公元二○二二年的諾貝爾生理或醫學獎頒發給帕波(Svante Pääbo),表揚他將尼安德塔人 DNA 重現於世的貢獻。尼安德塔人去世已久,僅存遺骸;從這類樣本中取得的 DNA,稱作古代 DNA。相關研究起步於一九八○年代,尼安德塔人基因組可謂集大成之作。帕波當年為了克服難關,組建龐大的團隊,《我們源自何方?》(Who we are and how we got here)的作者賴克(David Reich)正是其中的主要成員。
所幸賴克依然清晰地表達,多年鑽研所得的幾項寶貴見解。一項重要發現是:過往人類的遷徙與混血相當頻繁。從不同年代、地區的古代 DNA 判斷,遠早於最近數百年的歐洲人殖民以前,世界上多數地區都經歷過不只一波遷徙潮。例如分佈於歐亞大陸廣大範圍的印歐語系,以及印度複雜的歷史,古代 DNA 都帶來全新的認知,書中有不少篇幅介紹。
1837 年手稿《印度 72 種階級(Seventy-two Specimens of Castes in India)》,描繪了當時印度 72 種不同宗教、種族、職業的男女圖像,真實反映 19 世紀印度社會階層的情狀。 圖/wikipedia
古代 DNA 突飛猛進下,考古學受到極大震撼,一些人在討論時,將其類比為一九四九年碳同位素定年(俗稱的碳十四)後的另一次衝擊。然而賴克認為古代 DNA 的影響更大,類似十七世紀的光學顯微鏡;顯微鏡讓人們見到前所未見的新世界,古代 DNA 也是如此,而隨之而來的倫理等問題也有待解決。
總之,許多事一旦開始就無法回頭。精確的定年法問世後,考古學對年代的問題就不再能打模糊仗,古代遺傳學的進展亦同。從本書發表的二○一八年到現在,古代 DNA 研究的浪潮持續狂飆,可以預見未來幾年仍不會停歇。這本由最前線科學家親自撰寫的書,一些內容也許不是那麼好懂,卻足夠讓讀者跟上這波科學浪潮,大家都能在其中找到感興趣的部分細細品味。
Scott, E. M., Halees, A., Itan, Y., Spencer, E. G., He, Y., Azab, M. A., … & Gleeson, J. G. (2016). Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nature genetics, 48(9), 1071-1076.
Skov, L., Peyrégne, S., Popli, D., Iasi, L. N., Devièse, T., Slon, V., … & Peter, B. M. (2022). Genetic insights into the social organization of Neanderthals. Nature, 610(7932), 519-525.
Sikora, M., Seguin-Orlando, A., Sousa, V. C., Albrechtsen, A., Korneliussen, T., Ko, A., … & Willerslev, E. (2017). Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science, 358(6363), 659-662.
Svensson, E., Günther, T., Hoischen, A., Hervella, M., Munters, A. R., Ioana, M., … & Jakobsson, M. (2021). Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Current Biology, 31(14), 2973-2983.
Pearson, J., Evans, J., Lamb, A., Baird, D., Hodder, I., Marciniak, A., … & Fernández-Domínguez, E. (2023). Mobility and kinship in the world’s first village societies. Proceedings of the National Academy of Sciences, 120(4), e2209480119.
Yaka, R., Mapelli, I., Kaptan, D., Doğu, A., Chyleński, M., Erdal, Ö. D., … & Somel, M. (2021). Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Current Biology, 31(11), 2455-2468.
Wang, X., Skourtanioti, E., Benz, M., Gresky, J., Ilgner, J., Lucas, M., … & Stockhammer, P. W. (2023). Isotopic and DNA analyses reveal multiscale PPNB mobility and migration across Southeastern Anatolia and the Southern Levant. Proceedings of the National Academy of Sciences, 120(4), e2210611120.
Cassidy, L. M., Maoldúin, R. Ó., Kador, T., Lynch, A., Jones, C., Woodman, P. C., … & Bradley, D. G. (2020). A dynastic elite in monumental Neolithic society. Nature, 582(7812), 384-388.
