0

0
0

文字

分享

0
0
0

想重現侏儸紀公園?先征服古代 DNA 的種種難題!

劉筱蕾_96
・2016/07/23 ・4380字 ・閱讀時間約 9 分鐘 ・SR值 560 ・八年級

大家好!打ㄍㄟ厚!胎軋後!各位如果常常追蹤寒波的粉絲團「盲眼的尼安德塔石器匠」,想必對藉由分析古代生物的 DNA,來探討生物演化或是人類遷徙有些認識。但是有人想過這樣的研究是怎麼辦到的嗎?

古代 DNA(ancient DNA, aDNA)研究或古遺傳學(paleogenetics),算是生物學,特別是演化生物學中的研究領域之一。一般指的是最初並非以萃取 DNA 為目標的標本中獲取,再利用特殊方法重建的遺傳資料。藉此重建保存條件不佳的 DNA,並將結果與當代生物的遺傳資訊合併分析,例如,〈冰河期前後智人大移民,其中一群人卻消失了?!〉、〈幾萬年前就是好朋友?在北極發現狗的可能始祖〉都是這類研究的成果。

值得注意的是,雖然我們使用古基因組這樣的詞彙,但這個領域的研究對象並不限於古代的生物,廣義來說,只要樣本的來源不是為了遺傳研究而採集(像博物館中的動植物標本),就算研究的對象不是古代生物,得到的 DNA 依舊可以稱之為古代 DNA。因為 Ancient DNA 資料能具體的呈現研究的生物在過去特定時間點遺傳組成,所以可以讓我們更加了解生物到底是如何變成我們目前看到的模樣。

班驢
班驢,又是一個無緣再相見的動物,至少你的 DNA 在科學史上記了一筆。(班驢:馬的!那我讓你在科學史上記一筆你滅種給我看啊!)圖/Wikipedia

古 DNA 研究怎麼開始的?

古代DNA研究的起步相當晚,第一個成功的例子在 1984 年,科學家藉由博物館中的動物肌肉標本,重現當時已絕種將近 100 年的斑驢 DNA(quagga,一種斑馬的近親)。隔年,舉世聞名的 Svante Pääbo(沒錯!!就是《尼安德塔人:尋找失落的基因組》的作者帕波)發表了埃及木乃伊的 DNA 片段,立即吸引了大眾的矚目。

對研究者來說,這個全新的資訊來源可以讓他們回答之前無法探討的問題(科學家顯示摩拳擦掌中!!),而流行文化也立即跟上這股風潮,開始想像複製出古生物的可能性,最有名的就是恐龍災難大片《侏儸紀公園》啦!這部經典電影,因為有古生物學家指導此片的拍攝,對大眾傳達了相對正確的演化理論,但是在古代 DNA 研究的概念上(從蚊子中提煉出了恐龍 DNA 那段),卻也低估了古基因組研究過程中的困難。

在早期古基因組重建領域中,帕波是首屈一指的人物。從前述所提到的埃及木乃伊研究開始,到後來讓他揚名立萬的尼安德塔人基因組重建,他的團隊開發了一系列的方法來建立古代 DNA 研究的實驗流程,再配合當時新的 PCR 技術,可以快速擴增目標的 DNA 片段,讓標本的 DNA 重建似乎變得更容易了(詳情請參閱〈尼安德塔人:尋找失落的基因組……科學界30年第一手內幕揭秘〉)。越來越多科學家也加入重建古代DNA的行列,每個人都在比賽誰可以定出最古老的DNA序列……直到那黑暗時期的到來。

Jurassic park
豆知識:雖然叫侏儸紀公園,但是暴龍(T-Rex)實際上是生存在白堊紀非侏羅紀喔!揪咪~ 圖/Wikipedia

一個火雞三明治引發的疑案

這段「黑暗時期」,指的是許多已發表的古代 DNA 研究,最後被證明結果有問題。這包括 1600 萬年前的木蘭化石、琥珀中兩千五百萬到一億兩千萬年前的細菌序列(這情境有沒有一種似曾相識的感覺),都發生實驗結果無法複製的問題。

