0

0
0

文字

分享

0
0
0

不用觀落陰,DNA帶你重回人類大歷史現場 ——古代DNA追追追(上)

寒波_96
・2017/12/04 ・3158字 ・閱讀時間約 6 分鐘 ・SR值 563 ・九年級

生命逝去,但DNA 還在

DNA 是生物代代相傳的遺傳物質,藉由定序、比較 DNA 序列,遺傳學家能夠獲取大筆訊息。絕大多數 DNA 研究的樣本來自活跳跳的生物,可是古代 DNA(ancient DNA),卻是由死去多時的遺骸,甚至是幾萬、幾十萬年前的化石或沉積物中,取得研究材料。

古代 DNA 是近來發展最迅速,取得成果最豐富的學術領域之一。如帕波(Svante Pääbo)所言:「除了非常聰明的人之外,重大突破幾乎都伴隨重大的科技進展。」古代 DNA 的研究歷史,本身就是一部科技發展史。

帕波在 1980 年代初期,是瑞典一位鑽研免疫學的博士學生,在學習當年最先進的分子生物學之餘,仍保有對神秘古埃及的熱愛,於是異想天開的試圖結合兩者——取得埃及木乃伊的 DNA,沒想到還真的讓他成功了。他把成果正式發表後,成為史上最早研究人類古代 DNA 的論文,隨後帕波正式轉行,開創了古代 DNA 此一全新學門。[1]

從 1985 年到現在,30 多年來,生物學研究的方法不斷進步。帕波 1985 年發表論文時,PCR 仍尚未發明,要靠培養細菌大量複製 DNA;接下來有了 PCR,讓實驗方便、加速許多,帕波也靠著 PCR,率先取得尼安德塔人的粒線體 DNA。[2]

-----廣告,請繼續往下閱讀-----
非常聰明的帕波。圖/取自 wiki

從 PCR 到次世代定序

PCR 的全名是聚合酶連鎖反應(polymerase chain reaction),無疑是劃時代的偉大發明,只要針對特定目標設計引子,就能抓到 DNA 片段,大量複製,接著加以定序,造福無數生物研究者。然而,即使證實可以用 PCR 取得古代 DNA,它一次只能定序幾百個核苷酸,要重現多達 30 億個核苷酸,如尼安德塔人基因組這般的龐然大物,PCR 實在力有未逮。

假如每次幾百、幾百的定序,30 億數量雖大,精衛填海也不是不可能。問題是,古代 DNA 的樣本來源有限,假如想定序古埃及法老圖坦卡門的基因組,只能從他的木乃伊取樣,可是 DNA 定序會摧毀樣本,難道為了得知圖坦卡門的基因組,要將如此珍貴的古文物毀滅嗎?

圖坦卡門黃金面具。圖/取自 wiki

至於尼安德塔人的遺骸,儘管不能說少,卻也是幾萬年前的寶貴化石,限量是很殘酷的。何況生物去世後,DNA 就會開始分解、破壞,所以很多古代樣本中,其實早已沒有 DNA 留存。另一方面,古代樣本被現代 DNA 汙染的問題,PCR 也不太容易處理。

要是沒有次世代定序(next generation sequencing,簡稱 NGS),不可能發展基因體學,也不會有如此豐收的古代 DNA 研究成果。次世代定序大致上,會將樣本內的 DNA 斷成小段,然後將符合標準的一網打盡,通通定序,再拼湊回完整的基因組。對於古代 DNA 而言,由於其年久失修,本來就會斷成小片段,因此十分適合次世代定序。

-----廣告,請繼續往下閱讀-----
修改自:Ryan Somma@Flickr

帕波為了取得尼安德塔基因組,引進當時最先進的次世代定序技術,順利克服古代 DNA 樣本稀缺,以及容易汙染兩大問題,終於在 2010 年,發表了第一個尼安德塔人的基因組。[3]

沒有古代 DNA,你不可能會知道的人類大歷史

尼安德塔人於約 4 萬年前消失之前,大部份住在歐洲,至少延續 40 萬年之久。他們與智人的祖先有過混血嗎?尼安德塔基因組告訴我們,不但歐洲人有,而且非洲以外的人通通都有!

