Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

免費字幕君!怎麼用 AI 語音辨識幫你自動生成字幕?

泛科學院_96
・2024/07/08 ・2458字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

下載 Youtube 影片、自動生成影片逐字稿、AI 智慧翻譯、匯出雙語 SRT 字幕、字幕內嵌 MP4 影片,甚至是把你的電腦當成 AI 運算伺服器、使用多模態 AI 模型來做圖片辨識……這一切的一切通通都免費,敢有可能 (Kám ū khó-lîng)?

今天的影片要來跟你分享開源 AI 套件 Ollama,這個開源套件AJ 最近上課演講工作坊逢人必教。

今天的影片,我們要手把手教你使用 Ollama 在你的電腦裡執行各種免費開源 AI 模型,希望你能跟我一樣成為 AI 暈船仔……Ollama 真香……啊扯遠了,我們沒有點數可以送。

今天的影片會分成三個部分:

-----廣告,請繼續往下閱讀-----
  1. Ollama 安裝與模型下載
  2. 結合 Memo 翻譯影片字幕
  3. 用多模態模型做圖片辨識

Ollama 安裝與模型下載

首先我們要先安裝 Ollama:

來到 ollama.com 點選 Download,下載適合自己的版本後進行安裝,安裝完畢之後,啟動 Ollama。以我的電腦來說右上角就會出現一個小小的 Ollama 圖示,這樣就成功安裝囉!

接著我們需要下載 AI 模型到你的電腦:

回到 Ollama 首頁,點選右上角 Models,這邊就會列出所有官方支援的模型,比如最近很流行的 Meta LLAMA 3、微軟的 Phi3、法國 Mistral AI 公司的 Mistral、Google Gemini 模型的開源版 Gemma 都有,你可以挑選喜歡的來測試。

-----廣告,請繼續往下閱讀-----

比如我點選 LLAMA 3 的連結,模型頁面有兩個地方要注意:一是模型大小,LLAMA3 是 4.7G,一般而言要玩大模型,電腦記憶體至少 16G,預算夠就 24G 不嫌多;如果你是使用一般文書電腦,記憶體 8G 的話,建議你現在馬上停止你的任何動作。我有測試過電腦會直接當機……不要說我沒有提醒你。

點開 Latest 選單可以依照需求選擇不同版本的模型:

不過我們直接點選最右邊複製執行指令,打開電腦的終端機程式,或著命令提示字元,貼上,這樣電腦就會開始下載並且自動安裝囉。

你可以用 ollama list 指令查看現在電腦內有哪些模型,如果硬碟容量有限,用 ollama rm 後面加上模型名稱可以刪除模型。比如:ollama rm llama3。我們這邊另外安裝 llava 模型:ollama run llava,這樣準備工作就完成囉。

-----廣告,請繼續往下閱讀-----

Ollama + memo

最近只要演講上課,我一定會分享 Memo 這套好用的軟體,我們之前也有一支影片分享他的用法。

最近 Memo 更新之後,我們就可以直接使用 Ollama 結合特定的模型來進行字幕的翻譯。舉例來說,我們打開 memo,複製 Youtube 網址;我們用這支 楊立昆 的演講,貼上網址,開始下載,下載完畢後使用電腦進行語音辨識,接著我們就可以使用 Ollama 搭配剛剛準備好的 LLama3 模型來做翻譯!


翻譯完畢之後就可以匯出 SRT 字幕


如果你本身是影片創作者,這招就可以輕鬆製作你的 SRT 字幕,再也不用花時間對字幕時間軸了。

-----廣告,請繼續往下閱讀-----

或者你要把影片字幕直接內嵌在做簡報的時候播放影片:


匯出 MP4 格式,語言選雙語。如果你還沒用過這招處理影片,我強烈建議你一定要試試看!

Ollama + Enchanted

接下來我們要分享另一套非常實用的工具——Enchanted。他也是開源,可以讓原本是文字介面的 Ollama
提供類似 ChatGPT 的對話視窗,甚至支援圖片辨識的多模態模型 llava,Mac 用戶可以直接去 App Store 免費安裝。


同時開啟 Ollama 跟 Enchanted LLM:

-----廣告,請繼續往下閱讀-----


就擁有一個漂亮的視窗介面,可以優雅的啟用各種想要測試的 AI 模型,他甚至有手機版 APP!用手機連線自己的蘋果電腦跑 AI 模型?這……這,真的可以免費用嗎?

讓我來試試看!

首先要先安裝 ngrok 這套程式,選擇自己的作業系統然後下載。Windows 用戶應該直接安裝就可以了,Mac 的用戶在終端機執行這行 Sudo 指令把程式解壓縮到 user local bin 資料夾,接著註冊一個免費的 ngrok 帳號。

複製 ngrok config 指令,貼回自己電腦的終端機,把連線金鑰寫入自己的電腦。

-----廣告,請繼續往下閱讀-----

最後一步,啟動連線,指令是:ngrok http 11434 –host-header=”localhost:11434″

一切順利的話就會看到類似這個畫面。

然後把 forwarding 的網址複製,打開 iPhone 或 iPad 的 Enchanted app,在設定 Setting 裡面把 Ollama 網址貼上,這樣就可以遠端調用電腦的 Ollama 來使用 AI 模型,比如選用稍早下載的 LLava 多模態模型。

傳一張照片,問它這是什麼?

