Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

ECU: 汽車大腦的演化與挑戰

鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
下雨天車輛打滑撞上路樹會發生什麼事?側方立柱碰撞測試
車輛中心ARTC_96
・2018/07/31 ・1512字 ・閱讀時間約 3 分鐘 ・SR值 731 ・高於十二年級

  • 文/陳新喆 │ 財團法人車輛研究測試中心 技術服務處

實車碰撞測試的各種測試項目,都是為了模擬使用者在道路行駛時,可能發生的碰撞情境。像是前方偏置碰撞模擬與對向車輛的碰撞,側方碰撞模擬轉彎時或通過十字路口受到側向來車的撞擊。本文將介紹側方立柱碰撞測試,此種測試主要是模擬道路因下雨或結冰路面濕滑時,車輛打滑失控使車輛側面撞擊到路樹/路燈或電線桿。

有別於一般的側方碰撞使用可潰縮碰撞壁,側方立柱碰撞則使用剛性圓柱(像是電線桿)來執行,如下圖所示。兩者相較之下,側方立柱碰撞因與車輛撞擊接觸的剛性圓柱是堅硬的鋼材且接觸面積小,對於車體的局部剛性要求就更為嚴苛,才能避免車體有過多的侵入量,進而造成車內人員嚴重的傷害。另外車輛設計上也應提供額外的緩衝功能,像是側氣簾防止撞擊過程中頭部直接撞到柱子,或是座椅側氣囊避免車門直接擠壓軀幹。

ARTC 實車碰撞實驗室執行側方立柱碰撞。 圖/ARTC 提供

測試移動平台是如何設計的?

為了模擬「讓車子打滑去撞柱子」之情境,經國際上車輛安全領域的專家評估過後,認為較佳的方法就是讓測試車一開始就橫的走,然後再去撞擊柱子。

那要怎麼讓測試車橫的走呢?必須先準備一個夠大的移動平台,把受測試車放在上面,再拖行移動平台,使測試車撞擊立柱。另外,為了正確模擬車輛橫向打滑的現象,需要避免移動平台的能量透過測試車輪胎傳遞至測試車上,因此必須盡可能降低測試車與移動平台間的摩擦力,使車輛撞擊時能出現相對滑動的現象。

那被測試車撞擊的立柱呢?在國際上,普遍採用直徑 10 英寸的圓柱。圓柱會透過支架,才安裝於碰撞壁上;這樣的設計使得圓柱與碰撞壁有足夠的距離,讓車輛撞擊圓柱時,不至於會撞到碰撞壁造成二次撞擊。而圓柱與支架亦須懸空,與地面間留有一段空間,使移動平台不會撞到,但又不能太高,圓柱下緣需比測試車底盤略低一些,如下圖所示,如此一來才能確保整個車身都能撞擊到圓形立柱。

立柱下緣需與測試車底盤相對應關係。 圖/ARTC 提供

擺放在車內的人偶,各國法規或新車評鑑制度則有不同的做法,在歐洲新車評鑑 Euro NCAP、聯合國 UN/ECE 及全球技術法規 GTR 是採用 WorldSID 50% 人偶,在美國新車評鑑 U.S. NCAP、美規 FMVSS 則是採用 EuroSID-II 人偶或 SID-IIs 5% 女性人偶來執行測試,來模擬女性駕駛時的保護性;目前車輛研究測試中心(ARTC)實車碰撞實驗室具備 EuroSID-II 人偶及 SID-IIs 5% 女性人偶可提供測試時使用。

最後是測試速度撞擊角度,早期的 Euro NCAP及FMVSS 201 皆採用車身縱向與移動平台前進方向垂直的方式進行,如下圖左側所示,以 29 km/h 的速度進行碰撞,且圓柱中心與人偶頭部重心在同一條直線上。而較新的法規如 ECE R135、FMVSS 214 或新版的 Euro NCAP,則採車身縱向與移動平台前進方向呈 75 度夾角,如下圖右側所示,以 32 km/h 的速度進行碰撞,同樣的圓柱中心與人偶頭部重心在同一條直線上。

