Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

貓咪也會跟人玩「拋接遊戲」?顛覆你對貓咪的印象,新研究揭示牠們遊戲背後的原因

F 編_96
・2024/12/29 ・2749字 ・閱讀時間約 5 分鐘

F 編按:本文編譯自 Live Science

說到「拋接遊戲」,許多人腦中應該都會浮出狗狗的畫面,牠們會快速地撲向被丟出去的球或玩具,再興奮地叼回到主人面前。但超出大家想像的是,貓咪也擁有這項天賦(想不到吧),不少飼主都曾發現,家裡的貓貓竟然會以各種物品如紙球、髮圈、瓶蓋,甚至鉛筆等,主動找主人來一場「拋接遊戲」。

在大部分人的認知中,狗是天生「撿東西」的好手,因此曾被培育成獵犬或工作犬,用以回收獵物、報信或傳送物品。而貓咪喜歡捕捉老鼠,又孤傲高冷的形象,則似乎與這項技能沒有何關係。但既然如此,那為何新的研究以及大量飼主觀察都顯示,有些貓能不經任何刻意訓練,就自發地找主人玩起拋接遊戲呢?

在家感覺高冷又有點懶洋洋的貓貓,也會跟人玩拋接遊戲?圖 / unsplash

貓咪自發性的「拋接遊戲」

英國蘇賽克斯大學的博士生珍瑪.佛曼(Jemma Forman)與團隊近期在《Scientific Reports》上發表了一份有趣的研究。該研究針對 924 位飼主進行問卷,篩選那些聲稱自家貓咪曾展現「叼回來」行為的案例。結果發現,超過 94% 的飼主表示,自家貓咪的撿拾行為是「自然發生」的,而且往往在牠們還是不到一歲的幼貓時期就自發展開。

不少飼主的敘述顯示:這類行為的開始常常並非飼主主導,有時可能只是「不小心」丟出一個物體,貓看見後便會自行撲上前把它叼回來;或是貓咪先將某個小物件疊在主人腳邊,若飼主把該物件再拋出去,貓就衝向前撿回,來回幾次便形成「丟接」的循環。一位研究者便提到,有飼主開玩笑說:「其實是貓訓練了我們,而不是我們訓練了貓!」

-----廣告,請繼續往下閱讀-----

飼主與貓的互動:是誰主導了遊戲?

研究另一個重要發現,是貓比人想像中更「有意識」地控制遊戲進程。根據問卷結果,大多數貓會自行決定什麼時候開始玩,也多半由牠們決定何時結束。相較於狗狗可能乖巧等待主人丟球,甚至對「再來一次!」樂此不疲,貓咪常在丟接幾回合後顯露不耐、失去興趣或乾脆躺下睡覺。換言之,這些「叼回來」的遊戲時間通常很短,平均不到 10 次的往返後,貓就會轉移注意力。

此外,貓咪對「丟接」場域與對象都有明顯偏好。部分飼主觀察到,貓只會和特定人士或在特定房間裡玩這個遊戲;如果換個地方、換個人,貓便不再給予任何回應。物件本身也有強烈偏好:有些貓喜歡輕巧的紙團或塑膠瓶蓋,有些則迷戀鉛筆、彈性髮圈,甚至噗嚨共不明的「隨手抓到啥」。從個案顯示,某些貓跟筆有著奇妙的羈絆,一旦看到主人拿筆在地上,就會立刻叼起來,再「要求」被丟遠一點,好繼續衝刺撿回。

為什麼貓會撿東西回來?

不論是狗還是貓,「撿東西」基本上與狩獵本能脫不了關係。對狗來說,傳統解釋是牠們祖先源自狼族,群居習性和人類培育下的獵取天賦,使牠們更具把「獵物」叼回巢穴或交給領袖的行為模式。人類便利用此特徵,培養獵犬能把獵物從遠處叼回,或訓練牠們在工作環境中搬運物資。

不管是對貓還是狗來說,將物品叼回來的行為,與自身的狩獵本能有關。圖 / unsplash

至於貓咪,牠們並沒有經過繁雜而漫長的馴化過程來加強「帶回獵物」的基因。多數家貓的繁育重點在外觀(毛色、體型等)或日常溫馴度,而非特別功能。然而,野外的貓科動物依然經常把捕捉到的小動物叼回家中,可能是母貓餵養幼貓的天性延伸;既然公母貓都可能會「叼回來」,顯示其中還涉及更複雜的本能驅動。部分專家推測,或許貓有一部分遺傳特質,會對移動中的小物件產生高度興趣,因而自然而然地「啟動」衝刺、叼拿、再放回主人跟前的動作。

-----廣告,請繼續往下閱讀-----

貓咪真的「天生社交」嗎?

長久以來,狗被視為「社會性」動物,貓則被歸類為「獨居型」;然而,越來越多研究開始顯示,貓其實也會對飼主表現相當程度的關注,並非只在用餐時間才記得「家裡有個人」。一些行為專家指出,貓很可能透過「拋接遊戲」來吸引主人注意,或回饋主人放出的社交信號。例如,人類在地上丟出一個物品或在空間中拋擲,可能看似無意,但貓卻將之視為「你在呼喚我一起玩」,進而加入互動。

儘管貓普遍沒有群居獵食的祖先背景,也不如狗般崇拜「主人」,牠們仍能形成一種與人類共存並汲取好處的社交關係。例如,許多貓會主動把「戰利品」,像是戶外抓到的昆蟲、小鳥,甚至是室內看似無關痛癢的物體,叼到飼主面前,彷彿是獻禮或玩耍邀請。將叼回來的行為延伸成丟接遊戲,或許是貓對「社交互動」的一種嘗試,更帶有娛樂及互利的意味。

未解的謎團

雖然這項新研究顯示了「貓咪叼回來」行為的常見模式,也試圖探討牠們如何與人協作玩樂,但對「為何」會出現此行為,依然沒有定論。一般相信,狗會撿東西是出自體內被強化的基因;可貓的祖先卻是更善於獨自狩獵且不需看同伴眼色。若從母貓育幼行為或雄貓的「玩獵物」角度來看,都仍無法全面解釋:究竟貓自願玩「拋接」是基於何種驅力?

有些專家認為,品種也可能是關鍵因素。互聯網論壇以及養貓社群時常討論,西方的暹羅貓或孟加拉貓等品種出現「叼回來」行為的比率似乎較高,或許意味某些基因序列更傾向於進行空間探索與物件互動。可是,現今仍缺乏大型量化研究去證實這些品種間的顯著差異。

-----廣告,請繼續往下閱讀-----
有些人認為叼回物品的行為,可能也與貓貓的品種有關,但目前尚未證實。圖 / unsplash

人在貓科動物的研究上往往著重於飲食、繁殖或健康問題,而貓的玩耍模式與社交行為在科學領域仍是相對陌生的領域。不過,隨著新一代學者與廣大愛貓人士投入觀察、蒐集資料,或許很快就能釐清更多引人好奇的問題。例如:「各類貓咪在何種年齡段最常表現叼回行為?」「是否有特定環境因素(如家中空間大小、多貓相處情況)會影響貓的叼回頻率?」「不同個性或壓力承受度的貓,對『拋接』的接受程度是否有所差異?」等等。

這次研究也為後續打開一條可深入探究的線索,英國林肯大學的教授詹姆斯.瑟培爾(James Serpell)也持續透過線上問卷收集成千上萬份有關貓行為的回饋,期望未來能與其他學者合作,一起揭開更多「貓咪為何玩丟接」的奧祕。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
貓咪真的不愛你嗎?讀懂高冷主子的傲嬌告白
F 編_96
・2024/12/28 ・2729字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

身為貓奴應該都思考過這個問題:「我家貓到底愛不愛我?」(尤其是你怎麼叫牠都不理你的時候)

比起狗狗總是搖尾示好、恨不得時時刻刻陪伴主人,貓咪反而顯得疏離。這些獨立、冷淡的態度,是否代表牠們根本「不愛人類」?還是只是與我們表達情感的方式不同?現有的研究並未能給出單一「是」或「否」的答案,但科學界逐漸認為:貓的性格並非冷漠,而是有著自己獨特又多變的互動模式。

為何貓比狗看起來更不「熱情」?

談到「人與動物的愛」,第一個被拿來對照的對象往往就是狗。狗傾向於把人視為社群領袖或保護者,牠們會展現出明顯的依附行為,例如跟隨、舔舐、撒嬌等。這背後牽涉到狗的馴化史,科學家普遍認為,狗至少在 2.3 萬年前(亦有其他研究推至 3 萬年以上)就已開始與人類共同生活。人類在漫長世代裡,選擇性繁殖更順從、更依賴的犬隻,讓牠們不斷強化對主人的服從與感情表達。

相較之下,貓的馴化歷史要晚得多。大約在 1 萬年前,農耕社會出現,儲藏穀物吸引老鼠,貓因捕鼠能力而漸與人共生。牠們「半自願」式的走近人類聚落,並未經過大規模的繁殖選擇,以致貓咪的野性特質與獨立性一直保存到今天。

-----廣告,請繼續往下閱讀-----

由此可見,狗對人的依附,是經過長時間精心培育的結果,而貓雖然與人類同住,也享受人類提供的食物與安全環境,但牠們在某種程度上仍維持了更高的自主意識與獨立特質。

貓咪與狗狗的馴化過程不同,這也導致兩者在與人類互動上的不同。圖/envato

如何判斷貓咪是愛或不愛?

每個人對於「愛」的表現,判斷上還是很主觀的。因此有些研究嘗試用「科學指標」來測試貓對人的情感,如觀察荷爾蒙水平、或偵測貓在不同情境下的行為模式。

催產素俗稱「愛的荷爾蒙」,常在親密互動或撫摸時分泌。根據 2015 年的一項實驗(收錄於 BBC節目「Cats v Dogs」):在貓與狗都受到撫摸後,狗的催產素水平平均提升約 57.2%,但貓僅提升12%。這被部分人解讀為「貓對我們沒有那麼有愛」,但也要注意,這只是「平均值」,樣本量也僅 10 隻狗與貓,並不代表所有貓都只有「12%」的情感。此外,催產素本身也容易受其他因素干擾,例如環境壓力、個體差異等。

另外在 2021 年,英國林肯大學的研究團隊針對 3,994 位貓主做問卷調查,藉由「開放式關係、疏離關係、一般交情、相依關係、友誼」等五大類型,歸納出貓與主人的情感連結。結果顯示,約有一半的貓跟主人間呈現較緊密的情感投射,另一半則較疏離。由此可知,貓與人之間的情感並非「一面倒」的冷漠,也不見得如狗那樣強烈依附;而是要看飼主的參與度、貓的個性以及如何尊重牠們的獨立空間。

-----廣告,請繼續往下閱讀-----

有一項早期(2008年)的一項研究則觀察到,當貓遇到自己熟悉的人類時,血壓和心率會出現上升,顯示牠們對人產生情緒波動,可能是期待食物或獎勵,也可能是情緒上的激動。這說明貓對特定人確實有「在意」的表徵,只是表達方式或目的不一定和狗相同。

你越近,貓越逃?貓咪喜歡怎麼樣的互動?

要怎麼做才能獲得貓咪的抱抱?圖/envato

貓咪多半不喜歡被強迫互動,若人類持續不斷地撫摸、抱起貓而不顧牠們的意願,往往得到的反應是掙扎、攻擊或逃走。對貓來說,「選擇權」至關重要。若牠們能自在地決定互動距離、持續時間,以及撫摸的部位,牠們更可能接受、甚至主動親近主人。

2021 年的研究指出,若飼主能理解貓在肢體語言上的細微表達,例如耳朵朝後、尾巴抖動、身體僵硬或發出低鳴,代表牠們已有不適或抗拒;這時「收手」是上策。相反地,那些忽視貓表示不要的信號,堅持要撫摸或抱住貓的人,更容易被貓認定為「壓迫者」,長期下來貓會選擇逃避或變得易怒。

與狗一樣,每隻貓的個性也不盡相同。有些貓喜歡頻繁親密互動,也有貓更向往安靜獨處;基因、社交化過程、早期經驗都可能影響牠們長大後對人的友善度。此外,若飼主從貓幼齡期就常常輕柔地接觸牠們,並在牠們想脫離時尊重牠們,長大後通常會更願意與人類培養信任感。

-----廣告,請繼續往下閱讀-----

如何與貓建立更深的情感連結?

既然科學研究顯示貓的「情感投放」需要更精細的方式,那麼身為飼主或愛貓人士,該如何做才能拉近與主子的距離呢?

  1. 給予空間與選擇
    • 不要隨意抱起或撫摸正在休息、清潔毛髮、或顯露抗拒姿勢的貓。讓貓可以自由進出房間、躲進安全的角落,也能確保牠們在緊張或害怕時有地方可退。
  2. 正向回饋與獎勵
    • 若貓主動靠近、蹭你或發出呼嚕聲,這是牠願意互動的信號,可在牠舒服的情況下溫柔撫摸。可以搭配口頭稱讚或小零食,使貓把你聯想到「好事」。
    • 但記住,貓咪不喜歡被「過度餵食」,適度才是關鍵,否則容易讓牠們失去對零食的興趣或導致肥胖。
  3. 學習貓的身體語言
    • 觀察耳朵、尾巴與瞳孔的變化,若耳朵緊貼腦後、尾巴劇烈擺動或瞳孔放大並伴隨低鳴,表示貓正處於緊張或警戒狀態。此時停止撫摸、後退,給牠時間冷靜。
    • 如果貓慢慢走近你,尾巴微翹、耳朵稍微前傾,代表牠感到放鬆,可能願意互動。
  4. 尊重貓的作息特質
    • 貓是夜行性動物,白天或許大部分時間都在睡覺或懶洋洋地活動;若你在白天想和貓「猛玩」,牠可能沒有興趣。選在牠清醒或精神較好的時段進行互動或遊戲,更能提升彼此感受。

貓與人的緣分,在於理解與尊重

貓咪歷經數千年從田間捕鼠者,逐漸成為受全球喜愛的寵物,卻依然保留高度獨立、選擇權至上的「個人主義」風範。許多科學研究指出,貓雖沒有狗般明顯的熱情與依賴,但仍能與人產生深厚羈絆──關鍵就在於飼主是否願意花時間、心力,並遵循「了解貓貓、尊重貓貓」的原則與牠們相處。從理解貓的生活形態、情緒信號,到給予牠們適度的獨處與自由,若能做到這些,或許某天牠就會主動跳到你的腿上呼嚕,用專屬的方式告訴你:「莎朗嘿(사랑해)~

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
1

文字

分享

0
1
1
貓咪也會學鳥叫?揭秘貓貓發出「喀喀聲」背後的可能原因
F 編_96
・2024/12/24 ・2480字 ・閱讀時間約 5 分鐘

F 編按:本文編譯自 Live Science

貓是一種神秘而又引人注目的動物,牠們看似深居簡出,但擁有多元的聲音表達:從吸引人類注意的「喵喵叫」,到面對威脅時的「嘶嘶聲」與低沉的「咆哮」。

延伸閱讀:貓咪為什麼總愛對人喵喵叫?看貓如何用聲音征服人類的心

然而,細心的貓奴們可能會注意到,貓有時會對著窗外的鳥兒或屋內小動物玩具,發出一種獨特的「卡卡聲」或「咯咯聲」。這種聲音既像牙齒打顫,又好似一陣陣輕微的顫鳴,卻很難歸類到常見的喵叫或咆哮裡。這種名為「chatter」的行為,究竟在貓的生活中扮演什麼角色?目前科學界尚未對此有定論,但有幾種廣為討論的假說,或許能為我們提供一些思考方向。

卡卡叫:情緒的釋放或表達?

有些貓行為專家推測,貓咪在看到獵物(如窗外的鳥、老鼠)卻無法接近時,會因「欲捕無法」的挫折感或興奮感,發出這種「卡卡聲」。就像人類遇到障礙時,可能會發出抱怨的咕噥聲或乾著急的嘆息聲一樣,貓咪的「喀喀聲」也可能只是把當下的情緒外顯,並非有特別針對人或其他動物的溝通目的。

  • 情緒假說
    • 挫折:當貓看見鳥兒在窗外飛舞卻無法撲殺,內心焦躁,遂用聲音抒發。
    • 興奮:或許貓在準備捕獵時也感到高度亢奮,因此嘴部不自覺抖動並出聲。
貓咪的「喀喀聲」可能源於挫折或興奮情緒,表達捕獵受阻的內在反應。圖/envato

