Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

如果你是一台自駕車,這些是你可能會遇到的考驗

做車的人_96
・2018/01/22 ・2869字 ・閱讀時間約 5 分鐘 ・SR值 512 ・六年級

-----廣告,請繼續往下閱讀-----

文/郭長祐

圖/TayebMEZAHDIA @Pixabay

談及「自駕車」,或許會有人天真地認為,行車電腦只要運用前後保險桿上的超音波測距器(俗稱倒車雷達)來偵測前後車距離,以此來調控車速,以及用類似技術使汽車保持在車道內行駛不偏離,以及能在避障情況下完成改變車道、轉彎、停車等動作,就是完滿的自駕技術與程序。事實上,實現自駕車的技術與考驗遠大過於此。

難解的電車難題

自駕車如果遇到相似於倫理學問題「電車難題」的狀況,應當如何權衡判斷呢?圖/By McGeddon [CC BY-SA 4.0], viaWikipedia Commons
自駕車其實需要因應各種突發狀況,例如突然煞車失靈時當如何處置?是持續向前行駛,但可能因此使五名路人死傷,還是選擇改變方向,但會使另一方向的一名路人死傷?這時行車電腦當如何權衡判斷呢?

或許上述的例子過於特殊,實務上很難遇到,但確實點出自駕車實際上路,必然要面對複雜多變的情境。又如一個小女生為了追一個皮球而跑到馬路上,這時若不改變方向女孩將被車輾過,右轉則會撞向其他路人,左轉有可能就撞上水泥牆,車內乘客也會受傷,或者是一隻狗跑到馬路上,或前方貨車的油桶鬆綁滾到馬路上,這些情境自駕車都必須事先備妥研判能力,事發時才能正確快速因應,例如爆胎時只能讓汽車放開油門,緩緩向前到耗盡慣性而停止,若這時嘗試踩煞車或轉動方向盤,反而可能招致全車翻滾的危險。

-----廣告,請繼續往下閱讀-----

科學家、工程師努力卸除社會對自駕車上路的心防

即便自駕車具有克服各種車況、情境的能力,自駕車上路依然有其他層面的挑戰,其中社會接納度至為關鍵。根據調查,有 78% 的受訪者表示不敢搭乘自駕車,以及有 41% 的汽車駕駛不願意跟自駕車一同上路,深怕自駕車出狀況殃及他們。

關於此,自駕車業者與研發團隊必須付出更多努力、甚至更有創意的做法才能使社會接受。過去百事可樂曾有一個蒙眼試驗廣告,邀請一群人蒙上眼睛後試喝兩種可樂,實驗證明單憑口感很難精準分辨可口可樂與百事可樂,表示消費者認為先出現的可口可樂口味更佳是種迷思,進而使百事可樂的銷售大增。

根據相似的心理學,或許在自駕車技術成熟後,可以安排實驗證實一般人無法分辨自駕車與人工駕駛的行為;甚至安排一個逼真的假駕駛,悄然在路上行駛一段時間後再告知大眾,以展現自駕車與一般駕駛幾無差別,或許可以說服社會大眾卸除部分心防與多慮。

除了科技突破,自駕車想上路,還得解決社會大眾的疑慮。目前看來,科學家與工程師們還有一大段路要走。 圖/ifinnsson @Pixabay

當然,除了心理層面外,實質上也要讓自駕車的互動更逼近人為駕駛,例如變換車道會打方向燈,前車過近會按喇叭,對向來車有危險行為時,會讓大燈遠近交替切換作為警示。其他如砂石車經過會刻意保持較遠距離避免意外,同時當關上車窗,因為很多高速行駛的砂石車常有砂石掉落,高速下噴濺起的砂石有時會傷到車內的乘客,或者前方有大型車輛時當把車內空調改成封閉循環,避免吸到大車排出的廢氣,維持車內空氣品質,保障乘客健康。做到這些,人們才能逐漸接納自駕車。

-----廣告,請繼續往下閱讀-----

另外,人們也擔心行車電腦是否會被駭客入侵並操控,輕則癱瘓交通重則犯罪,畢竟真人是不會被駭的,但電腦會。這一樣有待人工智慧科學家、工程師的努力,才能讓社會大眾接受與肯定自駕車的上路安全性。

目前自駕車的發展還是有些卡關的地方?