-----廣告,請繼續往下閱讀-----


是不是非常神奇呢?
快練習把 ollama、ngrok 跟 Enchanted 串起來跟朋友炫耀吧!

總結

今天的影片跟各位分享了基於 Ollama 這個開源 AI 套件的各種有趣應用,你是否有成功在 iphone 上打造自己的 AI 服務呢?

  1. 太複雜了我決定躺平
  2. 笑話,我可是尊榮的 GPT Plus 用戶
  3. 沒有 Mac 電腦不能玩……嗚嗚嗚
  4. 你怎麼不介紹那個 ooxx Ollama 套件

如果有其他想看的 AI 工具測試或相關問題,也可以留言告訴我們~

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

1
3

文字

分享

0
1
3
想不出企劃?讓 AI 幫你整理資料!Notion + Zapier 超詳細教學!
泛科學院_96
・2024/06/03 ・5054字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

今天來分享我們用 notion 做知識管理的實作過程與心得,不過,我們發現這樣還不夠用,生為 AI 懶人 YOUTUBER,最好有天上掉下來的題目跟素材,所以還串了 zapier 做自動化 AI 新聞收集!

不過在分享實做過程跟心得前,想先跟大家分享我跟 AJ 有在用的筆記工具,這樣你會知道為什麼我們最後選擇用 notion 了。

如果你只想看 notion 自動收集資料,可以直接下滑教學。

Notion

首先是 notion 端,我們先把 papaya 的模板 複製過來。

-----廣告,請繼續往下閱讀-----

調整一下資料表格式,後面主要會用到的是名稱、URL、標籤、狀態。

首先,我們先點選標籤,

新增你想要自動化的youtube頻道名稱。

然後到狀態,把原本 index 改名成 youtube 自動串連。

-----廣告,請繼續往下閱讀-----

這樣就完成 notion 端的設定。

Zapier

接著來到 zapier,登入後點 create。

進到自動化流程的編輯畫面,你會看到上面有一個 AI 協作的對話框。

輸入「特定 youtube channel 發布影片後,會把影片標題跟連結傳送到 notion 的資料庫」

這樣流程 flow 就出來啦!

-----廣告,請繼續往下閱讀-----

如果 AI 給你的長這樣,要把中間的 get report 刪除。

這邊簡單說一下,畫面上看到的這一串,叫「flow」。

「flow」的最上面是「trigger 觸發器」,是啟動 flow 的條件,

其餘的叫「action」,trigger 觸發後會依序執行下面的 action。

-----廣告,請繼續往下閱讀-----

我們先點進第一個 trigger 進行設定,

在這邊確認 event 是 new video in channel。

然後在 account 這邊,串聯你的 youtube 帳號,用哪個沒差,除非你是頻道主要觀察自己的數據。

接下來就到了重頭戲 trigger 啦,這邊要填的是 channel ID。

-----廣告,請繼續往下閱讀-----

提醒,channel ID 不是網址後面這串,

你可以到想要抓的頻道首頁,按 ctrl+U 開啟原始碼,再按 ctrl+F 尋找這串文字,

後面那串亂碼就是 channel ID 了。

貼回去按 refresh,

-----廣告,請繼續往下閱讀-----

如果有成功抓到,下面的 countinue 就會亮起來,

按下去進到測試頁面 test trigger 按下去。

成功的話,你就會看到他把影片資料抓過來嘍,下面是選後面用的測試資料,選哪個都可以,選完點 countiune。

就會進到 notion 設定,確認一下 event 的設定是不是 create database item,

-----廣告,請繼續往下閱讀-----

確認完按下一步,account 這邊設定連接到你的 notion 帳號,連完一樣按下一步。

重頭戲又來啦,action 這邊是設定 youtube 資料要怎麼存進 notion?

我們先點開 database,選擇剛剛整理過的資料庫,

然後就會跑出很收熟悉的選項,沒錯,這就是剛剛在notion設定好的資料表欄位,現在只要告訴他要把資料放入哪個欄位就好。

名稱,放影片的 title。

標籤,放剛剛設定好的頻道名稱標籤。

URL,就選影片連結的 URL。

狀態選 youtube 自動串連。

這樣新影片就會出現在 notion 頁面的左邊自動呈現囉。

這樣就完成啦,又可以點 countinue 了,不過我自己還會在 content 這個欄位選 description,把影片描述也放入 notion。

點完 countine 進入測試環節,

按 test step。

成功的話,就會看到 test step 變成 publish,

這時回去看 notion 的資料庫,你會發現多一筆剛剛測試的數據。

最後按下 publish,這樣就完成啦。

之後就坐等別人發片,再跟風就好!想企劃就是這麼簡單。

結語

最後來分享一下實做心得吧!

這次實做讓我體會到 notion 的美妙之處,之前都單純把他當成昇級版的 evernote,但跟 Zapier 之類的自動化服務串聯後,馬上變成不同檔次的東西,集前台後台於一身,甚至還能做網站!

這自由度真的是只有想不到,沒有做不到,沒程式基礎的人也能輕鬆入門,難怪會紅。

最後,想問大家會想用 notion 跟 zapier 來做什麼呢?

如果看到有趣的留言,我會試著做做看,有其他想要看的 AI 工具測試或相關問題,也可以留言分享喔!

如果喜歡這支影片的話,也別忘了按讚、訂閱,加入會員,我們下集再見~掰!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----
文章難易度
泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia