2

7
3

文字

分享

2
7
3

AI 是大藝術家?人工智慧演算出的作品可以被稱為藝術嗎?——《再.創世》專題

再・創世 Cybernetic_96
・2021/10/06 ・6415字 ・閱讀時間約 13 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者/洪靖,荷蘭 University of Twente 技術哲學博士

人工智慧(Artificial Intelligence,以下簡稱 AI)能夠創作藝術嗎?演算法的作品可以被稱為藝術嗎?

早已有些藝術家利用 AI 或演算法進行創作,但一直要到 2018 年底,這兩個問題才開始進入大眾視野。契機是法國藝術團隊 Obvious 利用 AI(演算法 GAN)協助產生的畫作 Edmond de Belamy 在 2018 年初以一萬歐元賣出,另一幅畫作 Edmond 則在同年十月登上了世界知名的拍賣會佳士德(Christie’s)。雖然 Obvious 涉嫌炒作受到批評,但不可否認的是,他們確實敲開了藝術的大門,把開篇的兩個問題丟向世界。

法國藝術團隊。圖/Obvious

要回答這兩個問題,可以從藝術與技術的關係入手。從藝術角度出發的討論所在多有,尤其是這兩個問題本身就屬藝術領域的熱門話題。相較之下,從技術角度出發的探索似乎不多,而這或許是技術哲學(philosophy of technology)可以提供想法之處。

海德格的技術與藝術

要談技術哲學,不能不談海德格(Martin Heidegger)。他的名文 The Question Concerning Technology(1954)可說是開啟了整代哲學家(與社會學家)對於技術的批判和反省。海德格在文中嘗試追問:技術的本質(essence)是什麼?

《The Question Concerning Technology》。圖/維基百科

我們很容易想到技術零件、工程藍圖…等,但海德格說,技術的本質並不是那些技術的種種(The essence of technology is by no means anything technological)。海德格更認為,傳統用來說明「技術物之所是」的分析,並不足以說明技術的本質。在亞里斯多德的觀點中,一個銀製聖杯之所以是現在這個樣貌,可以拆解成四個因素:材質是銀(質料因)、杯子的樣式(形式因)、由工匠製作(動力因)、用於宗教儀式(目的因)。但在海德格看來,四因說充其量只是近因,真正的問題在於,究竟是「什麼」讓這四個因素剛好聚集在一起並造就了這個聖杯?

海德格認為,這個「什麼」是名為 Revealing(揭示)的過程,也就是一個原本被掩蓋的東西被看見、被呈現出來。用一個稍不精確但容易理解的方式來解釋:這個聖杯「註定」要成為現在這個樣子,這正是它最好的模樣,而所謂 Revealing 正是逐步找到並實現這個「註定」的過程。但這個 Revealing 的過程究竟為何、如何做到?至少有兩種方式,分別對應傳統技術與現代技術。

想想工匠如何製作聖杯。他們需要十分熟悉手中的材質,在打磨的過程不斷調整手勢、力道、角度,透過日積月累的經驗才能製作出一個精緻耐用的儀式品。這個緩慢的過程,是與世界「打交道」並迎來其最好一面的行動,海德格稱之為 Bringing-Forth(帶出)。很明顯,這並非當今各種技術產品的製造方式。

瓦倫西亞聖杯。圖/維基百科

對海德格而言,現代技術粗暴得多,雖然也是 Revealing,但它其實是種 Challenging-Forth(強索)。現代技術的目的不是逐步迎來世界最美好的一面,而是以最快速度、最大效率逼迫自然吐出有益於人類之物——名為「資源」的東西。

海德格的著名例子,是萊茵河上的水力發電廠。為了發電,人類製造水壩阻斷萊茵河,甚至因此破壞了風景。對於海德格而言,這全然不同於在萊茵河上搭一座木橋:木橋雖然也是技術,但它沒有阻斷自然的運行,沒有把萊茵河的水流變成資源、供人類享用。海德格甚至給這種 Revealing 一個專門名稱:Enframing(座架)。

海德格進一步論證,要達成這種 Challenging-Forth,就必須能夠精確掌控和預測自然,而這種精確只能透過數學來達到。換句話說,「可以控制」和「可以計算」一體兩面。從這個說法來看,現代技術並不源出現代科學,而是相反:正是因為人類已經具有以 Challenging-Forth 來 Revealing 世界的欲望與渴求,現代科學才應運而生。換句話說,科學才是(現代)技術的應用,而非相反。

把一切轉化為資源的現代技術,終將成為人類的牢籠,因為人類本身也開始被視為「資源」——人力資源早已成為在各大公司不可或缺的部門。海德格認為,要化解這種悲劇,並非拋棄技術,而是回到藝術。Art 一詞本來就指「工藝」,既是工也是藝;換句話說,技術和藝術系出同源。

現代社會之所以將兩者視為不同、甚至對立的領域,是因為我們太過習慣 Challenging-Forth 這種 Revealing,導致全然忽略過往技術的另一條途徑:Bringing-Forth。製作聖杯既是技術也是藝術,聖杯既是技術物也是藝術品,原因無他,正是因為那是 Bringing-Forth——真正的 Art。

因此,從海德格的角度來看,Obvious 的各種作品很難稱得上是藝術。一方面,Obvious 的作品奠基於演算法,而衆所皆知演算法就是數學,顯然是海德格多所批評的對象;另一方面,它們缺乏創作者日積月累與世界打交道的緩慢過程,全然不是 Bringing-Forth 的成果。

