1

4
0

文字

分享

1
4
0

以「拾金不昧」測量公民誠信度?科學家在全球各國丟了上萬次錢包作實驗……

何如
・2020/03/20 ・3853字 ・閱讀時間約 8 分鐘 ・SR值 541 ・八年級

編按:去年六月,《科學》期刊上發表了一篇〈全球公民誠信度 (Civic honesty around the globe)〉的論文,當中的實驗和論點引起軒然大波,各界議論紛紛,也提出諸多看法和駁斥,到底是怎麼一回事呢?

實驗研究助理(粉色小人)會走進建築物裡,並接近櫃台的工作人員(藍色小人,隨機實驗對象),跟他搭話,並將實驗用的錢包(灰白色方形)放在櫃檯上並推給他,之後便直接離開,沒有留下任何資訊。

進行這項實驗的研究團隊在全球 40 個國家、355 座城市,做了共計 17,303 次「遺失錢包」的實驗,並為每一個錢包都建立獨立的電子信箱做為聯絡方式,記錄從「遺失錢包」的第一天起,一百天內收到的電子郵件,以「收到錢包的人是否會藉由資訊連絡以進行歸還」來當作實驗評估的指標。

實驗以透明名片盒做為錢包,藉此確保收到的人不需打開就可以看到裡面的模樣。內容物包含名片、雜貨清單和一把鑰匙,名片上以當地的語言寫著錢包所有者的姓名和電子信箱,以示意錢包所有者是當地居民。圖/論文補充資料

本實驗主要以錢包中「沒錢」和「有錢」為操作變因,來進行「通報歸還率」的比較,並將此結果作為論文中「公民誠信 (civic honesty)」的程度代表。

看到這裡,你可能已經發現,直接將「聯繫歸還的通報率」當成「公民誠信度」似乎不太精準,這便是引起爭議的其中一點。另外還有「各國使用電子信箱的比例不同」、「可能放到失物招領處了」、「風俗文化」等各界對實驗方式的駁斥與質疑。

-----廣告,請繼續往下閱讀-----

那麼先撇開這些爭議點,我們能透過這項實驗看到什麼呢?

在錢愈多時,錢包越可能被通報歸還?

從各國通報率的比較圖可以看到,絕大多數的國家在錢包「有錢」的狀況下通報率比較高,這個出人意料的結果,讓研究團隊懷疑起一個最基本的原因:

是錢不夠多嗎?(還不夠多到具有經濟意義上的重要性)

為了測試這樣的可能性,研究團隊在美國、英國、波蘭增加進行了「很多錢」的實驗組。然而如下圖所示,三個國家在「很多錢」的狀況下通報率都更高,總和三個國家的數據平均下來,通報率由低至高依序為「沒錢」的 46%、「有錢」的 61%,以及「很多錢」的 72%。

根據實驗設計,錢包「有錢 (Money)」的金額量為美金 13.45 元(約新台幣 407 元),「很多錢 (BigMoney)」的金額量則為美金 94.15 元(約新台幣 2848 元)或有錢狀況的七倍。圖/論文

錢愈多,反而通報率愈高,為什麼會這樣子?

對此研究團隊提出了三種解釋:

  1. 收到錢包的人擔心會因為「沒有歸還」而受到法律上的懲罰,錢愈多的時候愈是如此。
  2. 實驗僅以錢包的通報率作為評估指標,但收到的人可能私吞了裡面的金錢後才歸還
  3. 收到錢包的人希望能夠獲得報酬,並認為錢愈多報酬愈高。

然而在進行了解、調查之後,研究團隊對於以上三種解釋並沒有找到足夠充足的證據支持。

-----廣告,請繼續往下閱讀-----
嗯……讓我想想。圖/GIPHY

除了以上的可能性,還有別的因素可以解釋實驗結果嗎?