不只如此,2010 年除了尼安德塔人以外,帕波戰隊還發表另一個古代基因組:來自西伯利亞南方的丹尼索瓦洞穴,樣本是一位小蘿莉的一塊小指骨頭,根本看不出型態,可是其中卻蘊藏著她極為完整的基因組。令人大驚的是,她不是智人,也不是尼安德塔人,是一種沒見過的全新古人類,因此以其發現地點,被稱為丹尼索瓦人。

尼安德塔人、丹尼索瓦人、智人,與胡瑟裂谷人四者,細胞核 DNA 間的親緣關係,與估計的分化年代。圖/改編自 〈Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins

過往所有古人類,像是直立人、北京人、澎湖原人,都是先找到化石,再描述型態,最後定義是什麼人;丹尼索瓦人卻是史上第一個,以 DNA 得知、定義的全新型號(不過沒有正式命名新種)。這反映古代 DNA 這門領域已經成熟,果然之後幾年,新發現源源不絕。

-----廣告,請繼續往下閱讀-----

後來又有一位住在丹尼索瓦洞穴的尼安德塔人,其基因組被完整定序 [4];而克羅埃西亞的文迪亞洞穴,此一提供過第一版尼安德塔基因組的遺址,也再度貢獻另一個高品質尼安德塔基因組 [5]。比較古人類的 DNA 序列,讓我們建構出大家的遺傳史:尼安德塔人與丹尼索瓦人比較親近,兩者於 40 多萬年前分家;而智人與他們的共同祖先,生活在 55 到 77 萬年前。

文迪亞與丹尼索瓦洞穴的位置。圖/改編自 The Geopolitical Realities of Eurasia

智人,重新定義

除了分家的年代以外,多次上演的遺傳交流也讓人感到有趣。如今非洲族群以外,每個人的基因組都有約 2% 源自尼安德塔人(以及丹尼索瓦人),表示我們的祖先曾經與尼安德塔人發生關係,融入過他們的遺傳物質。然而這樣的狀況顯然不只發生過一兩次,目前看來不同的人類族群間,曾經多次發生類似的情慾流動;而我們已知的,仍然十分有限。

F10
已知的古人類間情慾流動事件。圖/取自〈Evidence mounts for interbreeding bonanza in ancient human species

假如我們與尼安德塔人、丹尼索瓦人是不同物種,那麼彼此之間能夠混血,似乎動搖了傳統「生物種(biological species)」的定義:「同一種生物,能夠一起生育具備繼續生殖能力的後代,不同種之間不行」。值得重視的是,近年來基因體學普及後,發現所謂的「跨物種遺傳交流」並非特例,這些新的資訊有什麼意義,我們對生命世界的認知該如何改變,都需要新的想法,有關議題仍在發展。

另一方面,幾萬年前發生的遠古混血,對於智人各族群歷年來的演化,甚至時至幾萬年後的今日,仍在許多方面影響著現代人。最有名的例子,莫過於青藏高原的族群,配備源自丹尼索瓦人的基因 EPAS1,有助其適應高海拔。另外像是膚色、髮色、心理狀態、免疫反應等等特徵,已經滅亡幾萬年的古人類,遺留的遺傳訊息仍持續發揮實質影響力 [6]。相關研究方興未艾,而這些事情,假如沒有古代 DNA、古代基因組,都不可能得知。

-----廣告,請繼續往下閱讀-----

古代 DNA,就像凍結在時空中的切片一般,讓我們能夠重回特定的歷史現場。除了滅絕多時的尼安德塔人、丹尼索瓦人,更多古代 DNA 的研究對象,其實是我們智人自己。

To Be Continued……

下集這裡走:啊~ 追著你的人、追著你從哪來、追著你的發展歷史——古代DNA追追追(下)

延伸閱讀:

-----廣告,請繼續往下閱讀-----

參考文獻:

