0

6
2

文字

分享

0
6
2

十萬年灰狼DNA,替狗的起源帶來什麼啟示?

寒波_96
・2022/07/29 ・4108字 ・閱讀時間約 8 分鐘

由化石、遺骸等材料獲取古代 DNA,是探索生物遺傳史的利器。2022 年一篇論文報告大量古代狼的基因組,探討狼群的變遷。

狗源自於狼,對古代狼的研究,是否也能釐清狗在哪兒馴化?盡管這項研究沒有提供直接的明確答案,依然帶來有用的線索。

未滿 2.3 萬年的狼,血緣主要源自西伯利亞

中文稱之為「狼」的動物有好幾款,狗的祖先是灰狼(grey wolf,學名 Canis lupus),主要住在北美洲,以及歐亞大陸靠北邊的區域,歐洲、中東、中亞、北亞、東亞。這項研究獲得 66 個新的古代基因組,加上之前發表過一共 72 個,覆蓋率介於 0.02 到 13。

最古老的樣本距今約 10 萬年,大部分地點位於歐洲、西伯利亞的東北部、北美洲。獲得每一個地區,不同年代的大批樣本,便能比較狼在不同時間、空間的血緣變化。

-----廣告,請繼續往下閱讀-----

不同地區一直都有狼,假如各地的狼不太交流,那麼每一個地區的狼,遺傳上都會更接近同一地區,更早與更晚的狼,和其他地區的同類差異較大。然而比對得知,狼的血緣主要取決於時代,而非地點。

比方說歐洲 1 萬年前的狼,和 1 萬年前的美洲同類比較近,卻和 3 萬年前的歐洲狼比較疏遠。由此推論,古代各地狼群間的遺傳流動應該非常頻繁,沒有某地狼群孤立太久。

取樣位置。以北極點為中心的視角,歐洲、西伯利亞、北美洲環繞在外,和台灣一般習慣的地圖視角很不一樣。圖/參考資料 1

最明確的案例發生在距今 2.3 到 2.8 萬年前。比 2.3 萬年更晚的狼,和比 2.8 萬年更早的狼,遺傳上各自形成較近的一群。這是由於源自西伯利亞的血緣,向其他地區單向輸出所致。

晚於 2.3 萬年,各地的狼有很大比例血緣,能追溯到 2 萬多年前的西伯利亞狼群。歐洲古代狼群仍保留 10 到 40% 更早的血緣,沒有被完全取代。等到最近 1 萬年內,歐洲狼群的 DNA 又往西伯利亞、中國流動。

-----廣告,請繼續往下閱讀-----

北美洲換過新血,再度與郊狼混血

相比之下,北美洲早於 2.3 萬年的血緣完全消失不見,徹底換上一批新血,和當地更早的同類可以說是不同的遺傳族群,光憑化石根本無從得知。

歐洲、西伯利亞、北美洲狼群,不同年代的遺傳關係。圖/參考資料 1

北美洲另有一個犬科物種:郊狼(coyote,學名 Canis latrans),和灰狼可以生產後代。兩者遺傳上約在 70 萬年前分家,至少 10 萬年前便陸續有遺傳交流。

北美洲晚於 2.3 萬年的狼,血緣皆能追溯到西伯利亞近期的移民;如今北美洲的狼群,可以視為前述血緣加上 10 到 20% 郊狼的合體。換句話說,北美洲比較早的狼就有郊狼血緣,全滅換過一批以後,很快又與郊狼混血。

北美洲的狼皆配備郊狼成分,而歐亞大陸所有的狼都缺乏,可見狼群向美洲的遷徙是單行道,只有從亞洲向美洲移民,沒有再回來的。

-----廣告,請繼續往下閱讀-----
各時間、空間基因組的遺傳組成。圖/參考資料 1

狼遺傳適應的存在感迅速躍升,比狗狗馴化更早

生物的 DNA 不斷改變,和外界環境互動之下,有些遺傳變異顯得有利,存在感上升。根據論文的分析辦法,在最近 10 萬年狼的基因組上偵測到 24 處遺傳適應。

最強烈的訊號位於第 25 號染色體的 IFT88 基因附近,距今 3 到 4 萬年前間,從 0% 直接躍升為 100%。此一基因和頭骨型態有關,但是不清楚對狼與狗的具體作用。其下游 2.5 Mb 處還偵測到另一個強烈訊號,2 到 4 萬年前間躍升為 100%。

除此之外還有幾處 DNA 變異,於 2 到 4 萬多年前存在感明顯增加。據此判斷在那個時期,各地的狼群有不少遺傳交流。而這些可能有利於狼適應的遺傳變異,狗狗也有配備,推測這些情慾流動的時刻,或許早於狗狗馴化的時間點。

所以狗到底什麼時候馴化的?多年下來也沒有一個很明確的答案,加上新研究的證據還是沒有,但是真相或許已經呼之欲出。

-----廣告,請繼續往下閱讀-----

狗狗馴化真的是超級難題

狗的馴化是個超級難題,不是缺乏證據,而是比起其他馴化生物,狗明明有一大堆證據,卻互相矛盾,無法更加釐清問題。

貓的馴化研究比狗少很多,但是答案清楚很多。圖/npr

每一種馴化生物,都有野生的近親。野生近親中的一群後來衍生出馴化生物,因此馴化生物的直系祖先那一群,在演化樹上會較為接近馴化生物。例如野生的斑貓(Felis silvestris)有 5 個亞種,其中的非洲野貓(Felis silvestris lybica)衍生出馴化貓。