研究團隊重新檢視分析整個實驗的結構,認為實驗結果主要由四個因素相互影響:

  1. 留著錢包的經濟效益
  2. 聯絡失主所耗費的心力和時間
  3. 為了錢包失主的無私著想
  4. 自我意象的負面代價,也就是覺得自己像個小偷一樣,即「偷竊厭惡 (theft aversion)」

並由此列出了公式,同時進行一個簡單的行為模型測試,來對比原實驗數據。研究團隊認為,一個人(實驗對象)會依據上述四個因素,為了達到下列公式的最大值而做出「不歸還 (a = 0)」或「歸還 (a = 1)」的決定

max {(1-a)m + (m+v)-(1-a)γmac}.

a 為是否採取歸還錢包的行動,只有兩個數值:0 為不歸還,1 為歸還;m 為錢包裡的金額量;α 為「無私著想」的程度;v 為錢包裡除了錢以外的其他東西;γ 為「偷竊厭惡」的程度;c 為歸還錢包所耗費的心力。

-----廣告,請繼續往下閱讀-----

將此公式套入實驗後,研究團隊將收到錢包的人簡單分為以下四類:

  • A. 低無私著想、低偷竊厭惡的人(低 αγ ):
    只受到物質上自利 (self-interest) 的刺激,無論什麼情況下都不會歸還錢包
  • B. 高無私著想、高偷竊厭惡的人(高 αγ ):
    只要此二者大於歸還所花費的心力,無論什麼情況下都會歸還錢包
  • C. 高無私著想、低偷竊厭惡的人(高 αγ ):
    會在錢少的時候歸還錢包,但在足夠多錢時不會歸還
  • D. 低無私著想、高偷竊厭惡的人(低 αγ ):
    錢少的時候不會歸還,但在足夠多錢時會歸還錢包

這四種類型在所有收到的人當中的分布數量決定了「錢包通報歸還率」與「錢包裡的金額」本質上的關係。

A 區代表了第一種怎樣都不會歸還的人;B 區代表了第二種怎樣都會歸還的人;C 區代表了第三種僅在錢少時會歸還錢包的人;D 區代表了第四種僅在錢多時會歸還錢包的人。圖/論文補充資料

根據上圖可以歸納出:在「有錢」狀況下的通報率為 (B+D) / (A+B+C+D);在「沒錢」的狀況下通報率為 (B+C) / (A+B+C+D)。結合原實驗結果:「有錢」通報率較高,我們可以得知:D 區的人數比 C 區的人數更多。

也就是,高偷竊厭惡的人比高無私著想的人還多

那麼,「無私著想」和「偷竊厭惡」到底代表什麼呢?團隊做出以下解釋:「無私著想」會考量到錢包中「只對失主具有價值」的內容物,例如鑰匙;「偷竊厭惡」則只考量錢包中「對收到的人有價值」的內容物,例如錢。

為了區別此二因素對行為的影響程度,研究團隊設計了不同的實驗和調查。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

首先,他們在英國、波蘭、美國另外進行了相同金額下,錢包中「有」和「沒有」鑰匙的實驗,就三國實驗的平均結果而言,「有鑰匙」的通報率比「沒鑰匙」的通報率高 9.2%。從這樣的結果推得:收到錢包的人之所以會歸還,有部分是基於對他人的「無私著想」,他們在乎若自己沒有通報,會對失主所造成的傷害。

而關於「偷竊厭惡」,同樣在英國、波蘭、美國進行了調查,請受訪者一一想像實驗過的四種狀況:「沒錢」、「有錢」、「有錢沒鑰匙」、「很多錢」,並評定各種狀況下「若沒有歸還錢包,會讓自己感覺像在偷竊一樣」的程度,從 0 到 10,數字愈高表示程度愈重。

據受訪者們的調查資料顯示,在錢包中「很多錢」的狀況下沒有歸還,最讓人感覺像在偷竊,其次則為「有錢」,最後才是「沒錢」。這便代表著:因為沒有歸還錢包而付出的自我意象負面代價(即偷竊厭惡),會隨著金額升高而增加,此調查結果亦與之前實驗通報率的行為資料一致。

