Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

沒有化石,也能用表觀遺傳學重建丹尼索瓦人的長相?

寒波_96
・2018/08/07 ・3513字 ・閱讀時間約 7 分鐘 ・SR值 563 ・九年級

-----廣告,請繼續往下閱讀-----

只知 DNA 卻不知型態的丹尼索瓦人

古代DNA 研究發展至今,最大的驚奇或許是丹尼索瓦人(Denisovans)。過往的古人類學,主要靠化石與人造物認識古代人類,例如知名的尼安德塔人(Neanderthals),就有成百上千的遺址以及大批化石,讓專家得以掌握他們的型態特徵與生活方式。等到尼安德塔人的基因組被定序成功,我們對尼安德塔人的認識,更是進一步拓展到遺傳的層次。

智人與尼安德塔人,臉部的型態特徵是已知的。圖/取自 馬克斯普朗克研究所

智人與尼安德塔人之外,至今所有滅絕的古人類都是只有化石,不知 DNA;而唯一例外是丹尼索瓦人。目前已知丹尼索瓦人的居住地點,只有西伯利亞南部的丹尼索瓦洞穴一處,古遺傳學家由此地出土的一位蘿莉手指的骨頭中,取得了高品質的全套丹尼索瓦基因組。

然而,除了此一小到難以辨識型態的指骨以外,我們對丹尼索瓦人型態的了解只有臼齒特別大,然後就沒有其他資訊了。也就是說,絕大部分古人類是缺乏遺傳訊息,只知化石型態;丹尼索瓦人卻是只知 DNA,不知型態。

看起來,在找到更多丹尼索瓦人的化石之前,我們應該無從得知他們的長相?由耶路撒冷希伯來大學的 Liran Carmel 博士率領的戰隊,卻出乎意料地提出無比瘋狂的主意:即使缺少新的化石證據,靠著表觀遺傳學(epigenetics)仍然有辦法無中生有,重建丹尼索瓦人的面貌。

-----廣告,請繼續往下閱讀-----
取自死人骨頭的古代基因組,也能研究表觀遺傳學!?圖/取自 Liran Carmel 2014 年演講的投影片。

能調控基因表現的DNA甲基化

基因的 DNA 序列就算沒有改變,細胞也能靠著不同的調控方式,影響基因的表現。透過不同化學修飾,不改變 DNA 本身仍能影響基因表現的方法,稱作表觀遺傳學修飾(epigenetic modification);其中一種方法是在 DNA 鹼基上加上甲基,也就是 DNA甲基化(DNA methylation),基因組上被甲基化的區域,通常會降低或失去表現能力。

即使 DNA 序列一模一樣,若是甲基化程度不同,基因表現仍可以產生差異。智人、尼安德塔人、丹尼索瓦人三者的親戚關係很近,遺傳差異很少,彼此間許多型態上的差別,或許並非 DNA 序列差異造成,而是與基因調控有關,DNA甲基化在其中可能就扮演著重要角色。

智人、尼安德塔人與丹尼索瓦人間的親緣關係。

問題是我們要怎麼才能知道,古代基因組上 DNA甲基化的狀態?DNA 不會變,但是像 DNA甲基化這般的表觀遺傳學修飾卻會時常變化,而且就算是同一個人,不同細胞、組織、生理狀態之下,基因組上 DNA甲基化的狀況也會有差異;因此,如果要研究 DNA甲基化,一定要注意細胞來自什麼狀態。

古代DNA 更絕望的問題是,也許幾萬年後 DNA 序列仍然生還,但是上頭的化學修飾,一定早就死光光,沒有任何辦法可以復原。

-----廣告,請繼續往下閱讀-----

死掉幾萬年,還能得知 DNA甲基化圖譜?

