0

0
0

文字

分享

0
0
0

癌症治療的最新進展–免疫檢查點療法

活躍星系核_96
・2014/12/03 ・1822字 ・閱讀時間約 3 分鐘 ・SR值 601 ・九年級

文/駱宛琳

不久前,號稱東方諾貝爾獎的唐獎 (Tang Prize)在生技醫藥領域,頒給致力於癌症免疫治療的詹姆斯•艾利森(James Allison)博士和本庶佑(Tasuku Honjo)博士。而最新一期的《自然》期刊,更是一連刊了五篇癌症免疫治療相關研究的最新突破[1-5]。2014年即將進入尾聲,而在癌症治療上,則發布了個振奮人心的好消息!

什麼是癌症免疫療法(Cancer Immunotherapy)呢?簡單來說,就是利用病人本身的免疫反應機制來對抗癌細胞。我們的免疫細胞除了抵抗外來病毒、病原菌,平時也到處巡邏確保身體內我們自己的細胞沒有病變成不正常的細胞。而這種「檢查哨」的角色,必須經過嚴密調控,以防止免疫細胞不會錯亂並攻擊正常細胞,造成正常組織損傷或誘發自體免疫疾病。對免疫細胞來說,腫瘤內的「微環境」通常都不太利於活化免疫細胞,使得腫瘤內部常處在偏向免疫抑制的狀態。癌症免疫療法就是希望能透過各種已知使免疫細胞反應更活躍的方法,重新活化免疫細胞,讓免疫細胞能成功辨識並殺死腫瘤細胞[6, 7]。

類似癌症免疫療法的構想可以追溯到1910年代由William Coley醫師所提出來的假說[6, 8]。Coley醫師認為手術後的癌症患者,如果併發細菌感染,可以降低癌症復發的機率。Coley醫師在病患腫瘤內注入高溫殺死的細菌,希望藉由激發病患的自體免疫反應來控制腫瘤,注射後,部分病患身上可觀察到腫瘤逐漸消失了[6, 8]。如今,科學家對於免疫反應機制有更深層的瞭解,也發展出許多促進或活化免疫系統,以對抗癌症細胞的治療策略。其中一種眾所矚目的治療方法,就是艾利森博士及本庶佑博士所研究的「免疫檢查點療法」(checkpoint blockade)[6, 7]。

diagram-v5-blocked-cht
免疫檢查點療法的原理,圖片來源:唐獎網站

癌症細胞能夠誘使免疫細胞啟動「抑制免疫反應」的訊息傳導,而免疫檢查點療法是透過阻斷這些「抑制免疫反應」的訊息傳導,使免疫細胞即使在腫瘤內部(不利免疫細胞發揮功能的環境)也能夠被活化,完成消滅腫瘤細胞的任務。主要的治療靶點,是CTLA-4和PD-1這兩個表現在T細胞表面的免疫抑制受體[6, 7]。當CTLA-4和PD-1與各自的配體結合時,抑制T細胞免疫反應的訊息傳導會被啟動,於是T細胞的功能與活動力會因此降低。以PD-1受體來說,很多腫瘤細胞會表現其配體PD-L1,當PD-L1和PD-1結合後,表現PD-1的T細胞會因此死亡。目前阻斷PD-1或CTLA-4功能的抗體已由美國FDA核准為治療癌症的試驗用新藥。在臨床治療上,許多使用後的病患也能穩定控制病情。但是,免疫檢查點療法並非期待免疫系統將癌細胞趕盡殺絕,科學家也沒有誇下海口說這樣的治療策略能夠完全「治癒癌症」。或許對於治療癌症而言,我們也許並不是需要真正的「治癒」,而是透過免疫系統的監控,讓癌細胞對正常生理與病患日常生活的影響力降到最低,變成能和平共處的慢性病。

另外,免疫檢查點療法目前僅發現在特定的癌症與部分病人上有顯著的療效,約有半數的腎臟癌、肺癌,和黑色素細胞癌之病例,證實使用該方法能夠延長病患的生命。但在最新一期的《自然》期刊上所發表的五篇相關論文,除應用免疫檢查點療法於不同癌症上,也找出部分病人在接受治療後有良好反應的主要原因。

Antoni Ribas博士的研究團隊發現,對免疫檢查點療法有明顯反應的病患,在治療前,腫瘤周圍會聚集較多的CD8+ T細胞(一種可以直接殺死目標細胞的T細胞), 而且PD-1與PD-L1 的表現較高[3]。以直觀來說,腫瘤內PD-L1表現特別高的病人,理當會對阻斷PD-1訊息傳導途徑的抗體治療反應較明顯。但是,Ribas的研究團隊認為,關鍵不僅是腫瘤內癌細胞PD-L1的表現量,在治療前腫瘤邊緣所聚集的CD8+ T細胞數量,與這些細胞所表現的PD-1與PD-L1也相當重要。於是Ribas研究團隊的發現,可提供另一種方式評估臨床上病患是否適合接受免疫檢查點療法。

而分別由Nicholas Vogelzang與Stephen Hodi所主導的兩個團隊,發現透過抗體阻斷PD-L1(目前所用的抗體為阻斷PD-1)的功能,能應用於多種不同癌症,而且目前臨床實驗中觀察到的副作用也較低於原本的免疫檢查點療法 [1, 2]。另一方面,Robert Schreiber與Lelia Delamarre的研究團隊則分析癌細胞所表達的癌細胞抗原[4, 5],發現癌細胞所表現的特殊抗原,不一定來自與腫瘤疾病進程有關的基因。

這些關於癌症免疫治療最新研究,不僅為癌症病患捎來了好消息,也在癌症醫療上建立了新的里程碑。

參考資料:

  1. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature (2014) 515, 558–562.
  2. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature (2014) 515, 563–567.
  3. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature (2014) 515, 568–571.
  4. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature (2014) 515, 572–576.
  5. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature (2014) 515, 577–581
  6. Coley, W. The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. (1910); 3(Surg Sect): 1–48.
  7. Wolchok, J. et al. Cancer: Antitumour immunity gets a boost. Nature (2014) 515, 496–498
  8. Leslie, M. Multiple boosts for cancer immunotherapy. Science (2014) Latest News.

