網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

不用觀落陰,DNA帶你重回人類大歷史現場 ——古代DNA追追追(上)

寒波_96
・2017/12/04 ・3158字 ・閱讀時間約 6 分鐘 ・SR值 563 ・九年級

生命逝去,但DNA 還在

DNA 是生物代代相傳的遺傳物質,藉由定序、比較 DNA 序列,遺傳學家能夠獲取大筆訊息。絕大多數 DNA 研究的樣本來自活跳跳的生物,可是古代 DNA(ancient DNA),卻是由死去多時的遺骸,甚至是幾萬、幾十萬年前的化石或沉積物中,取得研究材料。

古代 DNA 是近來發展最迅速,取得成果最豐富的學術領域之一。如帕波(Svante Pääbo)所言:「除了非常聰明的人之外,重大突破幾乎都伴隨重大的科技進展。」古代 DNA 的研究歷史,本身就是一部科技發展史。

帕波在 1980 年代初期,是瑞典一位鑽研免疫學的博士學生,在學習當年最先進的分子生物學之餘,仍保有對神秘古埃及的熱愛,於是異想天開的試圖結合兩者——取得埃及木乃伊的 DNA,沒想到還真的讓他成功了。他把成果正式發表後,成為史上最早研究人類古代 DNA 的論文,隨後帕波正式轉行,開創了古代 DNA 此一全新學門。[1]

從 1985 年到現在,30 多年來,生物學研究的方法不斷進步。帕波 1985 年發表論文時,PCR 仍尚未發明,要靠培養細菌大量複製 DNA;接下來有了 PCR,讓實驗方便、加速許多,帕波也靠著 PCR,率先取得尼安德塔人的粒線體 DNA。[2]

非常聰明的帕波。圖/取自 wiki

從 PCR 到次世代定序

PCR 的全名是聚合酶連鎖反應(polymerase chain reaction),無疑是劃時代的偉大發明,只要針對特定目標設計引子,就能抓到 DNA 片段,大量複製,接著加以定序,造福無數生物研究者。然而,即使證實可以用 PCR 取得古代 DNA,它一次只能定序幾百個核苷酸,要重現多達 30 億個核苷酸,如尼安德塔人基因組這般的龐然大物,PCR 實在力有未逮。

假如每次幾百、幾百的定序,30 億數量雖大,精衛填海也不是不可能。問題是,古代 DNA 的樣本來源有限,假如想定序古埃及法老圖坦卡門的基因組,只能從他的木乃伊取樣,可是 DNA 定序會摧毀樣本,難道為了得知圖坦卡門的基因組,要將如此珍貴的古文物毀滅嗎?

圖坦卡門黃金面具。圖/取自 wiki

至於尼安德塔人的遺骸,儘管不能說少,卻也是幾萬年前的寶貴化石,限量是很殘酷的。何況生物去世後,DNA 就會開始分解、破壞,所以很多古代樣本中,其實早已沒有 DNA 留存。另一方面,古代樣本被現代 DNA 汙染的問題,PCR 也不太容易處理。

要是沒有次世代定序(next generation sequencing,簡稱 NGS),不可能發展基因體學,也不會有如此豐收的古代 DNA 研究成果。次世代定序大致上,會將樣本內的 DNA 斷成小段,然後將符合標準的一網打盡,通通定序,再拼湊回完整的基因組。對於古代 DNA 而言,由於其年久失修,本來就會斷成小片段,因此十分適合次世代定序。

修改自:Ryan Somma@Flickr

帕波為了取得尼安德塔基因組,引進當時最先進的次世代定序技術,順利克服古代 DNA 樣本稀缺,以及容易汙染兩大問題,終於在 2010 年,發表了第一個尼安德塔人的基因組。[3]

沒有古代 DNA,你不可能會知道的人類大歷史

尼安德塔人於約 4 萬年前消失之前,大部份住在歐洲,至少延續 40 萬年之久。他們與智人的祖先有過混血嗎?尼安德塔基因組告訴我們,不但歐洲人有,而且非洲以外的人通通都有!