幸好,雖然古代DNA 上的化學修飾沒了,不過衍生結構還在。人類基因組是由 ATCG 排列而成,大部分 DNA甲基化的位置,都位於 CG 連續出現時前面的 C,也就是胞嘧啶(cytosine)上頭,由此可以預測基因組上,哪些位置被甲基化的機率較高。

不過要如何分辨,哪些胞嘧啶曾被甲基化?生物死掉以後 DNA 會開始損壞,而最常見的是去胺作用(deamination),胞嘧啶經過去胺作用後,會轉變成尿嘧啶(uracil,簡稱 U),甲基化的胞嘧啶(5-甲基胞嘧啶)卻會變成胸腺嘧啶(thymine,簡稱 T)。賓果!

細胞還活著的時候的 DNA甲基化,以及死掉以後有無甲基化,經歷去胺作用的差異。圖/取自 ref 1

由於化學反應之故,從化石中取得的古代DNA 片段,與智人的基因組對照以後,智人是 C 的位置,古代基因組上若是 U,意謂古人類該位置本來很可能是 C,讀取到 U 是去胺作用所致。假如古代基因組上是 T,那就有兩個可能:第一,它真的是有別於智人的 T;第二,它本來是甲基化的 C,被去胺作用轉變成 T。

用次世代定序法一網打盡樣本內所有 DNA 片段,通通定序的好處是,可以取得許多古代DNA 片段,對應到基因組上的同一個位置;藉此能夠估計古代基因組上,該位置究竟真的是 T,或是甲基化 C 的機率。靠著這套策略,古代基因組上的 DNA甲基化圖譜(DNA methylation map)被順利重建。[1]

-----廣告,請繼續往下閱讀-----

探討表觀遺傳學調控很重要的是,不同細胞的修飾狀況不同。古代基因組的 DNA甲基化圖譜,大致看來與智人的骨細胞類似,想來十分合理,因為古代基因組正是取自尼安德塔人,與丹尼索瓦人的骨細胞。

用基因調控差異,重建未知的型態

得知基因組上哪些位置被甲基化以後,接下來是比較智人與尼安德塔人、丹尼索瓦人間的差異,以及探討 DNA甲基化的差異,是否會影響三者的型態特徵。最後,則是重建型態。

由 DNA 差異判斷,尼安德塔人、丹尼索瓦人的血緣關係較近,共同祖先約能追溯到 40 多萬年前,又與智人大概在 55 到 77 萬年前分家。

各演化分枝上,DNA甲基化位置差異的數目。圖/取自 ref 2

整體看來,基因組上甲基化位置彼此有別的數目,尼安德塔人與丹尼索瓦人分家以後,尼安德塔人有 570 個,丹尼索瓦人則有 443 個。他們的共同祖先與智人分開之後有 939 個,智人這邊則是 873 個。[2]

-----廣告,請繼續往下閱讀-----

比對許多資料庫與序列,費了一番功夫後,研究團隊建立起 DNA甲基化、相關基因表現,與臉、聲道、咽、喉型態發育的關係。尼安德塔人有大量化石,型態如何是已知的;用尼安德塔人的型態特徵,可以回推 DNA甲基化和基因表現的改變,對型態的影響。

重建各部位的型態。圖/取自 ref 2

假如利用古代基因組的 DNA甲基化圖譜,能夠順利重建尼安德塔人的臉部型態,而丹尼索瓦人相關的基因調控狀況,又與尼安德塔人和智人相差不多,那麼同樣的預測辦法,就能用於重建丹尼索瓦人的面貌。結果尼安德塔人型態的預測,正確率約有 87%,可見預測大致上是可靠的。

於是,研究團隊重建了丹尼索瓦人的型態。假如跟想的一樣,丹尼索瓦人會有不少特徵與尼安德塔人一致,不過也有 56 項有別於智人和尼安德塔人,例如丹尼索瓦人配備更長的牙弓(dental arch),以及更寬的雙頂骨(biparietal)。

已知的尼安德塔人,以及推估的丹尼索瓦人分佈範圍。圖/取自 PaleoAnthropology+ twitter

丹尼索瓦人是「他」?