另一個相當有名的例子發生在 1994 年,有個美國團隊宣稱他們從恐龍的化石,經過 2880 次的 PCR 後,重建出大約 170 個核苷酸長的「恐龍 DNA」。而且這段序列與現存生物的 DNA 相互比較後,發現親緣關係最近的是鳥類,更精確來說是——火雞。這項發現相當符合恐龍與鳥類有最近共同祖先的認知,所以被認為是重要的證據。但後來卻發現這項結果無法被其他研究團隊複製。所謂的「可以複製」,代表他人能夠用作者提供的研究方法和材料重現實驗結果。後續討論中,有人提到「……直到現在,發現恐龍 DNA 的團隊都還在懷疑當時的實驗結果,是否來自他們曾經在實驗室吃過的火雞三明治……」,這些可疑的結果為當時正起步的古代DNA研究蒙上陰影。

各種可能改變DNA的情況

事後科學家從「火雞三明治事件」,與其他失敗的實驗中取得許多教訓。

外來 DNA 汙染

第一個就是實驗汙染。實驗汙染這個問題要跟 PCR 在古代 DNA 上的使用,以及實驗方法一起討論。從生物死亡的瞬間開始,DNA 開始逐漸降解,碎成小段,太短的片段是無法進行 PCR 的,所以樣本中真的可以用來 PCR 的 DNA 片段濃度很低,跟附近環境中的 DNA 數量沒得比。

為了能夠與現在的物種相比較,研究者大多是選用與現生生物類似的基因片段重建。But,人生就是這個 but! 現代生物也有一樣 DNA 啊!畢竟 PCR 酵素不會專挑古代 DNA 來擴增,實驗過程中一開始只要有輕微的環境汙染,現代與與古代樣本間 DNA 數量上的差異就會讓 PCR 的結果完全改變。以「火雞三明治事件」為例,經過 2880 次的 PCR,你想那些輕微的污染會被放大到甚麼程度?

鳴人
你有辦法找到真正的鳴人,我就可以找出古代DNA。圖/Animen

PCR 的技術限制

以 PCR 來重建標本的 DNA 序列還有另一個限制,就是 PCR 一次只能重建一個到數個片段,古代 DNA 往往樣本稀少,如果以建立某個標本完整的一段基因為目標,很可能 PCR 還沒做幾次,材料就用完了。以一段約 600 鹼基對長的基因為例,如果用傳統 PCR 的做法,必須將這段基因分成五個片段 PCR,每次 PCR 的結果都要分別定序,再重新排列組成基因。相當耗費時間與人力。

DNA 的劣化

與新鮮的樣本不同,古代 DNA 因為本身的特質跟不良的保存條件,所以萃取的 DNA 往往質量不佳。生物死後,會讓 DNA 的特性跟結構改變,這個機制叫 DNA 死後降解(post-mortem DNA degradation)。除了會發生前述提到的 DNA 分子鍵結斷裂、嘌呤從長鏈分子上脫落、核苷酸的碳環斷裂(我都解釋成DNA逐漸碎掉)之外,也會發生讓不同位置的DNA黏在一起、結構變形阻止 PCR 酵素繼續複製等等千奇百怪的症頭。最有名的例子是 DNA 分子中的胞嘧啶(cytosine)會被轉置成尿嘧啶(uracil)(RNA 的組成分子之一),導致後續 PCR 擴增時原本互補序列上的分子也跟著一起被改變(DNA 錯配,misincoporation),造成定序結果錯誤,這比實驗做不出來更可怕。

但是這些DNA死後降解也能在研究上帶來貢獻,像是其中一種 DNA 損傷的型態——核苷酸鹼基去氨化(DNA deamination),可以當作辨識古代 DNA 的特徵,或是藉由 DNA 損傷在序列中出現的比例,推估到底有多少觀察到的突變是真的因為演化而產生。

misincorporate
標本或是古生物的DNA常常有各式奇怪的問題,像是錯配(misincoporation)就很常見。圖/Logan Kistler

影響古代 DNA 保存的因素

古代 DNA 的保存有許多先天限制。雖然直覺是樣本保存的時間越長,DNA的劣化越嚴重,但實際分析發現並不全然如此,在 DNA 開始降解的初期,隨著時間越長,DNA 劣化的程度確實隨之增加。但是當時間對 DNA 降解的影響達到高峰之後,其他的環境因子反而在後續的分解作用中扮演更重要的角色。