然而,對比「有錢」與「有錢、沒鑰匙」的調查結果,卻未觀察到偷竊厭惡程度上的確切差異,這可能表示了「偷竊厭惡」這樣的想法,與「只對失主有價值的內容物」無關。

-----廣告,請繼續往下閱讀-----

儘管調查的反應結果不能完全概論真實行為與動機,不過這些結果的確和研究團隊的假說一致:

「由不誠所得到的金錢效益愈大,跟心理上負面代價的增加有關」

甚至在取捨時,「避免心理上負面代價的增加」比「透過不誠行為得到微量的經濟獲益」來得更為重要。

我們會不知不覺誇大他人的「自私自利」?

在研究的最後,團隊找來一般民眾與經濟學家,讓他們預測實驗結果。以美國的實驗數據為預測目標,一般民眾認為「沒錢」的通報率最高,「有錢」次之,「很多錢」最低;經濟學者則預測「沒錢」跟「有錢」的通報率都較高,「很多錢」的通報率較低。

圖 A 為美國各個狀況下的實際通報率;圖 B 為 299 位民眾預測各個狀況下通報率的平均;圖 C 為 279 位經濟學家預測各個狀況下通報率的平均。圖/論文

然而不論是大眾或專家,預測都跟實際情形有明顯的差異,這也帶給研究團隊另一啟發 ── 這其實反映了「誇大自利作用」的人類行為心智模型:

-----廣告,請繼續往下閱讀-----

當錢越多,大家越會預期「自利心態」增加、對失主的「無私著想」逐漸消失,並認為「偷竊厭惡」對通報率造成的影響很小。

圖/GIPHY

最後,團隊還從實驗結果發現一件事:儘管已盡量客觀地進行實驗,仍能看出「各國」歸還錢包的比率,其間的差距相當可觀,範圍從 14% 分布到 76%。就算將國家 GDP 也考量到實驗設計中(依 GDP 調整錢包金額),這樣的差異還是普遍存在。

各個國家聯繫歸還錢包的通報率。紅點為在「有錢」狀況下的通報率,橘點為「沒錢」狀況下的通報率。圖/原論文資料

如此結果在某種程度上也顯示出,除了國家財力,還存在著其他因素影響了通報率,同時,理論模型也需要考量除了無私著想和偷竊厭惡之外,其他可能影響的動機再進行修正。

對此研究團隊分析,對經濟上有利的地理條件,包括政治制度 (political institution)、國民教育 (national education)、強調「道德規範超越個人的內團體 (in-group)1」的文化價值等等,也同樣與公民誠信度具有正向相關 (positively associated)。期許未來的研究能夠更進一步分辨這些「其他因素」究竟如何促成人們行為上的社會差異 (societal differences)。

註解:

  1. 內團體 (in-group):指具共同利益關係,成員間彼此具有歸屬感,並且密切結合的社會群體,類似小圈子或自己人的概念。

資料來源:

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
何如
12 篇文章 ・ 1 位粉絲
「因為人因思想而獨特,但不說出來就什麼都不是。」 —為自己的冗言話多辯解的小菜鳥。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

4
2

文字

分享

2
4
2
2022 年《Science》年度十大科學突破(上):持續進化的 AI 與韋伯太空望遠鏡
PanSci_96
・2022/12/30 ・3733字 ・閱讀時間約 7 分鐘

回顧 2022 年,有沒有讓你印象特別深刻的科學新聞呢?約莫兩星期前,《Science》雜誌公布了今年的十大科學突破,從農業到藝術、從細菌到宇宙、從百萬年前的生態到人類的未來,每一項突破都和我們的日常生活息息相關。

好啦,廢話不多說,現在就來揭曉答案吧!