  1. Pääbo, S. (1985). Molecular cloning of ancient Egyptian mummy DNA. nature, 314(6012), 644-645.
  2. Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., & Pääbo, S. (1997). Neandertal DNA sequences and the origin of modern humans. Cell, 90(1), 19-30.
  3. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., … & Hansen, N. F. (2010). A draft sequence of the Neandertal genome. Science, 328(5979), 710-722.
  4. Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., … & Li, H. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505(7481), 43-49.
  5. Prüfer, K., de Filippo, C., Grote, S., Mafessoni, F., Korlević, P., Hajdinjak, M., … & Reher, D. (2017). A high-coverage Neandertal genome from Vindija Cave in Croatia. Science, eaao1887.
  6. Dannemann, M., & Kelso, J. (2017). The Contribution of Neanderthals to Phenotypic Variation in Modern Humans. The American Journal of Human Genetics, 101(4), 578-589.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

 

文章難易度
寒波_96
193 篇文章 ・ 977 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

4
0

文字

分享

0
4
0
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
193 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
誰在馬丘比丘終老?來自印加帝國各地,還有遙遠的亞馬遜
寒波_96
・2023/09/13 ・3774字 ・閱讀時間約 7 分鐘

馬丘比丘(Machu Picchu)可謂世界知名的遺跡,觀光客前仆後繼。後世外人神秘的想像下,這兒其實是印加帝國王室冬季渡假的離宮,平時有一批工作人員長住。公元 2023 年發表的論文,透過古代 DNA 分析,證實這群人來自南美洲各地。

馬丘比丘,鍵盤旅遊常見的俯視視角。圖/Eddie Kiszka/Pexels, CC BY-SA

印加王室專屬的服務團隊

馬丘比丘位於現今的秘魯南部,安地斯山區海拔 2450 公尺之處,距離印加帝國的首府庫斯科(Cusco)約 75 公里,只有幾天路程。此處當年是一片完整的園區,足以容納數百人,王室成員會在冬天造訪(南半球的冬天,就是台灣所屬北半球的夏季月份)。

即使是使用淡季,馬丘比丘也住著不少工作人員;從遺留至今的墓葬,可以見到他們的存在。園區由 15 世紀初開始營業,到印加帝國 16 世紀滅亡為止,此後與外界斷絕聯繫數百年,一直到 1912 年,美國調查隊再度「發現」這處世界奇觀。

馬丘比丘總共留下 107 座墓葬,174 位長眠者。這群人顯然不是印加王室,應該是歷代的服務團隊。以前有許多證據,根據不同手法與思維,支持馬丘比丘的工作員來歷很廣。例如這兒的陶器,各地風格都有。

-----廣告,請繼續往下閱讀-----

誰在馬丘比丘工作呢?發跡於庫斯科的印加帝國,後來成為廣大疆域的征服者,有一套「米塔(Mita)」制度調用各地的資源與人力。這套韭菜輪替,後來被西班牙殖民者沿用加改造,成為恐怖的剝削機器,也算是南美洲國家現今社會問題的一個根源。

然而,馬丘比丘的工作人員應該不是米塔制度的服役者,而是「亞納柯納(yanacona)」。他們是王室專屬的服務人員,來自帝國各地,小時候就離開家鄉,接受培育以服務王室。

印加帝國的地理格局。圖/參考資料1

來自印加各地,還有帝國以外的亞馬遜

這項研究由馬丘比丘的墓葬取得 34 個古代基因組,以及附近烏魯班巴谷(Urubamba Valley)的 34 位古代居民樣本,他們代表當地原本的鄉民。

分析發現,印加帝國能接觸到的地區,當地特色的血緣都能在馬丘比丘見到。唯一例外是帝國最南端,現今智利中部、阿根廷西部那一帶。這使得馬丘比丘,成為印加帝國 DNA 多樣性最高的地點。

-----廣告,請繼續往下閱讀-----

但是我不覺得,這等於馬丘比丘存在多樣性很高的「遺傳族群」。分析對象中只有一對母女,其他人都沒有血緣關係。這群人的 DNA 差異大,是因為持續有一位又一位孤立的人,從不同地方被帶進來,整群人只能算特殊個體的集合。