舉例來說,氣溫變化就是很重要的影響因子,氣溫越低、以及變化幅度越小,越有益於 DNA 保存,所以現在大部分的古代 DNA 分析樣本都來自於山區、洞穴或是北方永凍層。

另外,早期博物館標本採集時為了保鮮、防止腐敗等原因,也會添加酒精或福馬林等化學藥品(想想那個一趟採集就要花好幾年的時代~),也會影響標本中 DNA 的品質。所以有時就算是一、兩百年的博物館標本,在古代 DNA 重建的難度上還更甚於保存良好的數千年化石樣本。

而不同的分類群間,DNA 分解的效率也有差別,一般來說植物 DNA 的降解速度比動物來的快,研究者推測這可能是不同生物分解時體內微環境不同所造成,但是這方面的研究還沒有定論。

次世代定序是古代 DNA 研究的救星

值得慶幸的是,次世代定序技術(Next-generation sequencing, NGS)使得定序成本和時間明顯降低,更能有效的運用古代 DNA 帶有的資訊。NGS 的其中一個特色是可以廣泛的對全基因組定序,取得大量資料。從〈從3億到1000:3天定序是怎麼辦到的?〉可以知道,現在的分析技術跟過去完全沒辦法比。以前能定序出數個基因片段就偷笑了,現在在 NGS 的加持之下,以一般大腸桿菌基因組為例,跑兩個鐘頭的反應,就可以讀出 2 千 5 百萬個鹼基對。

與 NGS 發展交互影響的是現代資料處理能力的快速進步。電腦科技的進步與普及帶來了大幅增加的資料處理能力,也是古遺傳學得以持續發展的動力。對古代 DNA 的研究者來說,實驗室工作唯一能加強的地方只有對實驗汙染的管理,但是 DNA 降解的問題跟重組都不是在實驗室中進行,而是仰賴計算機的威力,所以很多時候資料處理跟程式運算在研究中反而佔有更高的比重。

古基因組的重組類似拼大張的拼圖,首先你會有一個已知的圖案(reference genome),以重建古基因組來說通常是來自於現生的相似物種,再將 NGS 定序出來的小片段放在合宜的位置。可是現生的物種跟真的要組合的生物還是有一定的差異,就像這拼圖雖然提供給你作品的示範圖片,但是因為內容改版,又跟盒中真的拼出來的結果有微妙的不同。這時就需要借助演算法來推測每個片段該放在拼圖的哪個位置(生物學家向電腦工程師們致上最高的敬意,敬禮!!)。

puzzle
拼拼圖有作品照片可參考,生物學家的古 DNA 拼圖常常是不完整或是要自己找。圖/Youtube

此外,由於古代 DNA 的品質欠佳,在資料處理過程中需要仰賴程式過濾實驗中汙染、DNA 降解、DNA 錯配所產生的雜訊。資料處理能力的提升也代表突變誤差也可透過數理模型校正。在研究者的努力與新技術的大力加持下,讓數萬年前的尼安德塔人基因組都有機會重見天日,這個領域依舊在蓬勃的發展中。

結論

所以,侏儸紀公園真的會出現嗎?

雖然說這領域的發展日新月異,但樣本的保存期限依舊有物理極限在,而且 DNA 死後降解的速度大多是比理想中來得高的。如同我之前所提到的,過短的 DNA 片段根本無法重組。再加上也不是只要基因組重建完成就可以完整打造出胚胎。我想在可見的將來,我們暫時是看不到恐龍出現在我們眼前啦!!

jurassic
圖/Logan Kistler
  • 致謝:感謝 Dr. Logan Kistler、神秘友人寒波(盲眼的尼安德塔石器匠格主)與老友林佩蓉對專業內容與文章結構上的建議與修改。本文為作者參與歐盟居禮夫人人才培育計畫創新訓練網絡(Innovative Training Networks, Marie Curie Actions)之子計畫 MicroWine 所撰寫。

a6e43f790ee091cb4d133f89f8772082

參考資料:

  • Rizzi, Ermanno, et al. “Ancient DNA studies: new perspectives on old samples.” Genet Sel Evol 44.1 (2012): 21.
  • Poinar, Hendrik N., and A. Cooper. “Ancient DNA: do it right or not at all.” Science 5482 (2000): 1139.
  • Hoekstra, Hopi E., and Catherine L. Peichel. “Genes, Genomes, Phenotypes.” The Princeton Guide to Evolution (2013): 363.