不只如此,2010 年除了尼安德塔人以外,帕波戰隊還發表另一個古代基因組:來自西伯利亞南方的丹尼索瓦洞穴,樣本是一位小蘿莉的一塊小指骨頭,根本看不出型態,可是其中卻蘊藏著她極為完整的基因組。令人大驚的是,她不是智人,也不是尼安德塔人,是一種沒見過的全新古人類,因此以其發現地點,被稱為丹尼索瓦人。

尼安德塔人、丹尼索瓦人、智人,與胡瑟裂谷人四者,細胞核 DNA 間的親緣關係,與估計的分化年代。圖/改編自 〈Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins

過往所有古人類,像是直立人、北京人、澎湖原人,都是先找到化石,再描述型態,最後定義是什麼人;丹尼索瓦人卻是史上第一個,以 DNA 得知、定義的全新型號(不過沒有正式命名新種)。這反映古代 DNA 這門領域已經成熟,果然之後幾年,新發現源源不絕。

後來又有一位住在丹尼索瓦洞穴的尼安德塔人,其基因組被完整定序 [4];而克羅埃西亞的文迪亞洞穴,此一提供過第一版尼安德塔基因組的遺址,也再度貢獻另一個高品質尼安德塔基因組 [5]。比較古人類的 DNA 序列,讓我們建構出大家的遺傳史:尼安德塔人與丹尼索瓦人比較親近,兩者於 40 多萬年前分家;而智人與他們的共同祖先,生活在 55 到 77 萬年前。

文迪亞與丹尼索瓦洞穴的位置。圖/改編自 The Geopolitical Realities of Eurasia

智人,重新定義

除了分家的年代以外,多次上演的遺傳交流也讓人感到有趣。如今非洲族群以外,每個人的基因組都有約 2% 源自尼安德塔人(以及丹尼索瓦人),表示我們的祖先曾經與尼安德塔人發生關係,融入過他們的遺傳物質。然而這樣的狀況顯然不只發生過一兩次,目前看來不同的人類族群間,曾經多次發生類似的情慾流動;而我們已知的,仍然十分有限。

F10
已知的古人類間情慾流動事件。圖/取自〈Evidence mounts for interbreeding bonanza in ancient human species

假如我們與尼安德塔人、丹尼索瓦人是不同物種,那麼彼此之間能夠混血,似乎動搖了傳統「生物種(biological species)」的定義:「同一種生物,能夠一起生育具備繼續生殖能力的後代,不同種之間不行」。值得重視的是,近年來基因體學普及後,發現所謂的「跨物種遺傳交流」並非特例,這些新的資訊有什麼意義,我們對生命世界的認知該如何改變,都需要新的想法,有關議題仍在發展。

另一方面,幾萬年前發生的遠古混血,對於智人各族群歷年來的演化,甚至時至幾萬年後的今日,仍在許多方面影響著現代人。最有名的例子,莫過於青藏高原的族群,配備源自丹尼索瓦人的基因 EPAS1,有助其適應高海拔。另外像是膚色、髮色、心理狀態、免疫反應等等特徵,已經滅亡幾萬年的古人類,遺留的遺傳訊息仍持續發揮實質影響力 [6]。相關研究方興未艾,而這些事情,假如沒有古代 DNA、古代基因組,都不可能得知。

古代 DNA,就像凍結在時空中的切片一般,讓我們能夠重回特定的歷史現場。除了滅絕多時的尼安德塔人、丹尼索瓦人,更多古代 DNA 的研究對象,其實是我們智人自己。

To Be Continued……

下集這裡走:啊~ 追著你的人、追著你從哪來、追著你的發展歷史——古代DNA追追追(下)

延伸閱讀:

參考文獻:

  1. Pääbo, S. (1985). Molecular cloning of ancient Egyptian mummy DNA. nature, 314(6012), 644-645.
  2. Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., & Pääbo, S. (1997). Neandertal DNA sequences and the origin of modern humans. Cell, 90(1), 19-30.
  3. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., … & Hansen, N. F. (2010). A draft sequence of the Neandertal genome. Science, 328(5979), 710-722.
  4. Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., … & Li, H. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505(7481), 43-49.
  5. Prüfer, K., de Filippo, C., Grote, S., Mafessoni, F., Korlević, P., Hajdinjak, M., … & Reher, D. (2017). A high-coverage Neandertal genome from Vindija Cave in Croatia. Science, eaao1887.
  6. Dannemann, M., & Kelso, J. (2017). The Contribution of Neanderthals to Phenotypic Variation in Modern Humans. The American Journal of Human Genetics, 101(4), 578-589.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

 

文章難易度
寒波_96
152 篇文章 ・ 370 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。


0

9
4

文字

分享

0
9
4

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》