Fowler, C., Olalde, I., Cummings, V., Armit, I., Büster, L., Cuthbert, S., … & Reich, D. (2022). A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature, 601(7894), 584-587.
Rivollat, M., Thomas, A., Ghesquière, E., Rohrlach, A. B., Späth, E., Pemonge, M. H., … & Deguilloux, M. F. (2022). Ancient DNA gives new insights into a Norman Neolithic monumental cemetery dedicated to male elites. Proceedings of the National Academy of Sciences, 119(18), e2120786119.
Dulias, K., Foody, M. G. B., Justeau, P., Silva, M., Martiniano, R., Oteo-García, G., … & Richards, M. B. (2022). Ancient DNA at the edge of the world: Continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proceedings of the National Academy of Sciences, 119(8), e2108001119.
Ariano, B., Mattiangeli, V., Breslin, E. M., Parkinson, E. W., McLaughlin, T. R., Thompson, J. E., … & Bradley, D. G. (2022). Ancient Maltese genomes and the genetic geography of Neolithic Europe. Current Biology, 32(12), 2668-2680.
Freilich, S., Ringbauer, H., Los, D., Novak, M., Pavičić, D. T., Schiffels, S., & Pinhasi, R. (2021). Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Scientific Reports, 11(1), 16729.
Gnecchi-Ruscone, G. A., Szecsenyi-Nagy, A., Koncz, I., Csiky, G., Racz, Z., Rohrlach, A. B., … & Krause, J. (2022). Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell, 185(8), 1402-1413.
Fernandes, D. M., Sirak, K. A., Ringbauer, H., Sedig, J., Rohland, N., Cheronet, O., … & Reich, D. (2021). A genetic history of the pre-contact Caribbean. Nature, 590(7844), 103-110.
Zhang, F., Ning, C., Scott, A., Fu, Q., Bjørn, R., Li, W., … & Cui, Y. (2021). The genomic origins of the Bronze Age Tarim Basin mummies. Nature, 599(7884), 256-261.
Skourtanioti, E., Ringbauer, H., Gnecchi Ruscone, G. A., Bianco, R. A., Burri, M., Freund, C., … & Stockhammer, P. W. (2023). Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. Nature Ecology & Evolution, 1-14.
幾乎每次回爭論,傳統教條都沒能站穩腳跟。二○一六年,我參加了一場約瑟夫.葛拉夫(Joseph L. Graves)在哈佛大學皮博迪考古與民族學博物館(Peabody Museum of Archaeology and Ethnography)的演講,主題是種族與遺傳學。在演講中,葛拉夫舉出五個能夠大幅影響皮膚色素沉積作用的突變,在不同族群中這五個突變出現的頻率差異很大。
布萊德利的實驗室和我的實驗室各自從那個時期的遺骸中取出古代 DNA,發現在草原血統抵達時,伊比利亞族群中有百分之三十受到取代,但是 Y 染色體受到取代的幅度更高:在我們的資料中,在具有顏那亞人血統的男性,有九成帶有來自草原的 Y 染色體類型,這種染色體之前未曾在伊比利亞出現過。顯然草原族群在擴張的時候,階級高低非常分明,而且權力分配極度不平衡。
權力累積代代相傳
對於「星團」的研究主要靠分析Y染色體和粒線體 DNA,那麼分析全基因組會有幫助嗎?
用全基因組資料可以重建出最近一萬年中絕大多數農業群體的祖先族群大小,發現到在這段期間族群增大了,看不出 Y 染色體所指出在青銅時代出現了瓶頸效應。那是只彙整 Y 染色體資料和粒線體 DNA 資料所看不出來的。
其實我們很清楚,用 Y 染色體是看不出來某些遺傳類型是否能夠更成功的傳到後代。理論上,我們可以用天擇來解釋,說有些 Y 染色體類型能夠讓攜帶者具有某些生物優勢,例如生育能力提高。