數感宇宙探索課程,現正募資中!

文章難易度
劉筱蕾_96
7 篇文章 ・ 2 位粉絲
森林系出身,遵守農院傳統熱愛喝酒吃肉的動漫宅,在英國漂流完之後到美國Smithsonian Institution 繼續漂流。我的興趣是植物的演化與馴化。這個過程表現了生物被自然和人為條件「雕塑」的過程。希望能擔任生物與歷史研究間的橋樑,並把研究中的所學到的小故事跟科學觀念分享給大家。


0

0
0

文字

分享

0
0
0

遲來報到的質數——《數學,這樣看才精采》

天下文化_96
・2022/05/20 ・2868字 ・閱讀時間約 5 分鐘

2013 年國際數學界最轟動的新聞,應屬中國留美學者張益唐在孿生質數問題上所作出的突破。他個人的經歷更增加了整件事的傳奇性。

數學家張益唐。圖/VOA, 公有領域

張益唐雖然是北大數學系的高材生,但是 37 歲從美國普渡大學拿到博士學位之後,因與指導教授意趣不合,一時在學界無法發展,多年靠打工餬口。1999 年才好不容易至新罕布夏大學數學系任講師。在張益唐長期不得意的歲月裡,他雖然沒有發表什麼數學論文,但是也不曾喪失志氣,還是堅持研究自己喜歡的數學問題。

張益唐在 58 歲暴得大名,各種獎項與頭銜接踵而來,在最是少年逞英豪的數學世界裡,真成為一個異數。英國數學家哈代在他著名的小冊子《一個數學家的辯白》裡曾說:「我不知道有任何一項數學的主要進展,是由超過五十歲的人所啟動。」張益唐正好給哈代的偏見一個反例。

張益唐研究的是關於質數的性質。

一個自然數 p 是質數(也稱為素數)的條件有二:其一,p 大於 1;其二,除了 1 與 p 自己之外,沒有別的自然數能整除 p。全體質數可以從小到大排成一個數列 2, 3, 5, 7, 11, 13, …,通常把排在第 n 個位置的質數記作 pn。如果 pn 與 pn+1 相差為2,則稱質數對 (pn, pn+1) 為一對孿生質數,例如 3 與 5,5 與 7,11 與 13。

圖/envato elements

「孿生質數猜想」就說這樣的質數對有無窮多組。因為古希臘的歐幾里得在他的巨著《原本》裡,曾經證明質數有無窮多個,所以有人以為也是歐幾里得最先提出孿生質數猜想。其實不然,目前從文獻中所見, 1879 年英國數學家格萊舍(James Whitbread Lee Glaisher)在《數學信使》(Messenger of Mathematics)雜誌上的一篇文章,才是第一次將孿生質數猜想見諸文字。

張益唐的大突破是證明有無窮多組質數對 (pn, pn+1) 使得 pn 與 pn+1 相距不超過 7 千萬。

為什麼這是一個大突破呢?因為在張益唐之前,不管給出什麼固定數 m,完全不知道相差在 m 之內的質數對,到底是有限多個還是無窮多個。自從 2013 年 5 月他的成就在國際媒體上廣為流傳之後,世界上很多數學家努力要把 7千萬的差距往下壓縮,目前已經改善到 246 之內。但是距離孿生質數猜想所需的 2,還有巨大而艱困的鴻溝。

一般人從媒體得知張益唐對數學做出了重大貢獻,可能會好奇問他的結果有什麼用?這裡「用」當然是指實際的應用。其實,他的成果目前還只有純學術價值,與國計民生毫不相干。自從古希臘人辨識出質數,在兩千多年的時間裡,除了數學家關心質數外,質數一直缺乏任何應用價值。二十世紀電腦發達之後,才利用因數分解成質數的超級困難特性,產生了某些幾乎無法有效破解的密碼系統,廣泛的應用到金融、通信、資料保密上。

圖/envato elements

在中國古算裡缺席?