非常非常有意思的是,研究團隊也將預測的丹尼索瓦人和許昌人比較,而且驚訝地發現,許昌人已知的型態特徵中,大部分都與「丹尼索瓦人」吻合。

-----廣告,請繼續往下閱讀-----
許昌人化石(Xuchang 1)的拼湊結果。圖/取自 ref 3

許昌人出土於中國河南省,許昌的靈井遺址,是生活在東亞北方,10 萬年前的古早人類;型態特徵與所有已知古人類都不完全一致,所以難以歸類;還有 2 項特徵與尼安德塔人一致。某些古人類學家認為,既然有共同的型態,許昌人和尼安德塔人間應該有某種糾葛;還有人推論,許昌人多半與丹尼索瓦人有關係,甚至大膽猜測許昌人,就是面貌未知的丹尼索瓦人本尊。[3]

至今為止,用 DNA甲基化圖譜重建古人類型態的研究,都還沒有正式發表。丹尼索瓦人的型態預測是否正確,許昌人是不是就是各界尋覓已久的丹尼索瓦人,這些令人期待的問題,仍有待未來分曉。

至少我們如今知道,聰明的智人已經想到辦法,有望能無中生有,重建滅絕親戚未知的面貌。

延伸閱讀:

-----廣告,請繼續往下閱讀-----

參考文獻

  1. Gokhman, D., Lavi, E., Prüfer, K., Fraga, M. F., Riancho, J. A., Kelso, J., … & Carmel, L. (2014). Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science, 1250368.
  2.  Extensive Regulatory Changes in Genes Affecting Vocal and Facial Anatomy Separate Modern from Archaic Humans
  3.   Li, Z. Y., Wu, X. J., Zhou, L. P., Liu, W., Gao, X., Nian, X. M., & Trinkaus, E. (2017). Late Pleistocene archaic human crania from Xuchang, China. Science, 355(6328), 969-972.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
文章難易度
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
從一片荒蕪到綠色星球:細菌與光合作用如何重塑地球——《你的身體怎麼來的?》
商周出版_96
・2025/01/27 ・3861字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

喜出望外

海中糟粕化為盎然綠意

這個星球現在仰仗光合作用運轉。

──史緹耶可.戈盧比奇(Stjepko Golubic)

四十億年前,地球的陸塊相當單調,黑色、褐色、灰色的岩石上一片荒蕪,火山朝著無氧的大氣噴發毒素,人類乘坐時光機回到那時間點會立刻窒息。當時地球上僅有的生命形態是細菌,以及比英文句號還小得多的單細胞生物。然而若往前快轉幾十億年,來到距今僅三億五千萬年前後,會發現大氣中氧含量接近人類已經習慣了的百分之二十一,這是個很奢華的數字。

那個年代,海洋中滿是巨大生物四處洄游,植物入侵陸地並為人類的演化鋪路。地球從無法居住的荒土蛻變為藍綠色的生命樂園,這麼戲劇性的轉折是什麼力量在背後推動?

種種因素之中有一項特別醒目:直到一九六〇年代人類才開始意識到光合作用的力量不下於各種地質學事件,改造這顆星球的手段神祕且驚奇,非常難以想像。

地球從荒土到生命樂園的蛻變,歸功於光合作用的出現。圖 / unsplash

改造過程中,光合作用或許曾經引發大規模生物滅絕。科學家一度認為其威力能夠與核戰浩劫相提並論,使這顆行星被寒冰覆蓋化作巨型雪球。但同時光合作用又輔助、甚至促成「不可能」的演化捷徑,進而提高生命多樣性,最終使植物甚至人類得以存在。科學家如何研究太古時代的自然變動?而光合作用又如何將地球鬧得天翻地覆?