十大突破之首——遙望宇宙的韋伯太空望遠鏡

今年,韋伯太空望遠鏡(JWST)帶來的震撼,相信你我都印象深刻。

韋伯發布的第一批照片拍到了 SMACS 0723 星系團。圖/Science

早在 1990 年,哈伯太空望遠鏡發射升空後,科學家就開始規劃下一步。他們不只想看見更遙遠的宇宙,也想透過不同的波長,分析地外生命存在的可能性。

-----廣告,請繼續往下閱讀-----

哈伯望遠鏡的觀測波段以可見光為主。確實,紫外線和可見光波長最有利於觀測誕生不久的新星,但隨著數十億年過去,這些新星發出的光,穿過不斷膨脹的宇宙,來到地球,被拉伸到更長的紅外線波長後,哈伯就沒輒了⋯⋯

韋伯望遠鏡可以清楚看見狼蛛星雲的塵埃、氣體雲和碳氫化合物。圖/Science

那麼,要怎麼看見更遙遠的宇宙呢?去年底,歷時 20 年建造、造價 100 億美元的「韋伯太空望遠鏡」順利升空,開啟 150 萬公里的長征。韋伯搭載的科學儀器可以觀測紅外線波段,包括來自宇宙第一批恆星和星系發出的光。

韋伯利用四種不同的紅外線波段觀測系外行星 HIP 65426 b。圖/Science

今年 6 月底,韋伯開始收集數據,三星期後就傳回了第一批深空照片,讓科學家看見了更遙遠、更古老的新星系,徹底改寫我們對宇宙的認識。對於天文學界來說,這是一個充滿奇蹟的時代,韋伯望遠鏡也因此榮登 2022 年最重要的科學突破。

2022 年十大科學突破之首:韋伯太空望遠鏡。影/Science

研發多年生水稻 PR23,減輕農民耕作負擔

盤點世界上最主要的糧食作物,水稻肯定有一席之地!現今,大部分水稻都是一年二至三穫,每年收穫後都得重新種植,對農民來說是非常耗時、費力的工作。

-----廣告,請繼續往下閱讀-----

今年 11 月,中國雲南大學農學院的研究團隊在《Nature Sustainability》發表他們十餘年來嘔心瀝血的研究成果——多年生水稻「PR23」。這是長雄野生稻和 RD23 栽培稻的雜交種,不但可以達到和傳統水稻相仿的產量,還可以省下農民的大把時間、精力與成本。

PR23 第一年的稻作成本與傳統水稻差不多,但從第二年開始,農民就可以跳過育秧、犁田、移栽幼苗的步驟,降低約 50% 的人力成本,到了第五年才需要重新種植。

在中國,PR23 的種植面積超過了 15,000 公頃,平均產量則是每公頃 6.8 噸,略高於傳統水稻。根據非洲和東南亞的試驗數據,PR23 還可以改善土壤結構、增加有機質含量、減少梯田和高地的水土流失。

與此同時,科學家也正在觀察兩個潛在問題:一、雜草和病原體是否會積累在田地中,導致 PR23 需要更多除草劑,二、是否會排放更多的一氧化二氮,加劇溫室效應。但目前不可否認的是,多年生水稻有助於降低成本、提高收益,確實是一項重要的突破。

-----廣告,請繼續往下閱讀-----
有了多年生水稻,農民每年都能省下好幾週的工作量。圖/Science

誰說 AI 沒創意?AI 的創造力可是超乎想像呢!

說到 AI,有沒有讓你想起去年的十大科學突破呢?沒錯,去年的十大突破之首就是預測蛋白質 3D 結構的 DeepMind 團隊,而在今年,他們著手設計全新的蛋白質,用來開發疫苗、建築材料和奈米機器。

與此同時,DeepMind 發布了 AlphaTensor,用來找出更有效率的矩陣乘法演算法。高中就學過的矩陣是代數中最簡單的運算之一,可以用來壓縮網路資料、辨識語音指令、模擬與預測天氣、生成電腦遊戲圖形等。

另外,DeepMind 還發布了可以自主編寫程式、解決問題的 AlphaCode。在程式解題競賽網站 Codeforces 定期舉辦的比賽中,AlphaCode 甚至打敗了過半的參賽者,取得排名前 54% 的成績,跌破創辦人的眼鏡。

除了科學、數學、程式設計之外,AI 在藝術領域更是大放異彩。

繼 OpenAI 去年發布繪圖軟體 DALL-E 後,今年 4 月發布了進化版的 DALL-E 2,只要輸入幾個字詞,AI 模型就能自動生成圖像。在 9 月,有一位藝術家利用類似的 AI 繪圖工具 Midjourney 奪下美國科羅拉多州博覽會首獎。

-----廣告,請繼續往下閱讀-----

此舉在藝術界掀起一股旋風,卻也引來了哲學辯論和道德抨擊,但毫無疑問的是,人類可以借助逐年進化的 AI 拓展創造力,開發出更多、更好的工具。

使用 Midjourney 創作的科羅拉多州博覽會首獎作品。圖/Science

超級華麗的大~大~大細菌!

在你的印象中,細菌是不是都很小、不用顯微鏡就看不見呢?今年 2 月,科學家在法屬西印度群島發現一種肉眼可見的巨無霸細菌——華麗硫珠菌(Thiomargarita magnifica),震驚了生物學界。

一般來說,細菌沒有細胞核和膜狀胞器,遺傳物質都在細胞中自由漂浮,但華麗硫珠菌真的很華麗,不只可以長到 2 公分,比多數細菌大上 5000 倍,而且還有隔間可以容納 1200 萬個基因組——這大概是多數細菌基因總量的 3 倍。

身為一種不應該有膜的原核生物,華麗硫珠菌的結構或許即將改寫原核生物和真核生物的定義,甚至有機會成為一塊拼圖,補足細胞進化過程中缺失的環節。

-----廣告,請繼續往下閱讀-----
華麗硫珠菌挑戰了「細菌」的傳統定義。圖/Science

開發新疫苗,呼吸道合胞病毒治療現曙光

在這 COVID-19 肆虐之年,美國感染呼吸道合胞病毒(RSV)的病例數也急遽上升。呼吸道合胞病毒傳染性極強,通常只會引起類似感冒的輕微症狀,但在嬰幼兒身上,這種病毒會使肺部發炎,而在老年人身上,會使既有的心肺疾病惡化。

早在 50 多年前,就有科學家試圖開發呼吸道合胞病毒的疫苗,但在臨床試驗導致 80% 的接種者住院、2 名兒童死亡後,開發就此中斷。後來,科學家發現敗筆在於這種殺死病毒後製成的「滅活疫苗」所引發的抗體較弱,不只殺不掉活生生的病毒,還能反過來幫助病毒破壞氣管。

如今,莫爾豪斯醫學院(Morehouse School of Medicine)開發了能夠引發強效抗體的新疫苗。在輝瑞(Pfizer)和葛蘭素史克藥廠(GSK)進行臨床試驗後,證實這兩種新疫苗可以保護嬰兒和老年人,不會引起嚴重副作用,而在孕婦注射後,也能將抗體傳給胎兒。

雖然過往的失敗讓開發團隊心存疑慮,但目前沒有任何數據顯示疫苗不安全,其中幾種候選疫苗也可能將在明年獲得監管機構批准上市。

-----廣告,請繼續往下閱讀-----
RSV 疫苗證實能有效保護易受感染的嬰幼兒和老年人。圖/Science

好啦~這篇到這裡,先介紹前五項突破就好!因為《Science》今年提供的內容實在是太精彩了,為了避免讀者一次閱讀太多字很累,只好拆成上下兩篇⋯⋯看完這篇後,如果你好奇另外五項突破是何方神聖,就來看第二篇吧!

接續下篇:2022 年《Science》年度十大科學突破(下):EBV 病毒與發燒的地球

-----廣告,請繼續往下閱讀-----
所有討論 2