談及自駕車面臨的挑戰,除了需要提升緊急狀況的因應能力以及社會觀感外,自駕車的自駕基本功也有待磨練。美國汽車工程師學會(Society of Automotive Engineers,簡稱 SAE)把自駕程度分成六級:

零級(level 0):完全人為操作。
第一級(level 1):某些自動化功能可單獨作用,例如定速巡航,駕駛設定好想要的車速後腳就可以放開油門,讓汽車自動以定速操控油門;
第二級(level 2):多個自動化功能同時作用,但仍需要駕駛關注,必要時仍需要人為介入,例如自動停車;
第三級(level 3):汽車幾乎可全程自主駕駛,必要時才有人為介入;
第四級(level 4):完全不用人為介入,但僅限高速公路或車輛較少時才能如此;
第五級(level 5):一切自動,堪稱終極的自駕。

目前車廠已可達三級水準,若干宣稱達四級,但尚無人宣示已實現第五級,僅有晶片商宣稱已推出可滿足第五級自駕車所需運算力的車用電腦系統。

-----廣告,請繼續往下閱讀-----

上述為行車電腦自主駕駛的程度,但人們關切的自駕車安全程度則仍待商確。目前業界確實有一些初步討論,有科學家發表論文,期望用數學公式(Shai Shalev-Shwartz et. al, 2017 )來釐清自駕車碰撞事故的責任歸屬,不過論文發表後有許多爭議與質疑聲浪 ,可能還需要一段時間發展。

計算前車與後車安全距離的公式,詳見Mobileye 提出的自駕車事故公式 圖/Mobileye

另外政府也必須針對自駕車上路而增訂、修訂法規,目前世界各國政府都在拉高車輛安全要求,過去已要求汽車一定要有霧燈與前座安全氣囊才能出廠,現在也開始要求輪胎一定要安裝胎壓感測監督系統(Tire Pressure Monitoring System,簡稱 TPMS)才能出廠,進一步要求一定要配置防翻滾系統等,自駕車也當比照辦理。

有了自駕車,世界可能會很不一樣

談及自駕車,難道所設想的都是例外狀況與災禍嗎?答案應該為否,除弊之外自然也有興利的部分。自駕車若真能實現,也可能帶來更多的美好與便利。未來自駕車預先檢視全程路況,並對進行最佳化路程規劃,自動避開車潮,反而比人為習慣駕駛、記憶駕駛更快到目的地,甚更省行車能源,甚因行車操控更佳使零件更長壽而降低保修次數與花費,或因更佳、更可預設的行車狀況而降低車險費用。

就社會層面的考量,自駕車絕對不可能違反交通規則如超速或闖紅燈,自然可以省下讓交通警察舉發開單的社會成本;甚至更完善的大型自駕車系統可以調節車流分配,從而降低交通顛峰時間的塞車情況,節省龐大的時間成本。

-----廣告,請繼續往下閱讀-----
路程規劃、車流調節、共享自駕車……,自駕車若真的普及,可能使我們的生活產生現在難以想像的新面貌。 圖/TeroVesalainen@Pixabay

進一步的,若自駕車夠普及,其實可以實現共享自駕車的願景,如同現在路上有 O-bike 就可以騎,只要針對使用的路程付費即可。而完全自主駕駛後,車內座位也可以完全打通,成為行動辦公室,或在車內共桌用餐、玩牌等,都有機會實現。在愛心傘夠多的情況下,就不再需要自己買傘,同理,到處都有車可搭,還有人要買私家車嗎?而免去私家車自然也就減少了相關的成本,包括每台車閒置時的成本、私人停車場的土地空間、甚至高額的停車費支出等。

最後,各位想像的自駕車未來又是怎樣呢?還有哪些挑戰呢?也請各位不吝與我們分享!