側方立柱碰撞夾角示意圖。 圖/ARTC 提供

「車輛研究測試中心」(ARTC) 有鑑於國際碰撞測試之動向,實車碰撞實驗室已於 2016 年完成側方立柱碰撞測試的建置(如下表所示),並已順利完成多次的測試。

這些碰撞測試主要可用以協助進行未來氣囊開發調校車體結構改良相關的驗證,進而增進車輛的安全性與可靠度。

ARTC 側方立柱碰撞測試能量。 圖/ARTC 提供

本文出自財團法人車輛研究測試中心原文於此,如需轉載,歡迎與車輛中心聯繫。

車輛中心ARTC_96
9 篇文章 ・ 3 位粉絲
財團法人車輛研究測試中心 (ARTC),江湖俗稱車測中心,但更希望大家能稱呼我們為「車輛中心」,因為我們不只做測試,我們也做創新研發;我們是由一群對車輛有著專業知識與熱情的工程師所組成,期望透過泛科學這個平台與大家分享各種車輛知識,讓大家更懂車。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

文章難易度

討論功能關閉中。

0

0
1

文字

分享

0
0
1
如果你是一台自駕車,這些是你可能會遇到的考驗
做車的人_96
・2018/01/22 ・2869字 ・閱讀時間約 5 分鐘 ・SR值 512 ・六年級

文/郭長祐

圖/TayebMEZAHDIA @Pixabay

談及「自駕車」,或許會有人天真地認為,行車電腦只要運用前後保險桿上的超音波測距器(俗稱倒車雷達)來偵測前後車距離,以此來調控車速,以及用類似技術使汽車保持在車道內行駛不偏離,以及能在避障情況下完成改變車道、轉彎、停車等動作,就是完滿的自駕技術與程序。事實上,實現自駕車的技術與考驗遠大過於此。

難解的電車難題

自駕車如果遇到相似於倫理學問題「電車難題」的狀況,應當如何權衡判斷呢?圖/By McGeddon [CC BY-SA 4.0], viaWikipedia Commons
自駕車其實需要因應各種突發狀況,例如突然煞車失靈時當如何處置?是持續向前行駛,但可能因此使五名路人死傷,還是選擇改變方向,但會使另一方向的一名路人死傷?這時行車電腦當如何權衡判斷呢?

或許上述的例子過於特殊,實務上很難遇到,但確實點出自駕車實際上路,必然要面對複雜多變的情境。又如一個小女生為了追一個皮球而跑到馬路上,這時若不改變方向女孩將被車輾過,右轉則會撞向其他路人,左轉有可能就撞上水泥牆,車內乘客也會受傷,或者是一隻狗跑到馬路上,或前方貨車的油桶鬆綁滾到馬路上,這些情境自駕車都必須事先備妥研判能力,事發時才能正確快速因應,例如爆胎時只能讓汽車放開油門,緩緩向前到耗盡慣性而停止,若這時嘗試踩煞車或轉動方向盤,反而可能招致全車翻滾的危險。

科學家、工程師努力卸除社會對自駕車上路的心防

即便自駕車具有克服各種車況、情境的能力,自駕車上路依然有其他層面的挑戰,其中社會接納度至為關鍵。根據調查,有 78% 的受訪者表示不敢搭乘自駕車,以及有 41% 的汽車駕駛不願意跟自駕車一同上路,深怕自駕車出狀況殃及他們。

關於此,自駕車業者與研發團隊必須付出更多努力、甚至更有創意的做法才能使社會接受。過去百事可樂曾有一個蒙眼試驗廣告,邀請一群人蒙上眼睛後試喝兩種可樂,實驗證明單憑口感很難精準分辨可口可樂與百事可樂,表示消費者認為先出現的可口可樂口味更佳是種迷思,進而使百事可樂的銷售大增。

根據相似的心理學,或許在自駕車技術成熟後,可以安排實驗證實一般人無法分辨自駕車與人工駕駛的行為;甚至安排一個逼真的假駕駛,悄然在路上行駛一段時間後再告知大眾,以展現自駕車與一般駕駛幾無差別,或許可以說服社會大眾卸除部分心防與多慮。

除了科技突破,自駕車想上路,還得解決社會大眾的疑慮。目前看來,科學家與工程師們還有一大段路要走。 圖/ifinnsson @Pixabay

當然,除了心理層面外,實質上也要讓自駕車的互動更逼近人為駕駛,例如變換車道會打方向燈,前車過近會按喇叭,對向來車有危險行為時,會讓大燈遠近交替切換作為警示。其他如砂石車經過會刻意保持較遠距離避免意外,同時當關上車窗,因為很多高速行駛的砂石車常有砂石掉落,高速下噴濺起的砂石有時會傷到車內的乘客,或者前方有大型車輛時當把車內空調改成封閉循環,避免吸到大車排出的廢氣,維持車內空氣品質,保障乘客健康。做到這些,人們才能逐漸接納自駕車。

另外,人們也擔心行車電腦是否會被駭客入侵並操控,輕則癱瘓交通重則犯罪,畢竟真人是不會被駭的,但電腦會。這一樣有待人工智慧科學家、工程師的努力,才能讓社會大眾接受與肯定自駕車的上路安全性。

目前自駕車的發展還是有些卡關的地方?

