1

4
2

文字

分享

1
4
2

人口有限的古代社會,依然盡量避免近親配對?

寒波_96
・2023/03/28 ・4848字 ・閱讀時間約 10 分鐘

現代台灣社會中,像是堂兄弟姊妹之間的近親結婚,直接受到法律禁止。不過台灣法律的標準並非舉世通用,當今世上許多人的父母,可謂血緣上的親上加親。

近親結婚與近親繁殖,是人類的「常態」嗎?近年蓬勃發展的古代 DNA 研究,讓我們有機會深入探索這些問題。

公元 2010 年時,世界各地近親婚姻的分布狀況。「大中東地區」的比例非常高。圖/Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report

每個人的遺傳組成都大同小異,兩個人的血緣關係愈近,彼此 DNA 的差異愈小。例如街上隨便找兩位台灣人,即使非親非故,台灣人彼此間的血緣差異,要比台灣人與非洲人更小。

一個人的基因組,源自父母各一半。例如第十一號染色體,各有一條來自父母。父母間的血緣關係愈近,小孩的一對染色體之間也愈相似;因此,要判斷一個人的父母是否為近親,不用知道兩人各自的遺傳訊息,只需要小孩的基因組。

也就是說,假如有幸獲得一位三萬年前古人的基因組,只要這個古代基因組殘留的 DNA 訊息夠多,即使完全缺乏其餘的考古脈絡,我們也能判斷他父母的血緣親疏。

最近十年來,各路科學家獲得愈來愈多古代基因組。儘管數量有限,不過目前應該足以做出初步推論:近親繁殖不是智人的天性。

尼安德塔人的父親母親,親上加親?

討論智人以前,先來看看我們的近親尼安德塔人。兩群人的祖先超過 50 萬年前分家後,各自在非洲與歐洲發展,總人口應該都不多。

這兒要先澄清一個概念:「族群人口少」和「近親繁殖」是兩回事。即使全體族群只有兩千人,整群人的遺傳變異加起來很有限,只要每一次配對時刻意選擇,依然能完全避免近親繁殖。相對地,就算總共有 20 萬人,還是有機會大量近親生寶寶。

重現尼安德塔人 DNA 是智人的重大成就,可惜目前為止累積的基因組樣本很少,只有 30 人左右,分散在不同時間點,廣大的地理範圍。

尼安德塔人的古代基因組,地點與數量。圖/參考資料3

如今了解最透徹的尼安德塔人,位於中亞的 Chagyrskaya 洞穴(現今的俄羅斯南部,知名的丹尼索瓦洞穴在附近),估計年代為 5 萬多年。這群人中有 8 位的遺傳訊息比較齊全,比對得知,所有人的父母都是近親!

尼安德塔人主要住在歐洲,中亞的人口極少。近親生寶寶如此普遍,或許是由於能選擇的對象有限。然而也有可能,這就是尼安德塔人一般的習慣。也許尼安德塔人不會刻意避免近親繁殖,不過程度如何並不清楚。

流動的人,流動的DNA

智人約一萬年前開始定居種田以前,生活方式和尼安德塔人一樣,也習慣分為一小群一小群人活動,不長期定居在一個地點。有意思的是,舊石器時代已知少少的智人基因組,都不存在近親繁殖。

依賴採集、狩獵的生產方式下,每一群的人數都不多,近親配對好像很難避免。不過移動性高的人群,應該也常有機會互相交換人口,增加配對選項。從古代 DNA 看來,這是古早智人的普遍行為。

現有證據似乎告訴我們,遠比文明誕生更早以前,智人已經習慣刻意和血親以外的對象配對,或許可稱之為智人的「天性」,但是不清楚能追溯到多早。

智人如今僅有尼安德塔人一種比較對象,而尼安德塔人好像不排斥近親繁殖。有可能兩者的共同祖先已經會避免近親配對,尼安德塔人卻不再在意;也有可能這是智人較新的性擇模式,與尼安德塔人分家以後的某個時候才形成。

捷克的 Moravia 的 Dolní Věstonice 遺址,2.6 萬年前想像畫面。當時智人人口有限,卻會避免近親配對。圖/Dolní Věstonice in Central Europe

這也可以澄清一個疑惑。有個說法是,原始人只知道媽媽,不知道爸爸,因為小孩明確由媽媽生出,爸爸的功能卻不直接。根據古代 DNA 的證據判斷,此說很顯然錯誤。

如果隨機配對,一群人中勢必會有一定比例的人,父母為血緣近親。由結果反推,倘若都沒有的話,表示這群人都會刻意避免近親配對。

假如多數人都不知道爸爸是誰,實在難以想像要怎麼如此徹底的避免近親繁殖。反過來則合理得多:每個人都知道自己的爸爸媽媽是誰,擇偶時才能避開。

定居的人,設法讓 DNA 流動

一萬多年前開始,世界許多地方陸續有人定居下來,改為依靠種田營生。從流動性高的採集狩獵小群體,變成長期住在一處的小農村,人類的生活方式改變很大,這會影響配對習慣嗎?

人人採集狩獵的時期,每一群的人數都不多,但是習慣跑來跑去,有不少機會交換人口。新石器時代定居下來以後,初期的人口還是不多,卻失去流動性,只能從住在附近的有限對象中擇偶。如此一來,近親配對的機率應該會提高?

目前對此問題的探討不多。資訊比較多的案例,來自安那托利亞(現今的土耳其)一萬多年前,人口頂多數百的小農村遺址 Boncuklu、Pınarbaşı。這兒新石器時代初期的居民,多數在本地長大;可是遺傳上看來,都會避免近親繁殖。

新石器時代小型農村,概念圖。圖/Paint The Past

具體狀況不明,本地與否是透過「鍶」的穩定同位素判斷,涵蓋的地理範圍不算太小。幾十公里遠的隔壁村,只要鍶同位素仍屬同一範圍,仍然會辨識為本地人。

不過我想這些線索應該足以支持,安那托利亞的人們邁入定居時代後,依然保持舊日的擇偶習慣,在有限的選項中盡量避免血親。但是近親繁殖也出現了。肥沃月灣西側的 Ba’ja 遺址(現今的約旦),至少有 1 位居民的父母為近親。

要提醒各位讀者,不同地方邁入定居的年代與狀況都不一樣,有時候差異很大,不可一概而論。

從城市到文明

隨著人口增長加上工作分化,漸漸有大型聚落誕生,有些或許可稱之為城市。人類發展可謂來到另一階段。

例如前述 Boncuklu、Pınarbaşı 遺址附近,就形成知名的加泰土丘(Çatalhöyük),數千年來都有數千人口居住。由鍶穩定同位素判斷,這兒多數人是土生土長,也有少量外來移民。

加泰土丘和我們習慣的「城市」有不少差異,卻昭示人類進入大量人口群聚的階段,各地一座又一座城市興起又衰落。長期保持數千人口的城市生活圈中,即使一輩子不出遠門,似乎也不難找到近親以外的異性配對。

大城市人口多,即使一輩子留在一個地方,也有不少機會找到血親以外的結婚對象。圖/IMDB

當然在現代以前,世界各地的大部分人類並不住在人擠人的城市,而是人口密度更低的郊區與鄉村。不過倘若有心避免近親配對,應該不難達成。

目前為止重現於世的古代基因組,不論何時何地,大部分不是近親繁殖的產物。某文化的眾多樣本中,有時候能見到零星幾位,甚至是兄弟姊妹或親子間的極近親,但是都不普遍。

人口有限的海島,近親繁殖好像更容易發生。義大利南方的馬爾他島,在新石器時代確實如此;但是不列顛北部的奧克尼島,青銅時代僅管人口很少,依然能幾乎避免。

是人性的扭曲,還是財富的累積?

至今所知近親繁殖最常見的古代社會,是青銅時代的愛琴世界,也就是希臘及其外島,距今 3000 到 5000 多年前,愛琴海一帶的米諾斯等文化。薩拉米斯島(Salamis)等小島的比例較高,希臘大陸相對低,整體比例約 30% 之高。

取樣一定有偏差,真正的近親比例不好說,但是大概足以判斷青銅時代的愛琴世界,堂表兄弟姊妹等級的近親婚配習以為常,不只少量統治家族,而是全民普及的現象。

愛琴在青銅時代的橄欖種植。圖/Marriage rules in Minoan Crete revealed by ancient DNA analysis

有史以來智人都會避免近親繁殖,為什麼愛琴人改變婚配方式?目前沒有答案。考古學家提出一個可能,種植橄欖之類的經濟作物,最好不要分割土地,而近親配對有助於保留土地,讓產業留在大家族內傳承。這聽起來合理,可惜缺乏更直接的證據。

社會中有人累積土地等資產,是人類發展的趨勢之一,而不論王公貴族或小地主,時常都有集中資產的需求。目前缺乏古代基因組的其他文化,是否也會見到類似愛琴世界的現象?我猜頗有可能,應該是有趣的探索方向。

隨著不同時空的樣本累積,加上容易操作的父母親緣分析軟體,未來「父母是否為近親」也許能成為古代基因組的標準化分析步驟,讓我們更方便認識人類的性擇。

延伸閱讀

參考資料

  1. Scott, E. M., Halees, A., Itan, Y., Spencer, E. G., He, Y., Azab, M. A., … & Gleeson, J. G. (2016). Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nature genetics, 48(9), 1071-1076.
  2. Genomic landscape of the Greater Middle East
  3. Skov, L., Peyrégne, S., Popli, D., Iasi, L. N., Devièse, T., Slon, V., … & Peter, B. M. (2022). Genetic insights into the social organization of Neanderthals. Nature, 610(7932), 519-525.
  4. Sikora, M., Seguin-Orlando, A., Sousa, V. C., Albrechtsen, A., Korneliussen, T., Ko, A., … & Willerslev, E. (2017). Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science, 358(6363), 659-662.
  5. Svensson, E., Günther, T., Hoischen, A., Hervella, M., Munters, A. R., Ioana, M., … & Jakobsson, M. (2021). Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Current Biology, 31(14), 2973-2983.
  6. Pearson, J., Evans, J., Lamb, A., Baird, D., Hodder, I., Marciniak, A., … & Fernández-Domínguez, E. (2023). Mobility and kinship in the world’s first village societies. Proceedings of the National Academy of Sciences, 120(4), e2209480119.
  7. Yaka, R., Mapelli, I., Kaptan, D., Doğu, A., Chyleński, M., Erdal, Ö. D., … & Somel, M. (2021). Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Current Biology, 31(11), 2455-2468.
  8. Wang, X., Skourtanioti, E., Benz, M., Gresky, J., Ilgner, J., Lucas, M., … & Stockhammer, P. W. (2023). Isotopic and DNA analyses reveal multiscale PPNB mobility and migration across Southeastern Anatolia and the Southern Levant. Proceedings of the National Academy of Sciences, 120(4), e2210611120.
  9. Cassidy, L. M., Maoldúin, R. Ó., Kador, T., Lynch, A., Jones, C., Woodman, P. C., … & Bradley, D. G. (2020). A dynastic elite in monumental Neolithic society. Nature, 582(7812), 384-388.
  10. Fowler, C., Olalde, I., Cummings, V., Armit, I., Büster, L., Cuthbert, S., … & Reich, D. (2022). A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature, 601(7894), 584-587.
  11. Rivollat, M., Thomas, A., Ghesquière, E., Rohrlach, A. B., Späth, E., Pemonge, M. H., … & Deguilloux, M. F. (2022). Ancient DNA gives new insights into a Norman Neolithic monumental cemetery dedicated to male elites. Proceedings of the National Academy of Sciences, 119(18), e2120786119.
  12. Dulias, K., Foody, M. G. B., Justeau, P., Silva, M., Martiniano, R., Oteo-García, G., … & Richards, M. B. (2022). Ancient DNA at the edge of the world: Continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proceedings of the National Academy of Sciences, 119(8), e2108001119.
  13. Ariano, B., Mattiangeli, V., Breslin, E. M., Parkinson, E. W., McLaughlin, T. R., Thompson, J. E., … & Bradley, D. G. (2022). Ancient Maltese genomes and the genetic geography of Neolithic Europe. Current Biology, 32(12), 2668-2680.
  14. Freilich, S., Ringbauer, H., Los, D., Novak, M., Pavičić, D. T., Schiffels, S., & Pinhasi, R. (2021). Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Scientific Reports, 11(1), 16729.
  15. Gnecchi-Ruscone, G. A., Szecsenyi-Nagy, A., Koncz, I., Csiky, G., Racz, Z., Rohrlach, A. B., … & Krause, J. (2022). Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell, 185(8), 1402-1413.
  16. Fernandes, D. M., Sirak, K. A., Ringbauer, H., Sedig, J., Rohland, N., Cheronet, O., … & Reich, D. (2021). A genetic history of the pre-contact Caribbean. Nature, 590(7844), 103-110.
  17. Zhang, F., Ning, C., Scott, A., Fu, Q., Bjørn, R., Li, W., … & Cui, Y. (2021). The genomic origins of the Bronze Age Tarim Basin mummies. Nature, 599(7884), 256-261.
  18. Skourtanioti, E., Ringbauer, H., Gnecchi Ruscone, G. A., Bianco, R. A., Burri, M., Freund, C., … & Stockhammer, P. W. (2023). Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. Nature Ecology & Evolution, 1-14.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

文章難易度
所有討論 1
寒波_96
185 篇文章 ・ 801 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
寵物過敏原有很多種,避免飲食過敏困擾,可選擇單一/特殊肉種寵物飼料
鳥苷三磷酸 (PanSci Promo)_96
・2023/06/06 ・2173字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文由 新萃 Nutri Source 委託,泛科學企劃執行。

你有發現家裡的狗狗經常舔自己四肢,或是身上出現不明紅疹?當心這可能是過敏反應。寵物和人類一樣,也會有過敏反應,過敏可依照「來源」分為三種:吸入性過敏、接觸性過敏和食物性過敏。

寵物的過敏源有哪些?

不管是哪一種過敏反應,在人的身上都比較容易發現和排除。但狗狗的過敏卻很難處理,如果是接觸性或吸入性過敏,即使你把家裡打掃得很乾淨,還是無法排除帶狗出去散步時可能接觸到的環境過敏原。因此,對飼主來說,最容易控制的是食物性過敏。

食物性過敏是怎麼發生的呢?其實,「食物過敏」這個詞並不太準確。正確的臨床醫學用詞是「食物不良反應」(Adverse Food Reaction, 簡稱AFR)(Jackson, H. , 2009),指的是吃下食物後身體產生各種不良反應。並進一步分為食物過敏(Food Allergy)和食物不耐受(Food Intolerances)兩種。

如果你看過動漫作品《工作細胞》,你就會知道過敏其實只是免疫系統對特定成分產生的過度反應,因此全名為「過分敏感」;而食物不耐受則並非免疫性反應,而是消化系統無法代謝或對該生物體有毒,例如狗不能吃洋蔥或巧克力,否則會致死等等。

由於寵物沒有選擇權,只能吃飼主提供的食物,如果飼料中恰好有會造成牠 AFR 的成分,就可能產生各種症狀。除了腸胃發炎和拉肚子外,最明顯的外在症狀就是皮膚問題,包括搔癢、脫毛和紅疹等。後者容易被誤判為皮膚性疾病,讓許多飼主狂跑獸醫院的同時,獸醫也難以對症下藥。

雖然曾有研究透過讓醫師用血液或唾液是否檢測出 IgE 抗體來判斷狗是否過敏(Ermel, R et al.,1997),但最新的研究卻發現,無論使用無論血清的 IgE 抗原或是唾液裡的 IgM 或 IgA 抗原都無法有效檢測出狗狗的過敏來源(Udraite Vovk Let al., 2019 & Lam ATH et al., 2019),甚至會造成偽陽性誤判。因此,目前學界公認唯一能識別食物過敏原的方法就是「食物排除法」(Food Elimination Method)。

以食物排除法,找出毛孩的食物過敏原!

食物排除法的原理相當簡單粗暴,類似我們過去在學校做的實驗一樣,抓出「控制組與對照組」。首先,將狗狗的食物換成牠沒吃過、單一來源且易消化的高蛋白質或水解蛋白質;同時嚴格限制牠對其他食物接觸,包括其他人餵食或路上亂吃等可能性都要注意,此為「對照組」,如此持續 8~12 週,觀察皮膚是否有改善。如果確實有改善,那就證明了確實是 AFR 而非皮膚病。

下一步我們可以進行「食物挑戰」,在每餐食物中逐一嘗試可能的過敏原(例如常見的牛肉、雞蛋等),有如「控制組」,等到症狀又出現,就可以確認哪種食物成分是過敏原,未來就可以在飼料中排除,讓狗狗健康快樂地成長。

這個方法需要飼主的大力配合和耐心紀錄,不僅要在漫長的試驗期,更需要在控制期一一排除所有不可能之後,才能找到答案。而其中最困難的部分,也是實驗的基礎可能是第一步:「提供狗狗牠從未吃過,且肉品單一的蛋白質」,這點對多數飼主來說幾乎是不可能的任務,因為大部分的寵物飼料成分都很複雜。不要說狗狗了,搞不好你連自己沒吃過什麼恐怕都不知道。

飼料成分多而雜,可選單一肉種飼料降低過敏。

那該怎麼進行食物排除法呢?別擔心,沒有找不到的肉品,只有勇敢的狗狗。市面上已經有了針對過敏狗狗的低敏飼料,新萃推出了一系列低敏肉,包含單一肉種的袋鼠肉、鹿肉以及野豬等相比牛豬羊等較不容易取得的肉類,是進行食物排除法第一步測試的首選。

此外,新萃牌無論哪種飼料都有美國專利 Good 4 Life® 奧特奇專利保健元素,能促進飼料中的營養都被狗狗完整吸收。不僅過敏的狗狗能吃,有消化不良症的狗狗也適用。

新萃商品選擇的是單一/特殊肉種的成分,低敏感肉品讓寵物吃了更安心。

參考資料

  1. Thus for the purpose of this discussion, although the term food allergy is used throughout, it should be recognized that this term is a presumptive clinical diagnosis and adverse food reaction is a more accurate term for these canine cases. – Consensus
  2. Jackson, H. (2009). Food allergy in dogs – clinical signs and diagnosis.. Companion Animal Practice.
  3. Assessment of the clinical accuracy of serum and saliva assays for identification of adverse food reaction in dogs without clinical signs of disease – PubMed (nih.gov)
  4. Lam ATH, Johnson LN, Heinze CR. Assessment of the clinical accuracy of serum and saliva assays for identification of adverse food reaction in dogs without clinical signs of disease. J Am Vet Med Assoc. 2019 Oct 1;255(7):812-816. doi: 10.2460/javma.255.7.812. PMID: 31517577.
  5. Direct mucosal challenge with food extracts confirmed the clinical and immunologic evidence of food allergy in these immunized dogs and suggests the usefulness of the atopic dog as a model for food allergy. – Consensus
  6. Ermel, R., Kock, M., Griffey, S., Reinhart, G., & Frick, O. (1997). The atopic dog: a model for food allergy.. Laboratory animal science.
  7. https://www.moreson.com.tw/moreson/blog-detail/furkid-knowledge/pet-knowledge/dog-food-allergen-TOP10/
  8. 狗狗因為食物過敏而搔癢不舒服,為什麼做「過敏原檢測」沒什麼用?
  9. 【獸醫診間小教室】狗狗皮膚搔癢難改善?小心食物過敏! – 汪喵星球 (dogcatstar.com)
  10. 寵物知識+/毛孩對什麼食物過敏?獸醫:驗血完全不準!診斷法只有一個 | 動物星球 | 生活 | 聯合新聞網 (udn.com)
  11. Is there a gold-standard test for adverse food reactions? – Veterinary Practice News
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
172 篇文章 ・ 276 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
印地安人和他們的馬
寒波_96
・2023/06/02 ・2714字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