參考資料:

《做車的人》系列內容由裕隆集團委託,泛科學企劃執行

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
做車的人_96
3 篇文章 ・ 0 位粉絲
「教練,我好想做一輛車。」不用拜託,你真的可以。 我們是一群做車的人,希望帶給大家第一手的車界知識,讓你更懂車是怎麼造出來的。我們希望台灣能有自己的汽車文化,更希望我們都能為這文化驕傲。 本專欄由裕隆汽車贊助。

0

1
0

文字

分享

0
1
0
特斯拉 Cybercab 登場!自駕車事故責任該由誰承擔?
PanSci_96
・2024/07/30 ・1411字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

特斯拉即將在 2024 年 10 月推出無人計程車,並且 Robotaxi 的正式名稱,將取名為 Cybercab。
等等,在無人車正式上路之前,我先問你一個重要問題。如果我開特斯拉自駕車撞死人,要負責的是我這個駕駛、乘客,還是特斯拉與馬斯克?

你敢開自駕車嗎?肇事責任是誰負責? 圖/envato

自駕車撞死人:駕駛、乘客,還是特斯拉負責?

當你駕駛特斯拉自駕車撞死人,責任歸屬是個複雜問題。無人車上路前,了解現行法律與技術界限至關重要。如果你強行介入自駕車運行,解除自駕功能後的事故責任由你全擔。如果不干預,事故責任可能由車商承擔。然而,最終誰來負責,仍取決於多方因素,包括車輛技術和法律規定。

這是個很現實的電車難題,應該說自駕車難題。如果你駕駛的自駕車正在失控向人群駛去,你是否有勇氣按下緊急剎車,承擔一切責任?

這類問題正是現在無人駕駛技術面臨的道德和法律挑戰。

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

電車難題再現:自駕車技術的進展與挑戰

自駕車並不是未來的幻想,而是已經在我們的日常生活中逐漸實現的技術。特斯拉和其他汽車製造商已經展示了他們的自動駕駛系統,這些系統能夠完成從停車到高速公路駕駛的各種操作。目前的自駕技術主要依賴於先進駕駛輔助系統(ADAS),這些系統結合了多種技術以提升駕駛的安全性和效率。

ADAS 並不是一個新概念,它可以追溯到 1950 年代的汽車巡航控制系統,隨後在 1970 年代加入了防鎖死煞車系統和車身動態穩定系統。現代的 ADAS 功能更加多樣化,包括防撞系統、車道偏離警示、盲點監控、自適應巡航和駕駛監控等,這些功能大大降低了人為失誤導致的事故風險。

自駕車三隻眼睛:相機、光達和雷達的全面解析

自駕車依賴於三種主要感知技術:相機、光達和雷達。相機負責辨識交通號誌和行人,光達則通過發射紅外雷射光脈衝繪製 3D 地圖,雷達在惡劣天氣中表現尤為出色,能夠在雨天、霧天和沙塵暴中提供穩定的數據。

自駕車的決策過程可以分為感知、決策和控制三個步驟。感知階段依賴於相機、光達和雷達提供的數據,決策階段則依靠 AI 算法來判斷最佳行動方案,最後由控制系統執行決策。這些技術的進步使得自駕車在面對複雜的交通情況時,能夠做出更準確的反應。

-----廣告,請繼續往下閱讀-----

全球無人計程車競賽:各國如何迎接自動駕駛未來

特斯拉並不是唯一的自駕車領導者,Google 的 Waymo 和通用汽車的 Cruise 已經在無人計程車領域取得了重大進展。中國的自動駕駛公司小馬智行和百度的蘿蔔快跑也已成功讓無人計程車在主要城市上路營運。根據預測,到 2025 年,全球將有約 800 萬輛 3 級或 4 級的自駕車在道路上行駛。

特斯拉的 Cybercab 無人計程車即將上路,標誌著自駕車技術進入新的階段。隨著技術的不斷進步和法律框架的完善,自駕車將在未來的交通系統中扮演越來越重要的角色。然而,自駕車事故責任的問題仍需進一步探討和解決,以確保這一新技術能夠安全、可靠地服務於社會。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
如何讓 Suno 製作出你想要的音樂?四大規則讓你用精準的 prompt 做出心中所想的音樂!
泛科學院_96
・2024/07/04 ・2849字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

最近用了跟 Suno 類似的音樂生成服務 Udio 才讓我理解歌曲生成的 prompt 要怎麼寫,然後配合 sonoteller 這個神器,讓你聽到什麼就能生出什麼!