狗的狀況完全不一樣。將狗與狼擺在一塊畫演化樹,所有的狗自成一群,各地狼群也被歸類為另一群,兩群平行。過往通常解釋為:馴化為狗的那群狼已經滅團,所以我們見不到和狗在同一群的狼。

然而,這回加入大批不同時間、空間的古狼以後,狗的直系祖先狼依然不見蹤影。最接近狗狗的是距今 1.3 到 2.3 萬年前的西伯利亞古狼(也就是隨後各地所有狼的祖先),可是牠們們依然不是狗的直系祖先,是平行關系。

-----廣告,請繼續往下閱讀-----

由此推敲,狗狗的直系祖先狼,和西伯利亞古狼在遺傳上應該早於 2.3 萬年前分家,否則演化樹上,狗就會在一群狼的內部。但是應該沒有早太多,因為當時兩者的差異還很有限,比其他地區的狼更小。

一篇尚未正式發表的論文,獲得日本古代灰狼的基因組。演化樹上除了狗一群、狼一群以外,日本狼的位置比所有狼都更接近狗。考量到日本是隔絕於東北亞海外的島,此一發現值得玩味。圖/biorxiv

最初的狗於「東方」馴化?

仔細比較,狗的血緣更接近如今地理上偏歐亞大陸東方的狼,論文藉此推論,狗的馴化應該發生在「東方」,但是具體位置不明。

如今所有的狗,都缺乏早於 2.3 萬年歐洲狼的成分,歐洲為起源地的可能性,幾乎可以排除。而晚於 2.3 萬年的歐洲狼,依然小部分繼承前輩血緣,是牠們與狗差異較多的原因之一。

兩萬多年前發生什麼事呢?距今 1.9 到 2.6 萬年左右,全球進入酷寒的冰河時期,稱為末次冰盛期(Last Glacial Maximum,縮寫 LGM),大幅限縮生物的發展空間。對照狼的演化史,在此之後各地族群都被西伯利亞的狼群取代。

-----廣告,請繼續往下閱讀-----

末次冰盛期之際,各地狼群很可能被切割開來,缺少遺傳交流機會,各自損失慘重,例如北美洲就全面滅團。身為狗狗直系祖先那群狼,或許當時也被孤立,更有機會與人類發生關係,造就馴化狗的契機。受到人擇之後,這支血脈與其他的狼在遺傳上明顯分開。

如果地點不是西伯利亞,大概也在不遠處,我猜是西伯利亞南部、華北、蒙古到中亞一帶。回答狗狗起源這個難題,這兒 2 到 3 萬多年前的化石,或許就保存著夢寐以求的基因組。

東狗血緣(藍色)、西狗血緣(黃色)和現今中東狼的遺傳關係。圖/參考資料 1

狗有兩地狼的血緣,但馴化是一次或兩次?

另一件有意思的發現是,除了上述血脈,狗狗們還具有另一款不同的血緣,遺傳上最接近現代中東到南亞一帶的狼群,姑且稱之為「西狗血緣」。

用敘利亞現代狼作代表,估計 7200 年前中東同一地區的古狗,配備 56% 類似的血緣。這個數字誤差不小,看看就好,但是足以肯定西狗血緣至少在 7200 年前已經存在。

-----廣告,請繼續往下閱讀-----

相較於前述與西伯利亞古狼關係密切的「東狗血緣」,「西狗血緣」來自另一群古狼,牠們不住在歐洲,可能位於中東到南亞一帶,大部份血緣應該也源自 2 萬年前的西伯利亞古狼,只是分家年代晚於東狗血緣。

根據東狗血緣(藍色)、西狗血緣(黃色)表示不同狗狗的遺傳組成。圖/參考資料 1

由此推敲,有批狼在東方變成狗以後,西方或許又發生過一次獨立的馴化,可是也有機會是東方狗到達以後,與當地狼大幅合體。

一個論點是:狗在東邊馴化一次,後來又融入西邊的狼。另一個論點是:狗在東邊、西邊各馴化一次。兩者皆符合目前的證據,隨著後續的 DNA 流動,兩款祖源都成為如今多數狗狗的一部分。

遠離歐亞大陸的新幾內亞唱犬(New Guinea singing dog)、澳洲野犬(dingo),都缺乏西狗血緣;牠們的祖先超過一萬年前便形成獨立遺傳支系,後來某個時刻又渡海抵達新幾內亞、澳洲。

考量這件事,我猜狗只在距今 2.6 萬年以前與過後的幾千年期間,於歐亞大陸偏東邊明確馴化一次,後來再傳播到各地;傳向東南方,新幾內亞唱犬的祖先一直獨立發展,缺乏西狗血緣;傳到歐亞大陸西邊,一萬年內的狗則與當地狼群合體,融入大量西狗血緣。不過目前這只是公堂上的假設。

狗狗的起源與演變,仍需要更多證據才能明確解答。不過這項研究的主角其實是狼,光是這方面獲得的新知便很值得學習。

延伸閱讀

參考資料

  1. Bergström, A., Stanton, D. W., Taron, U. H., Frantz, L., Sinding, M. H. S., Ersmark, E., … & Skoglund, P. (2022). Grey wolf genomic history reveals a dual ancestry of dogs Nature, 1-8.
  2. Ice Age wolf DNA reveals dogs trace ancestry to two separate wolf populations
  3. Ancient wolves give clues to origins of dogs

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

文章難易度
寒波_96
193 篇文章 ・ 1079 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3228字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

參考資料

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室

討論功能關閉中。

顯微觀點_96
13 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。