在歐亞大陸,馴化馬對歷史的影響很大,但是美洲大陸的漫長歷史中,大部分時光不知道馬的存在。最近幾百年,美洲原住民卻和歐洲人引進的馬一見如故,不同族群發展出各異的人、馬文化。2023 年發表的一項研究,探索美洲原住民和馴化馬的交流歷史。

描繪馬與騎士的壁畫,地點為懷俄明州,年代可能為 17 世紀。應該和 Comanche 與 Shoshone 族人的祖先有關。圖/參考資料3

馬在北美洲流傳,早於歐洲勢力深入

依照現有證據推敲,馴化馬的祖先來自美洲,距今 4000 多年前在亞洲馴化。美洲野馬大部份在一萬年前就消失了,不過根據沉積物的古代 DNA 分析,也許仍有少數成員一直延續到 5700 年前。

北美洲的原住民,也就是印地安人,他們的馬都是歐洲人帶來的嗎?為了摸索馴化馬進入美洲的歷史,研究隊伍從北美洲各地獲得 33 個樣本,29 個得知年代,27 個取得古代基因組,除 1 驢,其餘皆為馬。

依照現有證據整理,馬的大歷史。圖/參考資料3

過往認為,1680 年「普韋布洛起義(Pueblo Revolt)」對馬的傳播很重要。西班牙殖民隊伍 16 世紀首先抵達中美洲,要再往北美洲前進,會先接觸北美洲的西南部,也就是廣義普韋布洛族群的地盤。

雙方 1680 年在現今的新墨西哥州爆發衝突,原住民擊敗外來殖民者,應該也收穫不少馬。有歷史學家認為,這促進馬在原住民網絡的傳播。

然而這回研究指出,至少有四處地點的馬骨年代比 1680 年更早,包括懷俄明州的 Blacks Fork、堪薩斯州的 Kaw River、新墨西哥州的 Paa’ko、愛達荷州的 American Falls Reservoir。這表示歐洲殖民者受挫以前,馬已經進入印地安人的世界,傳播到更遠的地點。

早於原住民與殖民者衝突的 1680 年普韋布洛起義,馬已經深入殖民者尚未抵達的地區。圖/參考資料1

至少在 17 世紀中期時,馬已經傳播到北美洲西半部的廣大範圍。那時殖民者尚未深入到大平原一帶(現今的科羅拉多、堪薩斯、德克薩斯、懷俄明等州),不過殖民者帶來的馬,已經融入一些印地安部族的生活,透過原住民原本的交流網絡迅速傳播。

人與馬建立新關係

印地安人的學習與適應能力很強,美國西北部的愛達荷(講波特蘭、西雅圖的東方,台灣人應該比較熟),17 世紀初期就存在馬銜等裝備,死馬骨頭也有被照顧的痕跡。當時與殖民者還沒什麼接觸的的原住民,已經懂得養馬,也會騎馬。

不同年代、地點,遺址中馬的分佈狀況。圖/參考資料1

北美洲各地的原住民們,環境條件、生活方式都不太一樣。這也反映在人與馬的關係,17 世紀起衍生出多變的人馬文化。原住民和馬的相處時光雖然不長,卻深刻到成為不少族群的傳統,受到強烈打壓下,馬總是夥伴。

馬骨取得的古代 DNA 分析指出,所有原住民的馬都和更早的美洲馬群無關。維京人曾經抵達美洲,或許有帶馬,但是沒有在美洲留下遺傳紀錄。

顯然美洲原住民的馬,都來自西班牙開始的歐洲殖民者。遺傳上 17 到 18 世紀的馬最接近西班牙,後來卻更像英國,看來歐洲不同勢力前來的順序,也對馬產生影響。

考古學家 William Taylor 在實驗室中研究馬骨。圖/參考資料3

馬的新國度

印地安人指稱馬的名稱很多。像是 Pawnee 族人稱呼馬為「新狗」,Blackfeet 叫作「麋鹿狗(elk)」,Comanche 稱為「魔術狗(magic)」,Assiniboine 則是「偉大狗(great)」。