所以我們這集就來講講:

  1. AI 音樂生成 prompt 的規則
  2. 抄音樂 prompt 的好幫手 sonoteller
  3. suno 跟 udio 的差異

提醒一下,這集沒有詳細的 Suno 操作,重點會放在怎麼寫 prompt 上。

這邊整理一下你看這集必須要知道的事,可以暫停看一下:

-----廣告,請繼續往下閱讀-----


那如果想看詳細的 Suno 操作,可以到這支影片:

好啦,讓我們開始吧。

輸入 Suno 的 prompt 只要關鍵字就好?

一開始用 Suno 時,我一直很困惑,到底要怎麼打 prompt 才能有效控制生成的音樂?

自從最近用了 Udio,它有 prompt 隨機生成,研究了一下 Udio 的 prompt,規則大概是「一句有情緒的故事梗概,加上多個曲風或歌曲細節詞彙」。

-----廣告,請繼續往下閱讀-----

然後我把 Udio 的 prompt 拿到 Suno 上跑,也能跑出不錯的東西。

所以,前面應該是指定整首歌的情境?

例如情境換成悲慘命運,聽起來就會變悲傷。

然後我在後面加上輕快 (Brisk)⋯⋯欸?悲傷去哪了?前面那串根本消失啦!

-----廣告,請繼續往下閱讀-----

那如果把前面那句話,拆解成情緒與事件關鍵字輸入也行嗎?

畢竟字數有限,這樣就能下更多 prompt 了!

嗯,事實是沒差,只要關鍵字就好。

所以結論是,音樂生成的 prompt 跟 Stable Diffusion 差不多,一個一個單詞輸入就好。

-----廣告,請繼續往下閱讀-----

四大規則!

在多次測試之後,我認為有效的 prompt 可以分為這四類:

1. 曲風類:funk、rock、pop、classical 之類的特定曲風。

這些詞最重要,會最大幅度限制歌曲的走向,通常會放多個有關聯的曲風,例如 city pop 跟 funk 還有 Disco 有關,我前面的 prompt 就選了 city pop 跟 funk,不用 Disco 單純是出來之後更有電音舞曲感,我不喜歡。

2. 歌曲控制類:B 小調、brisk、BPM 之類的名詞。

-----廣告,請繼續往下閱讀-----

這類名詞只能做到修飾,例如前面的 prompt 加個 BPM 200,也不可能演奏出 BPM 200 的 city pop,只是稍微加快,但如果我把曲風換成 rock, metal,就能接近我要求的 BPM 200。

3. 情緒、狀態類:miserable, adventure 這些日常生活中會出現的詞彙,能提供整首歌曲的旋律、節奏,但效果極弱。

例如前面放了輕快 brisk,悲傷感就消失了。

4. 樂器類:歌曲中有出現什麼樂器。

-----廣告,請繼續往下閱讀-----

你在選曲風的時候,就已經有樂器配置了。像上面的 city pop,就已經預設會有效果器 (Synthesizer),因此就算輸入民謠吉他 (Acoustic Guitar),也聽不到民謠吉他的原聲,滿滿的效果器。

我把上面的重點總結在這裡,有需要的可以停下來看,總之,先找對曲風,才能生出你想要的音樂。

怎麼知道喜歡的歌是什麼曲風?

那這時你可能會問啦,我哪知道自己想生的曲風是什麼啊?

這時就輪到 Sonoteller 登場啦!

