- 作者/林彥興|清大理學院學士班,努力在陰溝中仰望繁星
在談完了韋伯太空望遠鏡(JWST)的源起、技術與運行軌道之後,本系列的終章就帶大家一起來了解,天文學家花費上百億美金之後,究竟希望韋伯能為哪些領域帶來突破?
追尋起源:早期宇宙與星系演化
月亮距離我們大概 380,000 公里,光需要花費 1.3 秒左右才能到達地球,因此我們看到的月亮,是 1.3 秒以前的月亮;同理,我們看到的太陽,是 500 秒以前的太陽;我們看到的仙女座星系,是 250 萬年前的仙女座星系。在宇宙中,我們看得越遠,看到的東西就越古老。某種意義上,望遠鏡就像是一座時光機,可以讓我們一窺宇宙從誕生到現在的演化歷程。
在 1995 年,一組天文學家申請哈伯太空望遠鏡進行一次瘋狂的觀測。他們選擇將哈伯太空望遠鏡對準天空中一片看似什麼都沒有的區域,接連進行了 140 個小時的曝光。他們得到的影像,日後成為天文史上最重要的照片之一,其名為:哈伯深空(Hubble Deep Field)。
天文學家們驚訝的發現,這片看似空無一物的區域,其實充滿了數以千計遙遠、古老且黯淡的星系。比起銀河系這種中老年星系,哈伯深空中拍到的許多星系才形成不久,相當的年輕有活力。瘋狂誕生恆星的星系,與現在宇宙中的星系相當不同,非常有趣。望遠鏡就好像時光機一樣,帶我們一窺宇宙過去 130 多億年的演化歷史,而哈伯深空影像,正因此成為早期宇宙與星系演化研究的一個重要里程碑。
然而,當哈伯想要往更遙遠、更古老的宇宙望去的時候,就漸漸顯得力不從心了。原因是典型的星系發出的光主要以可見光為主,但是這些古老星系發出的可見光,在前往地球的過程中,會隨著宇宙的膨脹而發生紅移。越是遙遠的星系,紅移的情況就越嚴重。因此對於非常遙遠的星系來說,它們發出的可見光到達地球時,就已經被宇宙紅移拉到紅外線波段了。因此,只能觀測紫外線到近紅外的哈伯,就很難看到它們。
這時,就是韋伯出場的時候了。專司紅外線波段的韋伯,將能夠幫助天文學家看見宇宙中第一批恆星與星系的形成,以及這些恆星與星系如何與它們周遭的環境互動。
在宇宙學方面,JWST 將能讓宇宙學家深入探索宇宙「再游離(Reionization)」的過程。這是當前早期宇宙研究最重要的課題之一。大霹靂後 38 萬年,宇宙中的氫是以原子(稱為中性氫)的方式存在,然而在當今的宇宙中,多數的氫都是以游離態存在的。天文學家猜測,是宇宙中第一批形成的星系與黑洞發出的強烈輻射,游離了宇宙中的中性氫,才使得宇宙中多數物質的狀態發生了這樣的改變。但是再游離的過程究竟如何發生,現在無論是觀測還是理論都還無法給出統一的答案,仍待 JWST 等新一代望遠鏡的進一步探索。除此之外,就像前文所述,JWST 將能讓我們看到哈伯太空望遠鏡所見更古老的星系,這些仍在襁褓中的星系長有甚麼特色?又是怎麼演化成為我們在現在的宇宙中所看到的星系?這些也是 JWST 將幫助天文學家回答的問題。
恆星搖籃:看穿恆星形成區
恆星是天文物理最古老的研究對象之一。數十年來,天文學家對於恆星的類型、內部結構、演化歷程都有相當詳細的了解。然而,星際間瀰漫的雲氣究竟是如何聚集成一顆一顆的恆星,以及其周圍的行星系統,卻還有很多不清楚的地方。
典型的觀點認為,恆星誕生於巨大分子雲(GMC)之中。當分子雲中的氣體在重力的影響下逐漸聚集,就會形成紊亂而複雜的纖維狀(filament)的結構。
而在這些結構的高密度區域,隨著溫度、壓力與密度不斷提高,最終會點燃核融合反應,形成一顆顆的恆星。雖然大致的圖像有了,但是這整個過程不僅橫跨巨大的時間與空間尺度,更牽涉到磁流體力學、輻射、化學反應鏈等一系列複雜的物理與化學過程,因此上述的許多細節,仍是天文學家們努力研究的題目。
然而,由於這些恆星的形成區,往往被濃密的氣體與塵埃所包圍,因此當天文學家使用可見光觀測時,往往只能看到黑壓壓一片,難以窺探雲氣神秘的核心之中,恆星究竟是怎麼演化的。此時,紅外線的優勢再次展現。由於波長較長,紅外線比可見光和紫外線,更能夠穿過層層的星際雲氣而不被吸收,因此可以幫助天文學家直擊初生恆星的核心區域。
