Loading [MathJax]/extensions/tex2jax.js

1

0
2

文字

分享

1
0
2

地表最速乘法傳說!碰到大得要命的數字,這是最快的乘法方式

UniMath_96
・2019/05/30 ・3729字 ・閱讀時間約 7 分鐘 ・SR值 484 ・五年級

  • 文/郭君逸 │國立臺灣師範大學數學系副教授

編按:說到乘法,我們很快都會想到國小的共同回憶「九九乘法表」。背誦它對我們來說可能是一位數相乘最快的解方,多位數我們就用直式乘法運算。但如果是超超超超超超超級多位數互相相乘呢?有沒有更快的方法?

對於人腦來說可能大位數的乘法已經沒有意義,但對於電腦來說,有新的乘法方式可是大大的不一樣!三月時有數學家發表了有史以來將大數字相乘最快的新乘法方式,讓我們一起來一探究竟吧!

從「九九加法表」與「九九乘法表」談起

我們在國小時的數學,一開始就會先學「數數」,要會數 1、2、3、⋯接下來才能學加法,例如:8+5 就是 8 往後數 5 個…9, 10, 11, 12, 13,所以 8+5=13。但每次都這樣做建構式的加法太慢,成不了大事,於是大家就背了「九九加法表」(雖然老師沒提這個表,但事實上大家的確都背了!)來快速處理一位數的加法,後來再學直式加法搭配進位,就能夠計算多位數的加法。

source:李家同臉書網誌

學習乘法也是差不多的歷程。正整數的乘法其實本質就是「重複做很多次加法」,例如 6 × 4 其實就等於 6+6+6+6 或是 4+4+4+4+4+4,但很快地我們馬上就會發現這樣做建構式的乘法,速度太慢,成不了大事,於是大家就背了「九九乘法表」來快速處理一位數的乘法,然後再學直式乘法搭配進位,來處理多位數的乘法。

加法跟乘法我們都可以做到高位數,但究竟是加法比較快,還是乘法較快呢?

「九九加法表」、「九九乘法表」都幾?

到底要算幾次?加法與乘法運算次數比較

若是一位數對一位數的話,當然是一樣快,因為「九九加法表」跟「九九乘法表」我們都倒背如流了;但當「2 位數加 2 位數」與「2 位數乘 2 位數」來比呢?

-----廣告,請繼續往下閱讀-----

明顯乘法的運算次數一定比加法多,光直式乘法最後的 522+3480 就超越了 87+46 的加法數,何況還要做 7×6, 8×6, 7×4, 8×4 四次乘法;然後 7×6 與 8×6 也要做一個加法才能算出 522,7×4 與 8×4 也一樣。

一般來說 n 位數加 n 位數,連進位都算進去的話,要做 2n-1 次一位數加法;但 n 位數乘 n 位數的話,最多會用到 2n(n-1)的一位數加法,與 n2 次的一位數乘法。可見,乘法的運算次數是隨著位數的平方成長,所以計算乘法比較慢。

數學家Andrey Kolmogorov。圖/wikipedia

Karatsuba以加減法取代乘法,加快運算速度?

1960年,俄羅斯的大數學家 Andrey Kolmogorov 在一次研究討論中提出他的猜測(n 位數的乘法必須用到至少 n2 數量級的一位數乘法),例如 2 位數乘以 2 位數必須進行 4 次一位數乘法,他認為不能再快了。

結果一個禮拜後他的學生 Anatoly Karatsuba 就推翻這項猜測,找到僅需 3 次一位數乘法的計算。以 87×46 為例,Karatsuba 的方法是這樣的,先算十位相乘 8×4=32,與個位相乘 7×6=42,這個部份與傳統直式乘法一樣,但他卻只用了一次乘法就算出了 8×6和 7×4 且同時把它們加起來。我們先把傳統直式乘法改成如下:

-----廣告,請繼續往下閱讀-----

中間的方框就是要計算 8×6 加 7×4,Karatsuba巧妙的用 (8+7)×(4+6)- 8×4-7×6 來達到同樣的效果。注意到,上式中只有第一個乘號要算,後兩個剛剛已經算過了,也就是說 Karatsuba 用一個加法與兩個減法取代了一個乘法。讀者這時可能會想說,拿一個一位數乘法去換三個加減法,又不是頭殼壞去,這樣不是反而慢嗎?