-----廣告,請繼續往下閱讀-----

Sonoteller 是分析歌詞與曲風的 AI 工具,只要給他 Youtube 網址就會幫你分析啦。

這樣你就可以在 Youtube 上先找一首參考的歌曲,再丟到 Sonoteller 分析,瞬間就有曲風的 prompt 啦。不過近期 Sonoteller 的伺服器不堪負荷,常會遇到拒絕分析歌曲的情況。

但如果是超流行的歌,例如 Ado 的 Show,因為已經有人分析過,就會直接調之前分析的資料給你。

畫面的左半邊是歌詞分析,因我沒有生成歌詞的需求,這裡就不詳細說,


不過我自己截一些 summary 中的字當 prompt。

右半邊是曲風分析,Genres 就是我們的曲風啦,也有提供副曲風、情緒、樂器、BPM、key 之類的資訊,都可以複製回去當 prompt 用。

後面的數字是相似程度,參考就好,畢竟曲風、情緒感受是很主觀的,

好啦,讓我們聽聽用 ado show 的曲風做出來的歌長怎樣吧。

好像不太對勁,加個 J-pop 進去看看,這個感覺比較對,就先到這邊吧。

也提醒一下,我們不太可能只複製一首歌的 prompt 就得到想要的歌,多放幾首你覺得類似的歌到 sonoteller 分析是個好方法!

配合 ChatGPT 之類的工具來生成額外 prompt 也可以。不過我覺得門檻比 sonoteller 高,而且也不容易搞懂那些詞彙到底代表了什麼。

等等,Udio 和 Suno 到底哪一個好用?

再來說說前面有提到的 Udio 和 Suno 有什麼差吧!

基本邏輯是相同的,但 Udio 的操作更直覺,Udio 有提供 prompt 提示,不僅給我靈感,讓我學到很多新名詞,真的超級多,可能我在學校音樂課學的詞彙都沒有這幾個禮拜學到的多。

還有 Udio 每次生成歌曲只有 30 秒,更容易修改或擴充,它的擴充還可以選擇 intro outro 來生成音樂的開頭結尾,比起suno用起來更順手。

然後現在 udio 完全免費,一個月能生成 600 首,超適合拿來練 prompt!

蛤?你說這集為什麼沒有 Udio 生成的歌?

因為現在 udio 免費生成的音樂不能商用!

所以這支影片,就還是以 Suno 為主啦。

最後,你覺得 AI 生成的音樂聽起來如何呢?

  1. 當背景音樂不錯聽
  2. 匠氣太重,了無新意
  3. 沒感覺,要做的話
  4. 其他也可以留言分享喔

如果有其他想看的 AI 工具測試或相關問題,也可以留言告訴我們~

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----
泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

0
0

文字

分享

0
0
0
動動滑鼠就能生圖修圖?不用付錢就能即時生成的 Leonardo AI 讓繪畫行雲流水!
泛科學院_96
・2024/06/09 ・828字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

你在尋找免費的繪圖 AI 嗎?

自從 Stable Doodle 要收費後,我就一直在找類似的替代品,正好前陣子 Leonardo AI 也更新了Realtime Canva 功能,不是那個 Canva,是他們推出的塗鴉功能叫 Canva,試用之後驚為天人!

新增加的 inpaint 功能,能用 prompt 指定畫上去的色塊代表什麼,也有圖層跟透明度功能,大幅降低修整圖片的難度。

重點是,免費可用啊,付費只多了 realtime 及時生成,但免費的速度也不會太慢,你問我為什麼會知道?當然是花了錢之後發現根本沒差啊!

而且及時生成的圖都不用扣點,直到你按下輸出鍵才扣,修改次數無限,可以免費白嫖玩到爽,所以今天,就來教一下怎麼用 Leonardo Canva 啦,大概會說這三件事情:

-----廣告,請繼續往下閱讀-----
  1. 從無到有快速生成人物:這邊就簡單介紹基本操作。
  2. 在不影響生成人物的狀況下,加上背景:這邊會用到圖層、去背、AI 元素生成等功能。
  3. 最後微調:介紹 inpaint 功能怎麼用。

好啦,讓我們開始吧!

最後,你覺得 AI 圖片生成應該還要提供什麼服務呢?

  1. 我上色苦手,拜託有個不改我線稿的 AI 上色工具
  2. 可以有更多修改細節的方法,現在都太笨了
  3. 能不能讓 AI 讀懂構圖,不要每次圖生圖都變樣了
  4. 我不知道,能生不就好了

如果有其他想看的 AI 工具測試或相關問題,也可以留言發問。如果喜歡這支影片的話,也別忘了按讚、訂閱,加入會員,我們下集再見~掰!

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----
泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!