美洲原住民的祖先移民到美洲時,與馴化狗一起。長期以來,狗狗是美洲人最親密的動物。上述幾族的邏輯,是將原本熟悉的人狗關係,拓展用於理解馬。

拉科達蘇族騎士 1899 年留影。那時受到殖民勢力連年壓迫,光景已經大不如前。圖/Lakota, Dakota, Nakota – The Great Sioux Nation

拉科達(Lakota)族人心目中,馬的地位更高。拉科達文化中無所謂馴化、野馬之分,也不會特別飼養馬匹,馬屬於「馬國(Horse Nation)」的子民,族語 Šungwakaŋ,和拉科達人就像同盟國一般。

眾多印地安族群中,拉科達人相當出名。公元 1876 年拉柯達蘇族的聯軍,在蒙大拿的小大角擊潰來犯的美軍,轟動一時。領袖「瘋馬」、「坐牛」都成為歷史名人,當中 Šungwakaŋ 的貢獻也可想而知。

延伸閱讀

參考資料

  1. Taylor, W. T. T., Librado, P., Hunska Tašunke Icu, M., Shield Chief Gover, C., Arterberry, J., Luta Wiƞ, A., … & Orlando, L. (2023). Early dispersal of domestic horses into the Great Plains and northern Rockies. Science, 379(6639), 1316-1323.
  2. The untold history of the horse in the American Plains: A new future for the world
  3. Horse nations: Animal began transforming Native American life startlingly early

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
185 篇文章 ・ 801 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

2
2

文字

分享

1
2
2
貝多芬頭髮保存 DNA,讓台灣人肝同身受
寒波_96
・2023/04/26 ・2722字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

貝多芬,是歷史上最知名的音樂家之一。2023 年問世的論文報告貝多芬的基因組,得知他有肝硬化的遺傳高風險,另外還感染 B 型肝炎病毒,令台灣人肝同身受。

符合一般人心目中貝多芬形象的畫像。圖/GL Archive/Alamy

貝多芬留下很多頭髮,哪些是真的?

貝多芬在公元 1770 年 12 月 16 日出生,1827 年 3 月 26 日去世。他在生前就非常知名,去世後名聲歷久不衰,相關研究很多,這項研究從遺傳學切入,獲得寶貴的新觀點。

貝多芬去世後留下一些遺物,但是不見得是真品。這項研究由 8 份獨立收藏的頭髮抽取 DNA,據說源自貝多芬不同年紀留下的頭髮。

8 份樣本,有 1 份「Kessler」的 DNA 含量不足,其餘 7 份足夠分析。5 份長期由不同人保存,遺傳訊息卻完全一致,應該就是貝多芬本人的。其餘 2 份看來分屬沒有關係的 2 個人,顯然不是貝多芬的頭毛。

很可能來自貝多芬的 5 份頭髮。圖/參考資料1

值得一提的是,「Hiller」頭毛之前檢驗出重金屬,有人藉此提出貝多芬去世前健康惡化,和重金屬中毒有關。但是這回得知這根本不是貝多芬的頭髮,推翻此一論點。

貝多芬的Y染色體,有點謎

從 5 個獨立來源獲得的古代 DNA,能拼湊出完整的基因組,覆蓋率高達 24。遺傳上看來是一位歐洲中部的男生,血緣上沒有特殊之處。Y 染色體型號為 I1a-Z139,也是歐洲的常見型號。

由不同頭髮中取樣拼湊而成的基因組,幾乎可以確認來自貝多芬本人。然而,和貝多芬家族如今的親戚比對,Y 染色體卻不一樣。

貝多芬整個基因組看來,與如今歐洲中部的人群最相似。圖/參考資料1

音樂家貝多芬在 1770 年出生,名字為 Ludwig van Beethoven。歷史可考有一位 1535 年出生、1609 年去世的祖先 Aert van Beethoven,比他更早好幾代,並且有男性後裔流傳至今。