我們來看一下 4 位數的情況, 2531×1467 一樣先算 25×14 與 31×67,然後中間的 25×67+31×14 用 (25+31)×(14+67)-25×14-31×67 計算,最後加總起來。

如同前面的分析,此處一樣用到三個二位數乘法,而每個二位數乘法又用到三個一位數乘法,所以總共用到 3×3 =9 次一位數乘法。因此一般 位數的乘法,用這種技巧,可以只用到

3logn=nlog3=n1.58

-----廣告,請繼續往下閱讀-----

個一位數乘法。位數越高,用到的一位數乘法數就會越接近 n1.58 的常數倍。對於人來說,因為把一個乘法換三個加減法,並沒有比較快,何況還要遞迴的操作;但是,對電腦而言就不是這樣了。

電腦的本質上是二進位的系統。圖/pixabay

電腦運算的本質:二進位

電腦的本質上是二進位的系統 (哪有!我用電腦這麼多年,沒看到什麼二進位啊!那是現在電腦發展很快,事實上隨便顯示一張小圖、或一個字,背後都做了數百萬次的二進位運算。)而電腦的加法是用位元的邏輯運算來達成(也就是 AND、OR、XOR、NOT、Shift 這些東西來組成的),而位元邏輯運算超快,詳細我們就不說了,總之電腦的加法非常快。

那電腦的乘法,真的是用 Karatsuba 的方法嗎?其實也不是,我們先來看一下 8 位元的電腦怎麼做乘法好了。以 11 乘以 14 來說,化成二進位變成 00001011 與 00001110 (前面要補 0,因為 8 位元的電腦它就是用 8 個位元儲存數字。)

這不就是直式乘法嗎?這樣哪有比較快?有的。因為人類習慣十進位,所以要背「九九乘法表」;電腦用的是二進位,所以要背「一一乘法表」!!沒錯,所以等於不用背,二進位的直式乘法,其實只是被乘數的平移,然後加起來而已,換句話說,其實乘法,也是一堆位元邏輯運算而已,所以也是超快的。

-----廣告,請繼續往下閱讀-----

那 Karatsuba 的方法用在哪呢?用在很大很大的數字相乘的時候。電腦的乘法雖快,但 8 位元電腦,最大就只能處理 2⁸-1=255 以內的乘法,乘完後超過 255 的話就不能處理了,16位元電腦最大可以處理到 65535 以內的數,而現在的64位元電腦就可以處理到……一個非常大的數,呵呵。

那超過電腦能處理的數的話,到頭來,還是要用傳統的方法來處理,為了不要讓數字太大,我們以 8 位元的電腦為例,處理數字就會看成 256 進位來處理,533×499 就會變成

所以當數字大的時候,這時 Karatsuba 的方法就有用了。

值得一提的是,當電腦硬體從 8 位元升級到 16 位元時,軟體若沒有改成 65536 進位的話,而用 16 位元電腦來存 255 以內的數,前面就會補了更多的 0,處理起反而會浪費時間。而若軟體有跟著處理成 65536 進位的話,533×499 就會變只有位元邏輯運算而已,會超快。這就是為什麼電腦硬體剛進入 64 位元時代時,軟體沒有跟上的話,執行程式反而變慢的原因。

-----廣告,請繼續往下閱讀-----

歷經三十年的演算法改進

OK,我們再回來乘法的問題。Karatsuba 的方法,在數字大的時候的確可以加快乘法,以一千位數的乘法來說,此法的速度大約是傳統乘法的 17 倍。

隔年,1963 年,A. L. Toom改進到了 ;後來 1966 年 Arnold Schönhage 用了新的方法推進到;1969 年 Knuth(沒錯,就大家所知道的Knuth),改進到

後來 1971 年,Schönhage 捲土重來,與 Volker Strassen 利用快速傅立葉變換改進為 O(nlogn log logn),此為有名的 Schönhage–Strassen algorithm,在差不多三萬位數以上的乘法,會比 Karatsuba 方法還要快。此法也是目前大數字乘法的主流,著名的梅森質數搜尋網(Great Internet Mersenne Prime Search,在 2018 年 12 月找到第 51 個)就是用 Schönhage–Strassen algorithm 來達到快速乘法。

隔了三十幾年,一直到了2007年,Martin Fürer一樣是用快速傅立葉變換,將複雜度下降到了O(n (log n) 16log*n),其中 log*就是 n 取幾次 log 會讓這個數小於 1,這是一個成長很慢的函數,基本上可以視它為常數了。

-----廣告,請繼續往下閱讀-----

最後最後,David Harvey 與 Joris Van Der Hoeven 寫了幾篇的論文,把這個結果改成 O(n(logn)8log*n),然後 O(n(log n)4log*n),直到 2019 年,終於證明了 Schönhage 與 Strassen 的猜測 O(n log n)。

Volker Strassen 的大矩陣乘法

值得一提的是,Volker Strassen 除了是「大整數乘法」的始祖外,他也是「大矩陣乘法」的始祖(筆者寫到這裡,不自覺的跪了下來)。以 2×2 的矩陣來說,傳統計算

時,由於 x = ae + bg, y = af + bh, z=ce + dg, w=cf+dh,總共需要 8 次的乘法,但 1969 年,Strassen說,先計算下面 7 個值,

然後讀者可以自行驗證

-----廣告,請繼續往下閱讀-----

因此只用了 7 個乘法就完成了。天啊!這是怎麼想到的!

一般 n×n 矩陣乘法,用 Strassen algorithm 只需要 O(nlog7) = O(n2.8) 次乘法。從此大家才知道,原來矩陣乘法竟然可以比 n³ 還要快,矩陣乘法的改進也有相當精彩的發展歷史,詳細就不再一一介紹了,目前最好的結果是 2014 年 François Le Gall 的 O(n2.3728639)。

演算法已經超越所需要的計算尺度啦

不管是大整數乘法,或大矩陣乘法,目前都是以 Schönhage–Strassen algorithm 與 Strassen algorithm 為主流,沒有採用後來看起來較好的方法主因是後來的方法太複雜,且要在很大很大很大的整數、矩陣執行效能才會比較好,已經超越了人類目前所需要的計算尺度。另一方面,電腦硬體的發展快速,會直接把這些演算法寫到晶片,變成指令集,讓程式直接呼叫,甚至是多條相同的指令可以平行處理,經由硬體的加速,乘法的速度已經超越了演算法改進的速度了(尤其是矩陣的乘法)。

不過只要還沒達到所謂的最佳解,相信數學家們都還是會繼續為數學理論極限而努力。

參考文獻

  • Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292, 1971.
  • Fürer. Faster integer multiplication. In Proceedings of the Thirty-Ninth ACM Symposium on Theory of Computing, STOC 2007, pages 57–66, New York, NY, USA, 2007. ACM Press.
  • David Harvey, Joris Van Der Hoeven. Integer multiplication in time O(n log n). 2019. hal-02070778
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
UniMath_96
9 篇文章 ・ 209 位粉絲
UniMath (You Need Math) 是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
強核力與弱核力理論核心:非阿貝爾理論——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/28 ・1733字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

非阿貝爾理論

量子色動力學與弱核力理論有個更為奇特的性質,兩者都是「非阿貝爾理論」 (non-Abeliantheories)。非阿貝爾的意思是強核力與弱核力理論核心(參見【科學解釋 6】)的對稱群代數是不可交換的。簡單來說就是「A 乘 B」不等於「B 乘 A」。

一般人的常識會告訴你,如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣,你用計算機怎麼試答案都不變。一個袋子裝三塊錢、兩個袋子總共是六塊錢;一個袋子裝兩塊錢,三個袋子總共還是六塊錢。

如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣。圖/pixabay

這件事對數字永遠都成立,是千真萬確的事實。然而,我們有個很好的方法能定義出一套數學架構,其中的 AB 不等於 BA。實際上,數學家已經鑽研這個領域很多年了。

條條大路通數學

或許更驚人的是,物理學家竟然也在許多地方應用這套數學,因為某些和物理學相關的事物也是 AB 不等於 BA。矩陣就是我們表示這些東西的一種方式。現在我在倫敦大學學院為新生上的數學方法課就有介紹矩陣力學。以前我的學校制定了一套「新數學」的課綱,所以我在年僅十五歲的時候就多少認識一點矩陣了。

-----廣告,請繼續往下閱讀-----

數學的一個矩陣是一群按照行列排列整齊的數字。把兩個矩陣 A 和 B 相乘,會得到另一個矩陣 C,方法是把對應的列和行上面的數字依序相乘。

這種矩陣聽起來可能不像某部電影裡面那掌控一切、創造虛擬實境的超級電腦一樣迷人,卻有用的多。這部電影的角色身穿黑色皮衣,還有出現著名的慢動作躲子彈鏡頭

慢動作躲子彈鏡頭。圖/giphy

我來舉個例子。

你可以用一個矩陣來描述你移動某個物體的結果。相乘的順序(AB 或 BA)在這個例子有明顯的區別。物體先在原地轉九十度再向前直直走十公尺,和先走十公尺再轉九十度,兩種移動方式最後的終點顯然不會相同。假設矩陣B代表旋轉,矩陣 A 代表直行,那麼合在一起的「旋轉後直行」就是矩陣(C = AB);這和「直行後旋轉」的矩陣(D = BA)必定不會相同。C 不等於 D,所以 AB 不等於 BA。要是 AB 和 BA 永遠相同,我們就沒辦法用矩陣來描述這類的移動過程了。正是因為矩陣的乘法不可交換―非阿貝爾,這個工具才會如此有用。

-----廣告,請繼續往下閱讀-----

數學和真實世界密不可分

在狄拉克試圖要找出能描述高速電子的量子力學方程式時,矩陣被證實是他所需要的工具。實際上,電子有某項特性讓狄拉克不得不使用矩陣來表示它,這項特性與他描述電子自旋的語言同出一轍;所有原子的行為和元素周期表的規律,都與自旋有深刻的關聯。除此之外,這個性質也啟發狄拉克去預測有反物質的存在。

數學和真實世界之間似乎有緊密的關係,這讓我讚嘆不已。優秀的研究要能解決問題、也要能提出好的問題。而問題永遠比解答還要多,為了研究我們要付出許多的時間和金錢,因此大家得做出抉擇。數學是威力極大的工具,能幫助科學家檢查實驗數據、並從結果當中尋找最有趣的新實驗方向。就算有些方法和結論,好比矩陣及反物質,看起來可是相當古怪的。

秉持著這份精神,我要在繼續討論希格斯粒子搜索實驗之前,先繞個路來講微中子,最後這回要介紹的是一個很重要的真實結果。2012 年 3 月 7 日,中國的大亞灣核反應爐微中子實驗(DayaBay Reactor Neutrino Experiment)發表了最新的研究成果。

One of the Daya Bay detectors.圖/wikipedia

他們的實驗結果不但對標準模型影響重大,也會決定粒子物理學未來的研究走向。如果你只想要繼續讀希格斯粒子的故事,大可跳過這一段沒關係,下一節再見。但是微中子的粉絲可千萬別錯過精彩好戲了!

-----廣告,請繼續往下閱讀-----

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

1
0

文字

分享

0
1
0
高鐵票分段買比較便宜?重點是你有沒有用心觀察身邊的數學!
UniMath_96
・2017/08/07 ・5002字 ・閱讀時間約 10 分鐘 ・SR值 496 ・六年級

文/郭君逸|數學科普 Unimath 網站作者,國立台灣師範大學數學系助理教授、魔術方塊收藏家

這是一張從高鐵網站下載的票價表。眼前除了一堆數字之外,你還注意到哪些數學呢?

圖/載自台灣高鐵

「矩陣!」

-----廣告,請繼續往下閱讀-----

對的,你的觀察很正確。矩陣是大學線性代數這門課裡的主角,線性代數和微積分兩者並列為一窺高等數學的計算基礎,因此除了自然科學領域的學生強迫必修,甚至一些社會科學領域的學生也需要修讀,例如經濟、商管······等。聽起來或許有點恐怖,不過別緊張,撇開複雜的計算,單純矩陣表示法其實是生活中蠻常見實用的技巧,可以做為一群事物中兩兩彼此之間的關聯表格。像是上圖高鐵票價關係就是「起」「訖」點間的票價關係,還有各種比賽中選手或球隊彼此間的勝負關係。

這張圖右上半部是半價的優待票,以下討論我們只要看左下半部的全票即可。不知道讀者有沒有發現,「彰化→左營」的票價原本是 670 元,但「彰化→嘉義 250 元」加上「嘉義→左營 410 元」卻是 660 元,分開買居然可以省 10 元!?