-----廣告,請繼續往下閱讀-----

疊層石背後的生命故事

十九世紀末期,有人找到能夠追溯光合作用悠久歷史的第一條線索。那時候沒有任何證據指向距今大約五億五千萬年的寒武紀之前有生命存在,然而一八八二年冬天美國大峽谷深處名叫查爾斯.沃爾科特(Charles Walcott)的岩石收藏家改變了一切,後來還當上史密森尼學會的主席。

沃爾科特的故鄉是化石天堂紐約州由提卡市(Utica)。小時候他生得瘦瘦高高,喜歡在父母的農場以及附近未來岳父擁有的採石場內找化石,十八歲離開校園之後先去五金行當店員,卻自己閱讀教科書、研究化石並撰寫論文、與著名地質學家通信來維繫心中熱情。他曾經蒐集古代海洋生物三葉蟲的化石標本,品質在全世界而言也是數一數二,後來慷慨出售給了哈佛大學。

沃爾科特的勘探技巧十分高明,也藉此就職於新成立的美國地質調查局。一八八二年十一月,地質調查局局長、同時自己也是探險家的約翰.威斯利.鮑威爾(John Wesley Powell)要求沃爾科特勘測迄今為止無法進入的大峽谷深處。

鮑威爾之前嘗試過,但只能乘坐小木舟趁漂流時稍微觀察最底層岩石,後來他就在偶爾有「刺骨寒霧、雪花飛旋」的地方紮營監督,帶人修建一條從峽谷邊緣延伸到下方三千英尺(約九百一十四公尺)處溫暖地帶的陡峭馬徑,並且讓時年三十三歲的沃爾科特帶著三名工人和足夠支撐三個月的食物、九匹上鞍的騾子沿著那條臨時小徑進入谷底。

-----廣告,請繼續往下閱讀-----

「高原之後就會積滿雪,」鮑威爾告訴他:「春天之前你和搬運工無法離開峽谷。希望這段時間裡,你能好好研究地層序列,盡量收集化石。祝好運!」

對沃爾科特而言,這是千載難逢的機會。他已經發現一些已知的最古老化石,例如神似甲殼類但奇形怪狀的三葉蟲。此外,達爾文發表《物種起源》不過四十年前,但因為缺乏最原始的動植物或細菌化石而遭到很多抨擊。批評者仗著沒有化石這點堅稱所有物種都是神造,懷疑論者也要求達爾文證明古代有過更單純的生物,可惜他只能委婉表示若生物體很小就不容易留下化石,希望有朝一日會出現。

充滿驚喜的山谷

沃爾科特深知達爾文的窘境。他沿著陡峭原始小徑下降到幾乎沒有生命跡象的大峽谷谷底,然後用心觀察周遭環境。山谷、懸崖,除了石頭還是石頭,但這一隅紅色天地很得他喜愛,不過同行的化石收集家、廚師和馱獸管理員就未必能夠分享那份悸動了。

他們沿著八百英尺(約兩百四十四公尺)峭壁吃力前行,其中一段就是現在的南科維山徑(NankoweapTrail),一般認為是大峽谷裡最危險的路線,河流地形坡陡水急即使沿岸也難以行走,有時候不得不自己開路以求深入。後來一頭騾子死亡、另外兩頭受傷。旅程中至少一次,沃爾科特筆中的墨水結凍了,但又必須在篝火邊融冰為水給騾子飲用。但最可怕的其實是死寂與孤獨,才三個星期就導致那位化石收集家夥伴憂鬱求去。但沃爾科特不同,能來到谷底他太興奮了,堅持了七十二天才踏上歸途。

-----廣告,請繼續往下閱讀-----

有一天他爬上爬下,對部分岩石中層層線條感到好奇,乍看很像切開的包心菜。這些圖案極不尋常,所以沃爾科特認定是生物,後來將其命名為藍綠菌(最初曾視為藻類)。他還聯想到自己在紐約州看過來自寒武紀時期的類似化石,取「隱含生命」的含義命名為隱藻化石(Cryptozoön)。然而大峽谷的情況有點不同,這些化石明顯可見,卻又位於更古老的岩層內,因此歷史比任何其他已發現的化石都久遠。