不過遠離家鄉,服務終生的亞納柯納們,彼此間還是可以結婚生小孩的。

性別方面有細微的差異。整體而言,男生具備較多安地斯高地的血緣,女生則配備更多高地以外族群的血緣。一個因素是,有些女生來自更遠的地方,例如文化有別的亞馬遜地區。

印加帝國對亞馬遜的政治勢力不是征服關係,似乎大致上對等。有些亞馬遜的女生大概出於交流目的,來到印加帝國。至少長眠於馬丘比丘的這幾位,生前受到的待遇看來不錯。

-----廣告,請繼續往下閱讀-----
馬丘比丘長眠者的年代與血緣組成。圖/參考資料1

山區到更高山區的情慾交流

對於更在地的族群調查,發現一件有趣的事。庫斯科附近的人群,以「秘魯南部高地」血緣為主,可以視為長居本地的血緣。一部分人卻也能偵測到,與更高山上之「的的喀喀湖(Titicaca)」的居民共享血緣。

庫斯科與的的喀喀湖,兩個地區有點距離,考古學證據指出,早於 2500 年前兩地間就存在交流。而遺傳學分析則支持,兩地存在情慾流動;可惜現有樣本,不太能精確判斷交流發生的年代。

來自亞馬遜的媽媽,女兒,爸爸

這批調查對象中,我覺得長眠於馬丘比丘的那對母女最有意思,值得特別思考。這對母女都是百分之百的亞馬遜西北部血緣,長眠於同一墓穴,兩者的關係在當時有被強調。

「亞馬遜」的面積妖獸大,印加帝國最有機會接觸的,應該是距離安地斯東方不遠的區域,也就是亞馬遜的西部和西北部。不論如何,亞馬遜有自己的一套,印加帝國與其有所交流,不過始終無法將其納入統治。

-----廣告,請繼續往下閱讀-----

征服到山與海的盡頭!以及雨林的邊緣……

馬丘比丘長眠者的鍶穩定同位素比值。圖/參考資料1

根據牙齒中鍶的穩定同位素,可以判斷一個人小時候在哪兒長大。媽媽 MP4b 成長於亞馬遜地區,表示她在長出恆齒後才抵達安地斯。

她的女兒 MP4f 則無法判斷具體地點,不過應該位於安地斯山區。兩人後來都在馬丘比丘服務,去世後長眠於此。

女兒沒有其餘地區血緣的特色,意謂女兒的爸,也配備百分之百的亞馬遜西北部 DNA,只是在馬丘比丘墓葬中看不到他。

-----廣告,請繼續往下閱讀-----

印加帝國興起,亞馬遜扮演什麼角色?

年代方面,媽媽算是長眠於馬丘比丘最早的一批人,處於印加建國的初期,甚至有可能早於開國之日。

依照歷史敘事,印加帝國始於「印加太祖」帕查庫特克(Pachacuti)擊敗昌卡人(Chanka)。印加勢力征服烏魯班巴谷以後,才有機會建設其上方的馬丘比丘。而印加太祖登基的年份為 1438 年。

然而,針對馬丘比丘遺骸的放射性碳同位素定年(碳14),指出兩人的年代或許早於 1420 年。考古學家因此懷疑,印加帝國建國的實際年代比 1438 年更早,也許早在 1420 年已經完成建國大業。

馬丘比丘最早長眠者的年代,似乎比歷史敘事中,印加帝國建國的 1438 年更早。圖/參考資料4

亞馬遜西北部長大的媽媽 MP4b 之年代,剛好介於這段時期。不論如何,這都是明確的證據,支持印加帝國建國之初,和亞馬遜之間有一定程度的正面交流。而女兒的爸,身份也引人好奇。

-----廣告,請繼續往下閱讀-----

他是當時亞馬遜政權派往印加的政治代表,或是軍事團助拳人嗎?還是替印加王室服務的商人,或是作戰的傭兵?他是在哪個地方,什麼情境下,與來自家鄉的女性生下女兒?最後,他本人最終的命運如何?

馬丘比丘在這對母女以後,至少還有四位純亞馬遜西北部血緣的女性長眠,延續到印加帝國的最後時期,當中至少兩位是在安地斯山區長大,和前輩女兒 MP4f 一樣。印加王室與亞馬遜的人口交流,貫串整段帝國時光。

古代 DNA 的分析,有相當客觀的套路,但是從中能牽引出的主觀議題千變萬化,非常有意思。

延伸閱讀

參考資料

  1. Salazar, L., Burger, R., Forst, J., Barquera, R., Nesbitt, J., Calero, J., … & Fehren-Schmitz, L. (2023). Insights into the genetic histories and lifeways of Machu Picchu’s occupants. Science Advances, 9(30), eadg3377.
  2. Who lived at Machu Picchu? DNA analysis shows surprising diversity at the ancient Inca palace
  3. Ancient DNA reveals diverse community in ‘Lost City of the Incas’
  4. Burger, R. L., Salazar, L. C., Nesbitt, J., Washburn, E., & Fehren-Schmitz, L. (2021). New AMS dates for Machu Picchu: results and implications. Antiquity, 95(383), 1265-1279.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 977 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

3
1

文字

分享

0
3
1
黔金絲猴物種起源,竟是近親雜交形成?
寒波_96
・2023/08/11 ・3267字 ・閱讀時間約 6 分鐘

新物種如何誕生,是演化最重要的主題之一,正如達爾文代表作的書名《物種起源》(The Origin of Species,也常譯作《物種源始》)。隨著基因體學帶來愈來愈多新知識,人們對物種的想法也不斷演變。

2023 年發表的一項研究調查多種金絲猴的基因組,意外發現有一種金絲猴,竟然直接由不同物種合體形成。這是靈長類的第一個案例,動物中也相當少見。

黔金絲猴。圖/Current status and conservation of the gray snub-nosed monkey Rhinopithecus brelichi (Colobinae) in Guizhou, China

五種金絲猴的親戚關係

金絲猴(snub-nosed monkey,學名 Rhinopithecus,也稱為仰鼻猴)主要住在中國西南部和東南亞,目前有五個物種。牠們的中文名字依照地名,英文名字則多半根據顏色。

古時候金絲猴的分布範圍更廣,像是台灣也曾經存在過,如今卻只剩下化石。現今五個物種分別為:

-----廣告,請繼續往下閱讀-----

*(雲南)滇金絲猴(black-white 黑白,學名 Rhinopithecus bieti

* 緬甸金絲猴(black 黑,學名 Rhinopithecus strykeri

*(四川)川金絲猴(golden 金,學名 Rhinopithecus roxellana

*(貴州)黔金絲猴(gray 灰,學名 Rhinopithecus brelichi

-----廣告,請繼續往下閱讀-----

* 越南金絲猴(Tonkin 越南東京,學名 Rhinopithecus avunculus

五種金絲猴。圖/參考資料1

比對五款吱吱的 DNA 差異,可知滇、緬甸金絲猴的親戚關係最近,川金絲猴則和黔金絲猴較近,但是黔金絲猴明顯介於兩者之間。黔金絲猴在自己獨特的變異之外,僅管基因組整體更接近川金絲猴,也有不少部分和滇、緬甸金絲猴相似。

見到不同物種之間共享血緣,最直覺的想法是,兩者的祖先發生過遺傳交流。但是詳細比對後,研究猿認為還有機率更高的可能性。

最滑順的劇本是,大約 197 萬年前,滇、緬甸金絲猴的共同祖先,和川金絲猴分家;又經過十幾萬年,約莫 187 萬年前,兩群金絲猴再度合體,形成一個全新的支系,也就是黔金絲猴的祖先;後來滇、緬甸金絲猴再衍生出兩個物種。

-----廣告,請繼續往下閱讀-----

這形成如今我們見到的狀態:黔金絲猴大約 75% 血緣來自川金絲猴,25% 源於滇、緬甸金絲猴的共同祖先。

四種金絲猴的親戚關係,與遺傳交流。圖/參考資料1

靈長類首見,雜交直接形成新物種

或許有人會疑惑,看起來都是共享 DNA 變異,上述說法和「不同物種之間,發生過遺傳交流」有何差別?

差別在於,所謂「不同物種之間」,指的是新物種已經誕生一段時間以後,彼此間又發生 DNA 交流,這個一點都不稀奇。例如 A、B 物種間發生關係,變成 A 的遺傳背景下,又有一點 B 血緣的物種。

但是黔金絲猴的狀況是,新物種之所以誕生,就是不同物種直接合體所致。例如 A、B 物種發生關係,衍生出差異更大,不是 A 也不是 B,足以認定為新物種的 C。

-----廣告,請繼續往下閱讀-----

假如重建的劇本為真,這就是首度在靈長類中觀察到,不同物種直接合體形成新物種的「hybrid speciation」。可以翻譯為「雜交種化」,不過「合體種化」似乎更直觀。

哥倫比亞猛獁,想像畫面。圖/wiki

經由兩個物種雜交,直接產生新物種的方式,植物較為常見,哺乳類動物極少。此前古代 DNA 研究認為,已經滅絕的美洲大象「哥倫比亞猛獁」(Columbian mammoth,學名 Mammuthus columbi)是不同猛獁象合體產生的新物種,但是證據沒那麼充分。

或許沒有那麼罕見?