一個基本的數學概念,經歷了兩千多年的滄桑,才顯現出它的實用價值,這不是一件平凡的成就。因此,我們不得不佩服希臘人研究質數的真知灼見,並且感嘆十八世紀前的中國傳統數學裡卻不見質數的蹤跡。質數為什麼會在中國遲來報到?實在是一個令人費解的現象。

歐幾里得的《原本》約在西元前 300 年左右成書,是古希臘數學集大成之作。第七卷討論數的性質,是使用幾何的觀點來理解數。也就是從「單位」的概念出發,以度量直線段的方式引入「數」。第七卷定義 2 說「一個數是由許多單位合成的。」因此,1 代表單位而不算作「數」。定義 11 說「質數是只能為一個單位所量盡者。」定義 16 說「兩數相乘得出的數稱為面,其兩邊就是相乘的數。」所以質數只能是線,而不能稱為面。

歐幾里德畫像。圖/wiki, 公有領域

從這些定義可看出來,古希臘人所謂的「數」是依附在幾何的體系裡而得以操作。中國古代缺乏像《原本》這種按照邏輯次序鋪陳結果的數學書,通常是以解決實際問題的風貌來書寫,因此不太可能探討與闡述「數」的純粹性質。

例如,以《九章算術》為代表的中國古算裡,數字是與矩形、直角三角形的面積緊密相連結,但卻沒有像希臘人那樣分辨,有些數是可以表現為面,而有些數卻不可以。

也許古代中國缺乏一項歐幾里得所擁有的知識背景,因而造成了雙方關注問題的差異。古希臘有一位重要的哲人德謨克利特(Democritus),他主張萬物皆由不可分割的「原子」所構成。在「原子論」的知識背景下,數目 1 就不會與其他數目等量齊觀了,1 是「單位」,是數的「原子」。

圖/envato elements

中國古代沒有明確的「原子論」,《墨子.經說下》所說:「非半,進前取也。前,則中無為半,猶端也。」其中切得不能再切的「端」在《墨子.經說上》解釋為「端,體之無序而最前者也。」也只是類似「原子」的概念,並未發展到德謨克利特的思想程度。「原子論」思想的欠缺,或許是質數在中國古算裡缺席的因素之一。

難以望其項背

康熙敕編的《御製數理精蘊》(簡稱《數理精蘊》)是融合中西數學的百科全書,其中將質數譯為「數根」,並且在附表〈對數闡微〉中列有質數表。雖然質數已經在中國現身,但是數學家並沒有感到相見恨晚而深入探討。

晚清數學名家李善蘭在翻譯歐幾里得《原本》後九卷時,第一卷第一界說為:「數根者唯一能度而他數不能度」,也把質數翻譯成「數根」。

數學家李善蘭。圖/傅任敢 《中華教育界》 1936 -1937年, 公有領域

李善蘭很可能受《數理精蘊》的影響,而去研究判別給定數是否為質數的方法。英國傳教師偉烈亞力(Alexander Wylie)將其中一法,以給編輯的信公布在香港一家英文雜誌上,其敘述為「以 2 的對數乘給定的數,求出其真數,以 2 減同數,以給定數除餘數,若能除盡,則給定數為質數;若不能除盡,則不是質數。」

此命題常被稱為「中國定理」,其實是歐洲早已知道的「費馬小定理」的逆命題,該定理斷言若 p 為質數,則 2p − 2 ≣ 0 (mod p)。

其實李善蘭的方法並不永遠正確,例如:2341 − 2 是 341 的整倍數,但是 341 = 11 × 31 並不是一個質數。1872 年李善蘭在《中西聞見錄》報刊發表了〈考數根法〉一文,成為清末關於質數研究的重要成果,但是他並沒有收錄「中國定理」,應該是他已經知道命題並不為真。

要知道李善蘭與高斯的生命是有重疊的時期,因此當西方以質數為基礎所建立的數論,已經繁複深刻美不勝收之時,也許連李善蘭都不曾完全清楚中國落後的程度是多麼巨大!


數感宇宙探索課程,現正募資中!

天下文化_96
9 篇文章 ・ 7 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。