沃爾科特在大峽谷的古老岩層中發現了類似藍綠菌的化石,命名為隱藻化石,揭示比已知更古老的生命存在。圖 / unsplash

沃爾科特後來在蒙大拿州等地持續發現同樣古老的隱藻化石,接著其他古生物學家也在前寒武紀岩石內察覺到疑似化石的特殊圖案,種種線索指向最原始生命形式的證據可能保存在寒武紀前的石頭裡。即便如此懷疑論調不斷,尤其某個長期存在爭議的標本被證明了並非化石,而是火山石灰岩經過壓力和高溫形成獨特的礦物沉積。

隱藻化石的爭議:解鎖前寒武紀生命的證據

一九三〇年代,沃爾科特去世的四年後,劍橋大學最具影響力的古植物學家蘇厄德(Albert Charles Seward)決定加入辯論,卻在後來被古生物學家肖普夫(William Schopf)形容是「讓煮熟的鴨子飛了」。蘇厄德在史稱「隱藻化石爭議」的事件中嚴格審視前寒武紀化石證據,得出結論認為這完全是一廂情願,所謂的化石與現存物種之間沒有明顯關係,大型結構並未顯示出由較小細胞組成的特徵。

他主張沃爾科特在隱藻化石找到的環狀圖案可能是海底富含鈣質的淤泥沉積,人類本來就不該期望細菌這樣微小的生物會被保存在化石,最後又語重心長告誡科學家:有些尋找化石的人太過一頭熱,他們宣稱找到特別古老的標本時不能輕信。

-----廣告,請繼續往下閱讀-----

地位如此卓著的人物提出警告,導致地質學家不願再從岩石尋找距今約五億年以上的化石,畢竟找到的機率幾乎等於零。久而久之許多人認定了生命在地球上的歷史很短,這顆星球的前面四十億年、其歷史的九成之中根本沒有生命存在。微生物學家史緹耶可.戈盧比奇指出許多科學家以「前寒武紀」一詞指稱生命尚未問世的太古時期,其實這是陷入「現有工具檢測不到就代表不存在」的思考偏誤,將缺乏證據直接視為否定證據了。

時間來到二十年後的一九五〇年代中期,澳洲年輕研究生布萊恩.洛根(Brian Logan)隨地質學教授菲利普.普萊福德(Philip Playford)探索了位置偏遠的鯊魚灣,也就是澳洲西北海岸一片孤立的鹹水潟湖。站在這兒的海灘,淺藍色海水退潮時會露出如夢似幻的奇景:數百顆三英尺(約九十一公分)高的圓柱狀岩石林立,彼此間距很小,彷彿堅硬粗糙如石塊的蘑菇聚集叢生。

兩人詳細調查了這片怪異石陣,然後意識到理解沃爾科特隱藻化石的關鍵。眼前這些不僅是活化石,還能回答一個經典謎語:什麼東西既死又活?石頭表面曾經活著,是藍綠菌累積起來形成網罩般的構造。海水進出時,這層菌網會捕捉沉積物。而藍綠菌死亡後,沉積物固定在原位如海綿狀的石塔,於是又有新的細菌附著其上、形成新的一層網罩。

細菌以同樣方式在太古海洋中創造出沃爾科特的隱藻化石,現在稱為疊層石,語源是希臘文stroma(層)和lithos(岩)。目前只有鯊魚灣等少數幾個地方能找到疊層石,環境對其他多數生物過於鹹澀無法生存。但另一方面,已經化石化的古老疊層石則在世界各地皆有發現。

-----廣告,請繼續往下閱讀-----

澳洲地質學家偶然發現還活著的疊層石,同時美國兩位地質學家史坦利.泰勒(Stanley Tyler)和埃爾索.巴洪(Elso Barghoorn)也宣布找到了蘇厄德口中不存在的化石標本,其中微生物有單細胞也有多細胞,藍綠菌絲也包括在內,而且這些化石都有大約二十億年歷史。「許多人很震驚的,」戈盧比奇表示:「原本以為生命在寒武紀才爆發,之前什麼都沒有。寒武紀應該是起點才對。」但現在普遍接受最古老的疊層石化石上微生物活在三十五億年前,依舊是地球誕生的十億年之後。達爾文和沃爾科特應該很欣慰。