談及自駕車面臨的挑戰,除了需要提升緊急狀況的因應能力以及社會觀感外,自駕車的自駕基本功也有待磨練。美國汽車工程師學會(Society of Automotive Engineers,簡稱 SAE)把自駕程度分成六級:

零級(level 0):完全人為操作。
第一級(level 1):某些自動化功能可單獨作用,例如定速巡航,駕駛設定好想要的車速後腳就可以放開油門,讓汽車自動以定速操控油門;
第二級(level 2):多個自動化功能同時作用,但仍需要駕駛關注,必要時仍需要人為介入,例如自動停車;
第三級(level 3):汽車幾乎可全程自主駕駛,必要時才有人為介入;
第四級(level 4):完全不用人為介入,但僅限高速公路或車輛較少時才能如此;
第五級(level 5):一切自動,堪稱終極的自駕。

目前車廠已可達三級水準,若干宣稱達四級,但尚無人宣示已實現第五級,僅有晶片商宣稱已推出可滿足第五級自駕車所需運算力的車用電腦系統。

上述為行車電腦自主駕駛的程度,但人們關切的自駕車安全程度則仍待商確。目前業界確實有一些初步討論,有科學家發表論文,期望用數學公式(Shai Shalev-Shwartz et. al, 2017 )來釐清自駕車碰撞事故的責任歸屬,不過論文發表後有許多爭議與質疑聲浪 ,可能還需要一段時間發展。

計算前車與後車安全距離的公式,詳見Mobileye 提出的自駕車事故公式 圖/Mobileye

另外政府也必須針對自駕車上路而增訂、修訂法規,目前世界各國政府都在拉高車輛安全要求,過去已要求汽車一定要有霧燈與前座安全氣囊才能出廠,現在也開始要求輪胎一定要安裝胎壓感測監督系統(Tire Pressure Monitoring System,簡稱 TPMS)才能出廠,進一步要求一定要配置防翻滾系統等,自駕車也當比照辦理。

有了自駕車,世界可能會很不一樣

談及自駕車,難道所設想的都是例外狀況與災禍嗎?答案應該為否,除弊之外自然也有興利的部分。自駕車若真能實現,也可能帶來更多的美好與便利。未來自駕車預先檢視全程路況,並對進行最佳化路程規劃,自動避開車潮,反而比人為習慣駕駛、記憶駕駛更快到目的地,甚更省行車能源,甚因行車操控更佳使零件更長壽而降低保修次數與花費,或因更佳、更可預設的行車狀況而降低車險費用。

就社會層面的考量,自駕車絕對不可能違反交通規則如超速或闖紅燈,自然可以省下讓交通警察舉發開單的社會成本;甚至更完善的大型自駕車系統可以調節車流分配,從而降低交通顛峰時間的塞車情況,節省龐大的時間成本。

路程規劃、車流調節、共享自駕車……,自駕車若真的普及,可能使我們的生活產生現在難以想像的新面貌。 圖/TeroVesalainen@Pixabay

進一步的,若自駕車夠普及,其實可以實現共享自駕車的願景,如同現在路上有 O-bike 就可以騎,只要針對使用的路程付費即可。而完全自主駕駛後,車內座位也可以完全打通,成為行動辦公室,或在車內共桌用餐、玩牌等,都有機會實現。在愛心傘夠多的情況下,就不再需要自己買傘,同理,到處都有車可搭,還有人要買私家車嗎?而免去私家車自然也就減少了相關的成本,包括每台車閒置時的成本、私人停車場的土地空間、甚至高額的停車費支出等。

最後,各位想像的自駕車未來又是怎樣呢?還有哪些挑戰呢?也請各位不吝與我們分享!

參考資料:

《做車的人》系列內容由裕隆集團委託,泛科學企劃執行

做車的人_96
3 篇文章 ・ 0 位粉絲
「教練,我好想做一輛車。」不用拜託,你真的可以。 我們是一群做車的人,希望帶給大家第一手的車界知識,讓你更懂車是怎麼造出來的。我們希望台灣能有自己的汽車文化,更希望我們都能為這文化驕傲。 本專欄由裕隆汽車贊助。