要在科學上驗證「情緒假說」並不容易,因為需要同時測量貓咪行為和生理指標。例如,研究人員可能需要測量貓咪在卡卡叫時的壓力荷爾蒙變化,才能確認牠們究竟是帶著正面興奮,或是負面挫折的情緒。不過,由於貓的獨立特質,實驗設計往往困難重重,樣本量要足夠也不容易,所以至今沒有定論。

-----廣告,請繼續往下閱讀-----

增強嗅覺?貓咪的「第二鼻子」

另一種說法則認為,貓咪發出「卡卡聲」時,可能同時開啟了其位於口腔上顎的「犁鼻器」(vomeronasal organ),也稱作「賈氏器官(Jacobson’s organ)」。這個感知器官能捕捉一般鼻腔聞不到的化學分子,如費洛蒙或特定氣味分子,因此對貓的求偶、社交和獵捕行為都非常重要。

  • 嗅覺假說
    • 張口呼吸:如果貓咪一邊「咯咯咯」地開合上下顎,可能在嘗試讓空氣(及其中所含的氣味分子)進入犁鼻器。
    • 蒐集更多環境資訊:在確定下手前,更完整的嗅覺分析或能提高牠們獵捕成功率,或是幫助判斷環境中是否有其他潛在威脅或機會。

然而,要科學驗證「增強嗅覺假說」同樣不簡單。研究人員不僅要觀察貓咪在卡卡叫時的行為,也需要測量牠們是否真的打開了更大的氣道,並在那個同時有效使用犁鼻器。這些行為與生理測量都必須在相對可控卻又不影響貓自由行動的實驗環境中進行,實務上難度頗高。

聲音模仿:貓咪的「偽鳥叫」?

貓咪的「卡卡聲」或許是為了模仿獵物的聲音,讓獵物降低警戒。圖/envato

第三種最有趣也最具「野性色彩」的假說,是「模仿獵物聲音」。在野外,一些中南美洲的小型貓科動物(例如:長尾虎貓,又稱美洲豹貓或瑪家貓,Margay)曾被觀察到,在捕獵小猴群時,發出類似猴子叫聲的音調;有些當地原住民族群也傳說,叢林裡的某些捕食者會模仿目標獵物的聲音來誘捕。由此推測,家貓看到鳥兒時發出的「卡卡聲」,可能包含些微模仿鳥兒啁啾的元素,試圖降低獵物警戒或甚至吸引獵物靠近。

  • 模仿假說
    • 案例參考:野生貓科動物曾出現學習或偽裝聲音的紀錄。
    • 家貓可能繼承的行為:家貓的祖先——北非野貓(African wildcat)及其他小型貓科物種,是否具備聲音模仿能力?這在生物演化研究上仍是未解之謎。
    • 缺乏大規模觀察:由於小型野生貓科動物研究資料有限,且家貓實驗更不易做大樣本長期追蹤,最終導致此理論尚未獲得廣泛實證。

貓咪行為研究的挑戰:野性祖先的重要性

探討貓咪行為,常常需要回溯至野生祖先的棲地環境。家貓(Felis catus)普遍被認為源自北非野貓(Felis lybica),然而,野貓習性的研究本就不多,尤其是關於聲音與捕獵策略更是資料有限。我們想知道「為什麼家貓會卡卡叫」,首先要確定:「牠們的野性祖先或其他小型貓科,也有同樣的行為嗎?」若有,家貓則可能繼承自古老基因;若無,則可能是家貓在與人類共處的環境中演化出的新行為。

-----廣告,請繼續往下閱讀-----
如果要探查家貓「卡卡叫」的原因,還需要了解其祖先或其他小型貓科是否具有類似行為。圖/envato

再者,貓在實驗室中的「不可控」因素相當多。貓不像狗般樂於服從人類指令,常有自己的規律與個性。要在實驗情境下穩定地誘發貓的「卡卡叫」行為、同時檢測牠們的生理和心理反應,並確保每隻貓的個體差異都被考慮到,這些都對研究團隊是極大考驗。

對於許多貓奴來說,貓咪坐在窗邊,一邊盯著外頭的鳥兒或松鼠,一邊發出獨特的「卡卡聲」,是一幕既可愛又神祕的風景。究竟牠們是在抒發情緒、強化嗅覺、抑或真的在「假扮鳥叫」以誘捕獵物?目前沒有確切的答案。然而,也正因為這層未知,貓貓才更顯得迷人。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