 種脂肪酸加工而成的衍生物作為溶劑;3 種 BQ 作為毒素。圖/參考資料 1

改造脂肪酸合成線路,製作溶劑

要闡明其中奧妙,必需先稍微認識昆蟲的脂肪酸合成系統。昆蟲有一群特殊的脂肪酸衍生物,稱為「表皮碳氫化合物(cuticular hydrocarbon,簡稱 CHC)」,具有防止水分散失、費洛蒙等作用。

表皮碳氫化合物多半由 oenocyte 所製造(類似人類的肝細胞),在 FAS 酵素催化形成 14 到 18 個碳長的脂肪酸以後,繼續由延長酶 (elongase) 增加長度,去飽和酶 (desaturase) 加上雙鍵,最後經過兩道尾端的還原手續,分別由 FAR(全名 fatty acyl-CoA reductase)和 CYP4G(全名 cytochrome p450 family 4 subfamily G)兩類酵素執行,產生通常介於 20 到 40 個碳長的產物。

隱翅蟲溶劑細胞和 oenocyte 的脂肪酸生產線的比較,兩邊多數酵素種類是重複的,但是每一類酵素都有好幾個,兩邊各自使用的酵素不一樣。圖/參考資料 1

隱翅蟲和其他昆蟲一樣,oenocyte 細胞內有完整的表皮碳氫化合物生產線,每一步驟的酵素一應俱全。比對可知,溶劑細胞內也有一條脂肪酸衍生物的產線,顯然是由表皮碳氫化合物的生產線改版而成。

隱翅蟲至少有 4 個 FAS 基因,3 個負責製作一般的脂肪酸和表皮碳氫化合物,只有一個特定的 FAS 參與溶劑生產,專職在溶劑細胞中大量表現,製造 12 碳的脂肪酸,最後也由 FAR 和 CYP4G 收尾形成衍生物。值得一提,已知產物長度為 12 碳的 FAS 酵素相當罕見。

溶劑細胞和表皮碳氫化合物的生產線,兩者都有 FAS、FAR、CYP4G 三類酵素,但是在溶劑細胞作用的三種酵素,都不管其他細胞的脂肪酸合成。除此之外,有時候還有另一種酵素 α-esterase 的參與。依靠這些專門在溶劑細胞工作的酵素們,隱翅蟲能生成 4 種溶劑。

溶劑細胞內,4 種脂肪酸衍生物的合成過程。acetyl-CoA 作為引子,由 FAS 以 malonyl-CoA 為材料,一次加上 2 個碳,再分別經還原酶或 α-esterase 加工。圖/參考資料 1

演化上,隱翅蟲並沒有捨棄原本的脂肪酸生產線,整套都還存在;相對地,隱翅蟲在少數特定細胞新增一條產線,不影響原本的重要部門。這是隱翅蟲在遺傳和細胞層次的演化創新。

改造粒線體代謝線路,生產毒素

類似的狀況,也在毒素生產線觀察到。隱翅蟲的毒素,也是由原本有重要功能的古老生產線,調整再改版而成。

論文將生產毒素的細胞稱為「BQ 細胞」,這部分沒有溶劑細胞了解的那麼詳盡,不過經由碳的穩定同位素追蹤,還是得知毒素原料來自食物中的氨基酸:酪胺酸 (tyrosine) ,經過一系列加工後形成 BQ。

這條生產線上有個關鍵酵素叫作 laccase,它一般的功能是參與 Coenzyme Q10,也就是 ubiquinone 的合成。這是粒線體有氧代謝中的重要成分,對生存不可或缺。和其他甲蟲相比,隱翅蟲多出一個 laccase 酵素,專門在 BQ 細胞表現,將 HQ (hydroquinone) 催化成 BQ 作為毒素。

由此看來,隱翅蟲祖先演化出溶劑和毒素的道理是一樣的。

溶劑方面,以舊的表皮碳氫化合物生產線為基底,改用多個新酵素基因,形成新的生產線。毒素方面,源自古老的粒線體代謝線路,同樣加入新的酵素基因,改版後變成毒素產線。兩者各自皆為遺傳與細胞層次的新玩意,合在一起則衍生出功能上的演化創新。

由粒線體代謝線路改版而成的 BQ 毒素生產線,有一個專職生產毒素的 laccase(Dmd)酵素參與。圖/參考資料 1

組合新功能,一步一步累積有利變異

這項研究有許多潛在的討論方向,有興趣的讀者可以自行鑽研。像是生物學研究者能估計所有實驗耗資多少,感受自己的微渺(例如為了分辨不同細胞的作用,論文使用大量昂貴的「單細胞轉錄組 single cell transcriptome」進行分析)。這邊只提兩點。

第一點有趣的問題是:隱翅蟲的溶劑和毒素要同時存在才有效果,可是演化上是哪個先出現呢?論文推測是溶劑細胞先出現。

假如只有 BQ 這類毒素存在,殺傷效果非常差(論文用果蠅幼蟲做實驗),但是溶劑細胞的產物,即使不作為 BQ 的溶劑,脂肪酸衍生物也可以有其他用途,像是潤滑油之類的,或是扮演別種物質的溶劑。

想來新的脂肪酸生產線比較可能先出現,扮演某些不是太重要的角色,接著再加入 BQ;毒素加上溶劑,兩者合體產生新的強大功能,脂肪酸生產線又由於獲得新功能而調整優化,最終形成現在的樣貌。

替隱翅蟲帶來優勢的毒液,由兩個原本獨立的部門組合而成。圖/參考資料 1

第二點有趣的是,這回發現產物為 12 碳的 FAS 酵素。乍看沒什麼,影響卻很關鍵。

FAS 這類酵素的差異,在於催化生成的脂肪酸最終產物有幾個碳(或是說,可以加到幾個碳那麼長);已知幾乎皆為 14、16、18 個碳,隱翅蟲的溶劑細胞表現的 FAS 卻是 12 個碳。好像只差一點,然而實際測試發現,脂肪酸衍生物超過 13 個碳,作為 BQ 溶劑的效果便會差一大截。

也就是說,隱翅蟲倘若沒有脂肪酸產物僅 12 碳長的 FAS,儘管仍然可以生成溶劑,毒性將弱化不少。由此推想,隱翅蟲如今威力強大的毒液,並非透過少數變化一次到位,而是逐漸累積有利變異的結果。

想得更遠一點,由兩種細胞合作衍生而成的毒液,可以視為由多種細胞合夥,複雜器官的最簡單版本。原本不相關的各式細胞們,持續累積一個一個微小的改變,也有機會組合發展成複雜的組織或器官。

延伸閱讀

參考資料

  1. Evolutionary assembly of cooperating cell types in an animal chemical defense system.
  2. A beetle chemical defense gland offers clues about how complex organs evolve

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
84 篇文章 ・ 331 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。