歐洲的姓是父系傳承,Y 染色體也是;所以同姓的人 Y 染色體應該類似,只有歷代突變累積的少數差異。然而比對發現,如今五位貝多芬的 Y 染色體皆為 R-FT446200,和音樂家貝多芬不同。

如果歷史記載正確,這五位應該都是 Aert 的直系後裔。論文推測,從 Aert 到音樂家貝多芬的兩百多年間,或許發生過某些缺乏紀錄的事。

另一方面,貝多芬類似款式的 Y 染色體,如今依然存在,而且在歐洲人資料庫中可以搜尋到 5 款,估計共同祖先能追溯到一千年前。奇妙的是,五群人的姓氏都不一樣,而且都沒有人姓貝多芬。

如今姓貝多芬的人,Y 染色體都和音樂家貝多芬不一樣。Y 染色體和音樂家貝多芬一樣的人,都不姓貝多芬。圖/參考資料1

爆肝的遺傳風險

有很明確的記載指出,貝多芬 56 歲去世前便長期健康欠佳,有腸道和肝的毛病。另外聽力問題也很出名,身為史上一流音樂家,貝多芬的聽覺竟然從 20 多歲起逐漸退化,去世前聽力極差,原因成謎。

這些問題和遺傳有關嗎?人類遺傳學研究已經找到不少與疾病、健康有關的風險因子,檢查發現,聽力與腸道方面的毛病,貝多芬沒有配備哪些 DNA 變異明顯有關,後天因素的影響也許更大。

貝多芬的肝實際上大有問題,遺傳上看來,幾處基因上也具備高風險的變異。純以 DNA 來說有酗酒傾向,而他晚年確實會酗酒。

不過風險最明確的是 PNPLA3 基因,貝多芬在此基因 rs738409 位置,配備的一對變異與「肝硬化」高度相關,也就是先天上,肝硬化的機率更高。

貝多芬去世前留下的「Stumpff」頭髮,其中存在 B 型肝炎病毒的 DNA 片段。頭毛中竟然可以抓到 B 型肝炎病毒,奇怪的知識增加惹!圖/參考資料1

最終命運:肝硬化×酗酒×B型肝炎?

另一很難想像的發現是,貝多芬去世前不久留下的「Stumpff」頭髮中,偵測到 B 型肝炎病毒的 DNA 片段。

儘管出乎意料,最近確實有研究報告,在病患的頭髮中檢驗到 B 肝病毒。因此頭髮中的病毒 DNA 或許不是後人汙染,而真的是曾經感染貝多芬的病毒。

B 肝病毒有很多款,貝多芬感染的型號是歐洲常見款式 D2。他在 1827 年 3 月去世,留下這些頭髮的日期則早於 1826 年冬天,由此可知去世前幾個月,貝多芬正在感染 B 型肝炎。

即使體內有 B 肝病毒,也不見得能在頭髮中偵測到,所以更早留下的頭髮中沒有病毒,不等於他當時沒有感染。貝多芬也有可能是長期感染的慢性帶原者。

無人不知的貝多芬,我們懷念他。圖/小賈斯汀 VS 貝多芬 – 經典饒舌爭霸戰 #6(正體中文)

貝多芬中年起健康明顯走下坡,去世前幾年或許同時受到肝硬化、酗酒、B 型肝炎的夾擊,才會導致嚴重的肝病問題。

歷史記載 1826 年 12 月時,貝多芬出現黃疸、四肢腫脹,很像肝功能衰竭的症狀。他就此臥床,直到長眠。

貝多芬,我們懷念他。大家也要注意健康,小心肝。

延伸閱讀

參考資料

  1. Begg, T. J. A., Schmidt, A., Kocher, A., Larmuseau, M. H., Runfeldt, G., Maier, P. A., … & Krause, J. (2023). Genomic analyses of hair from Ludwig van Beethoven. Current Biology.
  2. Beethoven’s cause of death revealed from locks of hair

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
185 篇文章 ・ 801 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。