直接雜交產生新物種,會很難想像嗎?仔細想想,金絲猴的案例可能沒那麼驚悚,或許還有某種程度的普遍性。

回到當初的情境,所謂「兩個物種」在當時其實只分家十萬年而已,差異應該仍很有限。是又累積 180 萬年的分歧到今日,才顯得親戚之間明顯有別。

-----廣告,請繼續往下閱讀-----

這邊 197 萬、187 萬、十萬年都是根據 DNA 變異的估計,實際數字未必如此。不過順序大概差不太多,就是首先分出兩群,很短的時間後又合體產生第三群,再經歷好幾倍的時間直到現在。

假如川金絲猴不幸滅團,缺乏樣本可供比較,那麼黔金絲猴與另外兩種近親,看起來就單純是 187 萬年前分家。

值得注意的是,我們能判斷演化樹上的不同分枝曾經合流,來自對樹形的比對。假如川金絲猴不幸滅團,這棵演化樹中我們只剩下三個物種的樣本,便會判斷黔金絲猴是跟另外兩種親戚分家而成,卻完全不會察覺有過合體種化。

這麼想來,雜交誕生新物種的現象,或許沒那麼罕見,只是時光抹去了許多痕跡。

血緣融合,猴毛也是奇美拉

另一有趣的發現是毛色演化。金絲猴現今四個物種,外表的毛色為一大差異。毛色與深色素有關,深色素愈多,毛色會顯得愈黑,相對則是愈淡,會呈現白毛、黃毛、金毛。

-----廣告,請繼續往下閱讀-----

身為不同演化支系合體的產物,黔金絲猴的毛色也混合兩邊的風格。頭和肩膀的淺色,類似川金絲猴;手腳的深色,則類似滇、緬甸金絲猴。

基因組合體以後,兼具兩群影響毛色的基因,形成混合的毛色搭配。圖/參考資料1

金絲猴毛的顏色深淺,取決於不同色素的相對比例。棕黑色素(pheomelanin)愈高,毛色愈淡;真黑素(eumelanin)愈高,毛色愈深。例如猴毛中含有大量棕黑色素、少量真黑素,便會呈現金毛。

很多基因有機會影響色素與毛色。分析得知金絲猴們有 5 個基因和毛色關係密切,黔金絲猴的基因組來自兩個支系,比對發現,三個基因 SLC45A2MYO7AELOVL4 繼承自川金絲猴,兩個基因 PAHAPC 則源於滇、緬甸金絲猴。

這些基因如何影響毛色,仍有許多不明朗之處。最明確知道的是,SLC45A2 基因表現降低,會使得棕黑色素產量上升,令顏色變淡。PAH 基因表現增加,可以讓顏色加深。

-----廣告,請繼續往下閱讀-----

同一隻金絲猴不同部位的細胞,同一批基因經由不同調控,就能控制毛色深淺。

這篇文章介紹的演化基因體學分析手法,對許多人大概不算容易,但是這些研究帶來的趣味,倒是不難體會。

延伸閱讀

參考資料

  1. Wu, H., Wang, Z., Zhang, Y., Frantz, L., Roos, C., Irwin, D. M., … & Yu, L. (2023). Hybrid origin of a primate, the gray snub-nosed monkey. Science, 380(6648), eabl4997.
  2. The Primate Genome Project unlocks hidden secrets of primate evolution
  3. Biggest ever study of primate genomes has surprises for humanity
  4. Hundreds of new primate genomes offer window into human health—and our past
  5. van der Valk, T., Pečnerová, P., Díez-del-Molino, D., Bergström, A., Oppenheimer, J., Hartmann, S., … & Dalén, L. (2021). Million-year-old DNA sheds light on the genomic history of mammoths. Nature, 591(7849), 265-269.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 977 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。