哪種細菌造出最古老的疊層石?無法確定是已經會行光合作用的藍綠菌,抑或是它們的祖先。不過藍綠菌至少二十四億年前已經存在於海洋。

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

4
1

文字

分享

0
4
1
微小 RNA,大大改變!2024 諾貝爾生醫獎揭示基因調控新篇章
PanSci_96
・2024/11/12 ・2604字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

2024 年諾貝爾生理學或醫學獎榮耀地頒發給了兩位傑出的科學家——維克多·安布羅斯(Victor Ambros)和蓋瑞·魯夫昆(Gary Ruvkun),以表彰他們對 microRNA 的發現和研究。他們的工作揭示了一種過去人類一無所知的基因調控機制,不僅顛覆了我們對生物學的理解,還為未來全新的醫療技術開啟了大門。那麼,什麼是 microRNA?它是如何被發現的?又能用來治療哪些棘手的疾病?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

microRNA 是什麼?

首先,讓我們澄清一個常見的誤解:microRN A並非我們熟知的 mRNA(信使 RNA)。microRNA,中文稱為微型核糖核酸,是一種長度僅有 20~25 個核苷酸的小型 RNA 分子。與長度動輒數百甚至數千個核苷酸的 mRNA 相比,microRNA 確實名副其實地「微」。

microRNA 本身並不會被轉譯成蛋白質,但它在基因調控中扮演著關鍵角色。它能夠與特定的 mRNA 結合,抑制或調節這些 mRNA 的轉譯,從而控制蛋白質的合成。這種調控機制被稱為「轉錄後基因調控」(post-transcriptional gene regulation),是細胞精確控制基因表達的重要方式。

它如何調控基因表現?

在細胞中,DNA 是遺傳信息的載體,但它需要通過轉錄和轉譯過程才能發揮作用。轉錄(transcription)是將 DNA 上的遺傳信息轉錄到 mRNA 上,而轉譯(translation)則是將 mRNA上的信息轉譯成蛋白質。

-----廣告,請繼續往下閱讀-----

然而,microRNA 在轉錄與轉譯之間的關鍵環節發揮了調控作用。它可以與目標 mRNA 分子結合,阻礙或抑制其轉譯過程,從而控制特定蛋白質的生成。這就像是在烹飪過程中,microRNA 扮演了一個負責調整出菜速度的協調人員,決定了哪道菜(蛋白質)應該在何時上桌(被合成)。

更有趣的是,microRNA 與 mRNA 之間並非一對一的關係。一個 microRNA 可以調控多個 mRNA,而一個 mRNA 也可能受到多個 microRNA 的影響。這種多對多的關係,使得細胞內的基因調控網絡極為複雜,但也提供了極大的靈活性,讓細胞能夠精確地適應內外環境的變化。

microRNA 的發現經過

microRNA 的發現充滿了機緣巧合。上世紀 80 年代,安布羅斯和魯夫昆對基因在不同時序活化的機制深感興趣。他們選擇了秀麗隱桿線蟲(C. elegans)作為研究對象,這種微小的線蟲體長僅 0.1 公分,但擁有肌肉、神經等多種細胞類型,且全身透明,非常適合觀察和研究。

他們發現,當線蟲的 lin-14 基因發生突變時,線蟲會跳過幼蟲的第一發育階段,直接進入第二階段,導致成蟲體型較小。而當 lin-4 基因突變時,第一發育階段會被延長,成蟲體型較大。他們推測,lin-4 可能通過抑制 lin-14 的表現來調節線蟲的發育。

-----廣告,請繼續往下閱讀-----

經過數年的研究,安布羅斯證明了 lin-4 會產生一段不編碼蛋白質的短鏈 RNA,這正是 microRNA。同時,魯夫昆發現,lin-14 的 mRNA 雖然正常轉錄,但在轉譯過程中被抑制,導致基因表達受阻。兩人的研究互相印證,揭示了 microRNA 如何通過結合目標 mRNA,控制基因的表達。

然而,這一重要發現並未立即引起廣泛關注。當時的科學界普遍認為,這種機制可能僅存在於線蟲中,對於其他生物並無意義。直到 2000 年,科學家們在多種生物中發現了類似的 microRNA,證明了這種調控機制的普遍性和重要性。

microRNA 的調控機制直到 2000 年才被證明了它的重要性。

microRNA 可以用於治療哪些疾病?

microRNA 在生物的生命歷程中扮演著重要角色,從胚胎發育、器官功能到老化過程,都與其息息相關。目前,已發現的人類 microRNA 種類可能超過 2500 種,並且這個數字還在不斷增加。

在醫學領域,microRNA 的發現為多種疾病的治療帶來了新的希望。

-----廣告,請繼續往下閱讀-----

1. 癌症治療

microRNA 與癌症的關係密切。研究發現,某些 microRNA 的異常表達可能導致細胞無限制地增殖,從而形成腫瘤。通過調節這些 microRNA 的表達,有可能抑制癌細胞的生長。目前,已有生物科技公司開始研發基於 microRNA 的抗癌療法。

2. 神經退行性疾病

在阿茲海默症、帕金森氏症等神經退行性疾病中,microRNA 也被發現參與了病理過程。調節特定的 microRNA,有望減緩疾病的進展,改善患者的生活質量。

3. 心血管疾病

microRNA 在心肌梗塞、心臟衰竭、動脈硬化等心血管疾病中也扮演著關鍵角色。通過調節相關的 microRNA,有可能促進心肌細胞的再生,恢復心臟功能。

4. 其他疾病

此外,microRNA 還與先天性聽力損失、眼科疾病、骨骼疾病、糖尿病、自身免疫疾病等多種疾病相關。研究者們正積極探索 microRNA 在這些領域的治療潛力。

-----廣告,請繼續往下閱讀-----

挑戰與未來展望

儘管 microRNA 在醫學上具有巨大潛力,但要將其應用於臨床治療,仍然面臨著諸多挑戰。

1. 脫靶效應

由於 microRNA 可以影響多個目標 mRNA,調節一個 microRNA 可能會對多個基因的表達產生影響,導致不可預測的副作用。如何提高 microRNA 療法的精準性,減少脫靶效應,是一大難題。

2. 遞送系統

microRNA 分子在體內容易被降解,如何將其穩定地運送到目標細胞或組織,是技術上的另一個挑戰。需要開發高效、安全的遞送系統,確保 microRNA 能夠發揮預期的治療效果。

3. 安全性和有效性評估

任何新的治療方法都需要經過嚴格的安全性和有效性評估。microRNA 療法需要經過大量的臨床試驗,才能最終應用於臨床。

-----廣告,請繼續往下閱讀-----

然而,這些挑戰並未阻止科學家們的熱情。隨著技術的不斷進步,我們有理由相信,microRNA 療法將在未來為人類的健康帶來重大突破。

microRNA 療法或許將在未來帶來人類醫療上的重大突破。圖/envato

結語

microRNA 的發現,不僅顛覆了我們對基因表達和調控的傳統認識,還為醫學領域帶來了革命性的變革。2024 年諾貝爾生醫獎的頒發,是對安布羅斯和魯夫昆兩位科學家傑出貢獻的最高肯定。

未來,隨著對 microRNA 研究的不斷深入,我們有望開發出更多基於 microRNA 的診斷和治療方法,為癌症、阿茲海默症、心臟衰竭等棘手疾病帶來新的希望。

如果你對生物醫學領域感興趣,或許下一個重大突破將由你來實現。microRNA 的故事告訴我們,即使是最微小的發現,也可能帶來巨大的改變。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。