除了恆星本身之外,恆星形成時環繞在其周遭的「原恆星盤(Protoplanetary disk)」也是行星誕生的溫床。利用 ALMA 等次毫米波(介於遠紅外線到無線電波之間)望遠鏡,天文學家發現許多初生的恆星系統旁,都圍繞著濃密的氣體與塵埃盤。不僅如此,它們還發現這些盤面上,常有許多大小不一的間隙(gap),很可能就是來自正在形成中的行星。在少數的系統中,天文學家甚至能夠直接拍攝到這些正在襁褓中的系外行星們。而 JWST 在紅外波段的觀測,將能夠讓天文學家更進一步了解這些行星(尤其是靠近恆星的類地行星們)的形成。
外星世界:凝視太陽系與系外行星
「我們在宇宙中是孤獨的嗎?」
這個問題雖然至今仍沒有答案,但過去 25 年,天文學家對外星世界的認識已經有了巨大的進展。曾經,系外行星是只存在於假想中的天體;但現在,天文學家已經發現了超過 4,000 顆,隨著資料的不斷更新(主要歸功於 TESS 衛星的努力),這個數量還會持續上漲。
想了解系外行星學的發展歷史?這首 Acapella Science 的作品絕對是最棒的入門!
但是,天文學家雖然知道這些系外行星的存在,對這些外星世界的了解卻還相當有限,原因是系外行星實在是太小太暗了。對於多數的系外行星,天文學家都只能用一些間接的方法,測量它們的質量、半徑、軌道週期等相對粗略的特性,並且估計這個行星是否處於適合生命生存的「適居帶(Habitable Zone)」之內。
JWST 強大的能力將幫助天文學家突破困境。它能夠以兩種主要的方式觀測系外行星:一種是趁著系外行星繞行到其母恆星前方時,觀測整個系統的光譜,並找出其中由系外行星的大氣所貢獻的吸收譜線,這種方法被稱為「凌日光譜學 (Transit Spectroscopy)」;另外一種方式是藉由「日冕儀(Coronograph)」遮擋住來自母恆星的光線,直接拍攝並取得系外行星的光譜,這種做法被稱為「直接影像法(Direct Imaging)」。結合這兩種方式,JWST 將能夠讓天文學家對系外行星的認識不再只有多大、多重、多遠這些淺顯的描述,而是能知道大氣的組成、溫度與垂直結構,以及它們隨著季節、軌道半徑等其他因素的變化,深入地了解這些外星世界,甚至是尋找生命可能存在的跡象。
除了遙遠的系外行星之外,JWST 對於太陽系內的觀測其實也能有很大貢獻喔!舉例來說,JWST 擁有的中紅外波段的光譜觀測能力,既然可以分析系外行星的化學組成,當然也可以拿來分析太陽系內的小天體,如小行星、彗星、古柏帶天體等等,補足地面天文台無法觀測中紅外線留下的資訊空缺。此外,對於火星、四大巨行星、以及土衛六泰坦的研究,都是 JWST 可能的觀測目標。
未來精彩可期
從 1996 到 2021,從「新世代太空望遠鏡」到「詹姆士.韋伯太空望遠鏡」,天文學家的超級紅外線太空望遠鏡之夢,走過了漫長而曲折的發展歷程。25 年後的今天(10 月 17 日),JWST 已經搭乘海運抵達位於南美的法屬圭亞那太空中心,準備在 12 月 18 日搭乘亞利安 5 號火箭(Ariane 5),前往日地第二拉格朗日點(L2),以前所未有的性能,展開對宇宙、星系、恆星與行星的深入研究。更重要的是,每當一代更新、更強大的儀器成軍,天文學家不僅期待它回答上述「現有」的問題,更希望它能將人類的視野,開拓至我們從未想過的領域。韋伯究竟會帶來怎樣的驚喜,就讓我們拭目以待!
參考文獻
- 綜合
- 早期宇宙/星系演化
- 恆星與行星形成
- 系外行星
延伸閱讀
- 為何 NASA 不惜大撒幣也要把它送上太空?——認識韋伯太空望遠鏡(一) – PanSci 泛科學
- 史上最大口徑的 JWST 要如何塞進火箭?——認識韋伯太空望遠鏡(二) – PanSci 泛科學
- 太空巨獸 JWST 升空後的 150 萬里長征—— 認識韋伯太空望遠鏡(三) – PanSci 泛科學