是不是一直把票分段買,就可以越來越便宜呢?

其實並非如此!

-----廣告,請繼續往下閱讀-----

例如「嘉義→左營」是 410 元,但改成「嘉義→台南 + 台南→左營」兩段票的話,會變成 420 元,反而變貴了。

為什麼會有這種現象呢?

分段買就會便宜?錯!那不一定。圖/By Formosa Wandering @ flickr, CC BY-NC 2.0

首先我們先來研究一下高鐵的票價訂法。政府每年會先用「消費者物價總指數(GICP)」來訂定每人的基本消費率,交通部把基本消費率乘以 1.2 當作高鐵的基本費率(2016 年)的基本費率是 4.386 元/人公里。(註:詳細計算方式請參閱:交通部高速鐵路工程局常見問答集高鐵票價調整案說明專區

-----廣告,請繼續往下閱讀-----

而台北到左營站的距離為 339.284 公里,所以 4.386 * 339.284 = 1488.099 元/人,四捨五入到十位,所以才變成了 1490 元。問題就出在四捨五入的部分,1488 若拆成兩段 744 的話,四捨五入都變成 740,總合就是 1480 省了 10 元。相反地,如果 534 拆成兩個 267 的話,四捨五入後就會多出 10 元。

拆票的時機

那到底要什麼時候要拆票,什麼時候不拆呢?這是個很麻煩的問題,只能夠用暴力法,把所有情況都試過,才會知道。這時手算實在太累,我們要藉助電腦的幫忙了。但「暴力法」只是個大方向,實際要如何使用「暴力」,巧妙各有不同。

此類的問題,我們通常會用「動態規劃」(Dynamic Programming),這是一種「用空間換取時間」的概念來寫程式讓電腦幫我們解決問題的方法。當然這細節並非一時一刻可以講的清楚的。不過,教電腦如何解決問題就是數學!若我們可以把生活上遇到的難題(尤其是需要重複操作的動作),跟所學結合,很多都能夠迎刃而解。

筆者利用最短路徑演算法中的「無圈戴克斯特拉演算法」(Acyclic Dijkstra’s Algorithm),經過一些改進,並利用電腦計算出所有最便宜的票要如何購買,結果如下表:

-----廣告,請繼續往下閱讀-----

圖/UniMath 提供

此表要怎麼查呢?是這樣的,不管南下或北上,都先視為南下,例如要買嘉義到新竹的票,先視為「新竹→嘉義」,查上表得「苗, 780」這串字,代表要先拆票買「新竹→苗栗」,剩下「苗栗→嘉義」這段,再查表,得「640」,沒有國字在數字前面,表示直接買是最便宜的。因此嘉義到新竹,就可以拆成「嘉義苗栗」與「苗栗新竹」兩張票買,只有 780 元,比原票價的 790 省了 10 元。

若是「台北→左營」的話,查上表可知,買「台北、桃園、新竹、苗栗、彰化、嘉義、左營」拆成六段票,會是 1480元,也是省 10 元。但這樣買的話,可能屁股還沒坐熱,就又要起來換位置了,還蠻麻煩的。

比較實用的是自由座。我們先來看一下現在高鐵自由座票價:

-----廣告,請繼續往下閱讀-----

圖/載自台灣高鐵

自由座全票價計算規則是把標準全票打 95 折後取比較靠近的 5 的倍數,也是類似四捨五入,其最佳的拆票表如下:

圖/UniMath 提供

上表可以看出自由座長途車票拆票的話,最多可以省到 20 元。而且坐上車後,不用換位置,可以坐到底,非常方便。自由座優惠票(半票)最佳拆票表如下,最多可以省到 25 元:

-----廣告,請繼續往下閱讀-----

圖/UniMath 提供

至於商務艙屬於特殊服務,票價並不受交通部規範,所以它的計算方式並沒有用到「四捨五入」,而是每一段直接疊加的,所以怎麼拆票價錢都是一樣的。

至於團體票、早鳥票,實用性不高,這裡就不列出了。若讀者真的有需要,或是想檢驗自己跑出的結果,都歡迎來信跟我索取。

從上面的例子,有個很重要很重要的現象:「誤差是會疊加的!」標準全票因為用到四捨五入,所以會有誤差,最多差到 10 元,自由座把標準全票乘以 0.95 後再四捨五入,最多可以差到 20 元,自由座半票又再乘以 0.5 後再四捨五入,所以最多可以差到 25 元。若自由座半票,直接是把標準全票的原始票價乘以 0.95,再乘以 0.5,最後再做四捨五入的話,這樣誤差就小很多了。

事實上,筆者也把台鐵的票價表做了計算,下表是西部幹線山線的拆票表:
(台鐵各列車票價請參考:台鐵自強號票價查詢;台鐵票價計算方式請參考:台鐵票價試算。)

圖/UniMath 提供

因為台鐵票價是四捨五入到個位數,所以即使基隆到屏東最長的路線拆成了 13 段票,也只省了 2 元。我想應該沒有人會為了省 2 元,自找麻煩吧。

考考讀者,若所有票價計算,皆改成無條件捨去的話,那會如何呢?改成無條件進入呢?

數學就在你身邊!

由以上幾個分享的例子(以及文末推薦的延伸閱讀),可以了解到數線、平面坐標、極坐標的制定概念,其實早就存在生活中,只是數學家將它更嚴謹地用數學語言描述出來。另外,同餘概念、最優化、微積分、演算法,這些求學過程各階段中學到的數學,也都可以運用到生活上。

大多的知識,其實都有其演進堆疊的過程,而且生活上的事物,常常也可以跟所學連結。因此,多學總是有益無害的,但通常我們的學習環境,都是只有學習,卻不常訓練學生如何去應用,「培養數感」其實就是「培養數學時常能跟生活結合的感覺」,有了「數感」就會有學習動機,有了學習動機,學生就會主動學習。

-----廣告,請繼續往下閱讀-----

前陣子爆紅的手機遊戲 Pokémon Go,社群網站上,就可以看到各種神人分享所學與遊戲結合的結果:

  • 演算法熟悉的人,就分享怎麼安排行走路線會最省時省力;
  • 熟悉統計與最優化的人,就會分享如何撒花比較划算,提升抓到怪的機率;
  • 學組合數學的人,可以計算所有怪獸搜集完全所需要時間的期望值、同樣的怪要轉換(transfer)誰、怪的體質與屬性的相剋分析、預估升級時間;
  • 學電子的人會設計一個雷達裝置放在身上,路上遇到怪就會發出通知、利用無人裝置孵蛋;
  • 駭客就會攔截遊戲訊號,取得怪的隱藏數值(IV)······等。

每個主題都不是一時一刻可以講的清楚,但看到不同背景的人,無不使用渾身解術,把所學運用到生活中,著實為我們帶來了不少正能量。

UniMath,You need Math,本期刊就是希望能培養大眾的數感而生,雖然每個人的學習背景不同,但只要能夠時時抱持著自己的知識都能用在生活上的信念,相信一定能蹦出不少的火花。

後記

編按:這篇文章近期在各大新聞也有許多相關的討論(例如:「數學老師幫你算好了 高鐵票分段買最便宜」 /以及後續的「高鐵票分段買最便宜?高鐵:恐造成行程延誤」),原作者郭君逸老師也在PTT上針對這個主題撰寫的初衷和一些網友的提問做了回答。而這些回應也讓文章的討論更臻完整,於是泛科學以後記的方式在此將原本的回文進行增補。

拆票有可能變便宜,我想很多人很早就知道了;如許多鄉民所講,只要利用加法還有比較大小,就可以知道了。其實會這樣想的話,表示已經可以把數學用到生活中了。

不過再更進一步去想你可能會想問:

  1. 有時拆票又會變貴,到底為什麼?是不是高鐵的Bug?
  2. 又怎麼拆會最便宜?

不管答不答的出來,會這樣想的人就是有著數學思維,Unimath的目的其實就達到了。而這篇文章的重點其實就是為了幫大家回答這兩個問題:

  1. 因為「誤差是會累加的」,高鐵票的計算方式是四捨五入到十元,有誤差,所以分越多段的誤差就會越大。
  2. 但怎麼拆才會「最佳」,這就要靠電腦的幫忙了。(演算法用在哪?後面會講)

而記者把重點放錯了,都著重在省20元,或是去售票機買不會影響別人之類的。 而且下的標題還很聳動!(這當然不能怪記者,因為不聳動的標題,沒人要點進去看!但至少重點要放對啊……)其實還蠻高興大家對這個主題有興趣的, 若有什麼好的科普主題或文章,歡迎投稿Unimath,跟大家一起分享。

下面是一些比較 boring 的部份,也順便回答一些鄉民的問題:

1. 演算法用在哪?不是只要加法就可以了嗎?

會這樣問的人,應該是沒有碰過程式。知道怎麼拆票的話,當然是直接把每一段票價加起來即可,所以只用到加法。但問題就是不知道怎麼拆,有時拆了還會變貴。

一個簡單的想法是:如果A到F中間有B,C,D,E站的話,每個站要分不分,總共2^4種切法都去試,這樣就是一種演算法。但這樣的爆力法,效率很差(指數時間),高鐵站可能還好,但如果像台鐵當中間的站點一多,連電腦也會算不完。

那要怎麼省時間呢?我觀察到了中間有很多重複計算的部份,例如: 計算A到F站的話,在試切C點時,也會把AC與CF的最佳解都算過了,後來就不用再重複算。 所以我就採取空間換取時間的方法(Dynamic Programming)把算過的存起來就不用再重算, 這樣的演算法就會快很多,即時算台鐵的所有站的分票,也是按個Enter馬上就算完了。

整個演算法雖然是我自己想的,後來還是查了一下書, 發現在演算法書中,最短路徑一章就有很多類似的東西,然後我的演算法跟Dijkstra無迴圈的版本很像。 (其實還是有點不同只是原理相同, 有興趣的同學可以自己寫程式列出所有站點之間的分票方式,比較能體會其奧妙,程式其實很短。)

2. 誤差疊加很重要,求學時老師每次講,台下的我聽了都沒感覺。

明明多項式計算就代進去就好,為什麼還要改成巢狀計算; 矩陣就直接乘就好,為什麼還要對角化、Jordan Form……然後就會在台下說,學這個到底要幹嘛、多此一舉, 後來等到自己遇到麻煩了,才知道自己當時的無知。

3. 時間成本很重要,誰會省這20元。

這當然是這樣,現在比較忙時間都不夠用,我自己每次坐高鐵都坐直達的,誰想每站在那裡換位置!省錢只是文章的手段,讓讀者願意點進來看,但重點不在此,不要再被記者拉著走了。

4. 數學教授整天算一些沒用的東西。

其實有沒有用每個人都不同, 否則籃球員為什麼要一直把球丟到籃框裡? 畫家為何要畫畫?攝影不就照起來,再用一些濾鏡就好了? 這都是他們的工作、成果、興趣。 自然會有欣賞的人,自然也都有它的價值在。

5. 只要會加減乘除就可以活的好好的,為什麼要學這麼多?

這老生常談了。這就讓大家幫忙回答吧! 連加減都不會,也是可以活的好好的。

 

延伸閱讀:

 

本文轉載自 UniMath,《高鐵票分段買比較便宜?

作者簡介:郭君逸 - 國立台灣師範大學數學系助理教授、魔術方塊收藏家。
主要研究興趣為組合、圖論、演算法。近年來致力於科普的推廣,喜愛玩各種數學遊戲、益智玩具以及各類型魔術方塊。
目前為世界魔方聯盟(WCA)台灣地區認證員。曾開設整個學期的魔術方塊通識課程,跑遍全台進行魔術方塊系列演講。

關於 UniMath:UniMath (You Need Math)是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。歡迎加入 Facebook 粉絲團知道第一手訊息!

-----廣告,請繼續往下閱讀-----
UniMath_96
9 篇文章 ・ 209 位粉絲
UniMath (You Need Math) 是一個 Online 數學媒體,我們的目的是成為一個線上平台,發表數學相關的科普文章及影音,使數學用更柔軟的姿態走入群眾,提升數學素養。