 

文章難易度
活躍星系核_96
759 篇文章 ・ 70 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia


0

16
0

文字

分享

0
16
0

人類的遠古好兄弟:認識鯊魚的「適應性免疫系統」——《我們為什麼還沒有死掉?》

麥田出版_96
・2021/10/23 ・1867字 ・閱讀時間約 3 分鐘

• 作者/伊丹.班—巴拉克
• 譯者/傅賀

你可能聽過這個說法:鯊魚不會得癌症。事實上,牠們的免疫系統接近完美,牠們幾乎不會得任何疾病,牠們的免疫系統在過去幾億年裡都沒多大變化。是不是很神奇?

可惜,這都是無稽之談。沒錯,鯊魚的免疫系統非常驚人,全身分布有許多有趣而且有效的抗菌和抗病毒分子,牠們患癌症的概率也的確比人們通常預計的更低,但是鯊魚仍然會患上各種疾病,包括腫瘤。除此之外,數百萬隻鯊魚每年死於愚蠢。不是牠們自己的愚蠢(就智力而言,鯊魚還行),而是人類的愚蠢,特別是那些認為鯊魚軟骨產品可以「提高免疫力」、抗發炎甚至抗癌的江湖郎中。那種認為「鯊魚有完美的免疫系統」的觀念是由那些想透過賣軟骨藥而大賺一筆的藥商推動的,這背後的研究也不可靠。真正的科學研究已經揭穿了這些騙人的鬼把戲,但是依然有人在獵殺鯊魚,依然把它們的骨骼碾碎,當成「神奇的藥方」。

所謂「鯊魚的免疫系統從未改變過」的說法也經不起推敲。根據化石證據,我們的確發現今天的鯊魚跟牠們幾億年前的祖先「看起來 」 沒什麼差別,顯然,這讓一些人認為,鯊魚在其他方面也沒有任何變化。但這裡有一個重要區別:鯊魚的體型解決的是在水中穿行的問題;鯊魚的免疫系統解決的則是對抗病原體的問題。水沒有發生演化,但是病原體卻一直在演化。想必你明白我的意思了。

模樣特別古老的皺腮鯊(Chlamydoselachus anguineus)。圖/WIKIPEDIA by Citron

鯊魚有適應性免疫系統,也有完整可辨認的 T 細胞、B 細胞、抗體,以及各種其他組成。鯊魚跟人類的適應性免疫系統有許多差異,畢竟,我們分開的時間已經很久了。不過,牠們在許多基本的細節上跟我們類似,我們可以自信地說,某種類似的適應性免疫系統在四億年前(我們分開的時候)就已經出現並且發揮功能了。

牠們選擇留在水裡,發育出可以替換的鋒利牙齒,追逐魚類,而我們(更準確地說,是那些不再是硬骨魚的我們)則爬到岸上,失去了鰓,發育出了四肢,又過了許多年,我們回到海裡,拍攝了多部關於鯊魚及其鋒利牙齒的驚悚電影。儘管如此,我們的免疫系統提醒我們,在不同的外表之下,鯊魚和我們其實是失散多年的兄弟

但是,讓我們沿著演化史再往回走一步,來到所有的脊椎動物分成兩類—有頜與無頜脊椎動物—的時間點。你也許沒聽說過還有無頜脊椎動物;老實說,這一類生物後來活得不太好,只有兩個科的動物避免了滅絕的厄運,活到了今天:七鰓鰻和盲鰻。這兩種動物長得都比較搞笑,牠們看起來像是努力要長成魚,但是好像不太合格,直到最近,人們一直都認為牠們並沒有適應性免疫系統

屬於無頷類的盲鰻,是韓國炒魚菜的原料。圖/WIKIPEDIA

也許牠們不需要:第一批有頜脊椎動物可能是掠食者,而掠食者往往會活得更久,後代更少,而且一般更注重質而不是量。同樣可以推斷,牠們在演化過程中對感染的抵抗力更強。鯊魚、人類、其他魚類以及所有有頜脊椎動物都有一個胸腺和脾臟,而且在各個物種裡無論是形狀還是功能看起來都比較類似,但是七鰓鰻和盲鰻就沒有。研究人員仔細檢查了無頜脊椎動物的基因組,發現牠們也沒有 T 細胞、B 細胞或者抗原受體的重組基因。但是問題在於,牠們實際上是有適應性免疫系統的—只是跟我們的不一樣而已。

這一點其實意義重大。我們以為我們的適應性免疫系統相當特殊,但是我們現在看到,適應性免疫系統在脊椎動物中似乎出現了兩次,而且是獨立演化出來的。

這也許是一種經典的趨同演化(convergent evolution):正如鳥類和蝙蝠各自以不同的方式演化出了翅膀,無頜脊椎動物使用一種和我們一樣的隨機重排機制,來增加抗原受體基因的多樣性,但是牠們使用的是跟我們這些有頜脊椎動物完全不同的一套基因,這種重排機制使用的是不同的酶,做著完全不同的事情。同樣地,牠們的淋巴球類型跟我們的也不一樣。不過,牠們的免疫系統看起來跟我們的一樣有效。

——本文摘自《我們為什麼還沒有死掉?》,2020 年 9 月,麥田出版

麥田出版_96
156 篇文章 ・ 373 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策