雖然 Obvious 的作品不一定是為了索取自然資源,但就海德格而言,這可能加強或複製了現代技術 Challenging-Forth 的世界觀,如果我們接受了它們是藝術,那麼藝術——與技術系出同源的 Art——成為救贖的機會將消失殆盡。

藝術的定義

就「真正」Art 的定義來說,技術物的原文 Artifact 的意義完全屬實:製造出來的事實(arti-fact)。前面說過,真正的技術也是藝術,是 Bringing-Forth,帶出事物最美好的一面,亦即實現它「真實」的樣子。Arti(製造出來)的事物不一定是假的。

我們之所以很常用 Arti 來暗示虛假,是因為身處現代社會的我們,已經太習慣 Challenging-Forth 意義下的 Artifact。同樣地,AI 裡的 Arti 本身就屬於高科技,所以從海德格的角度來說,AI 不可能也不應該是藝術的創作者,更不可能能名列藝術家,除非 AI 能以傳統 Bringing-Forth 的方式來創作——但顯然不太可能。

Netflix 影集 「Love, Death, Robots」中的「Zima Blue」。圖/Mohamed Aziz

我們不難感覺到,海德格對於技術和藝術的看法有一定程度的封閉性。當海德格追問「本質」問題並試圖回答時,也就不得不排除那些在他看來不是本質的東西。這種對於 Art 的嚴格規定,似乎和當代藝術所強調的開放性與可能性相互扞格。

多數藝術家總是在嘗試新的手法、新的材料;雖有藝術家試圖回到過去的工匠精神,但這畢竟不是多數。許多時候藝術仍被視為揭露真理/真實(truth)的途徑(之一),但我們幾乎不可能回到那種浪漫的 Bringing-Forth 的實踐與時代。如果現代技術真如海德格所說,是人類與現代世界的牢籠,那麼海德格的論述與觀點本身,似乎也成為藝術的牢籠,將藝術關閉在一定的界線之內。

海德格的封閉性,技術哲學界也注意到了。技術哲學的後續發展,尤其是荷蘭學派,試圖超越海德格。正是在這一點上,荷蘭技術哲學更有助於我們理解 Obvious 的藝術實踐、它對於藝術的意義,並幫助我們回答兩個核心問題。

轉向荷蘭技術哲學

當代技術哲學中荷蘭學派的核心人物是 Peter-Paul Verbeek,其著作 What Things Do(2005)爬梳並評析了過往幾位技術哲學家的論述,海德格佔據重要篇幅。Verbeek 認為,海德格對於技術本質的探問,實際上是從技術本身「向後退」,將技術還原到技術之所是的條件(condition)。

這種觀點並非沒有道理,但後果往往指向悲觀的結局:人類被技術所限制。這種觀點也忽略了一個難以否認的事實:雖然技術可能帶來災難與危害,但更多時候技術往往提供人類與社會許多的自由與可能。Verbeek 強調,與其向後追問技術是什麼,不如「向前進」,探問「技術做什麼」——這也正是書名的由來。

為了回答這個問題,Verbeek 將眼光鎖定在人類與技術的關係之上,認為技術橋架起人類與外在世界的雙向關係:技術物影響外在世界如何呈現給(for)人類,亦即「世界是什麼」,也影響人類應對(to)外在世界的行動,亦即「人類做什麼」。

例如,溫度計呈現了一個有「度」的世界(而我們理所當然認為世界 是有「度」的);塑膠杯或紙杯的材質本身就暗示我們「用完即丟」 (即使沒有使用手冊告訴我們這麼做)。換句話說,技術是一種中介物(mediator),中介了人類的經驗(experience)與行動(praxis),不論設計師或製造者有無相關意圖。將這兩種技術中介合併起來,就是一個完整的技術中介論(如下圖)。

需要注意的是,技術雖然身處兩端之間,但它不是單純的媒介物或中間物(intermediary),亦即,它並未忠實的再現「已經在那」(already-out-there)的世界,也不僅僅是傳達人類的意志或想望。遠紅外線光譜儀只能呈現遙遠恆星的特定面向,非遠紅外線所能呈現者皆被遺漏在人類視野之外;汽車被設計來方便人類移動,沒有人預料到結果竟是每個駕駛都成為了移動污染的製造者。換句話說,技術兩側的人類與技術的之所是,並不是因為他/它們有什麼本質或真實的存在(being),而是在與技術產生關係之後才生成的(becoming)。

聚焦人類—技術關係,讓我們得以重新看待許多本來被視為專屬人類的事務。例如,Verbeek 在續作 Moralizing Technology(2011)中論證,如果人類的道德經驗和道德行動都是技術中介的產物,那麼倫理學就不能只是一門以人類為中心的學問,而必須考慮並納入技術所能扮演的道德角色

也就是說,將一個道德決策或道德行為還原到人類的意向與思考並不足夠;反之,我們應該把這些決策和行為視為人類和技術互動的產物。人類的確是能動者(agent),但光有人類不足以成事,真正的能動性(agency)存在「人類+技術」這個綜合體之上。

更有甚者,如果道德決策和道德行為是技術中介的後果,那麼道德標準很可能也是。亦即,什麼是道德的、什麼又是不道德的,這個判準會隨著技術的發展而改變。例如,隱私是從中世紀以來隨著技術發展而浮現出來的價值,但在這幾年達到高峰以後,隨著各種 ICT 技術的廣泛使用,千禧年世代卻已不再把保護隱私看成重要的道德行為。同樣地,Google Glass 問世之後,如果我們去看看使用者或試用者怎麼討論這項技術,我們就會發現,他們討論的不只是技術本身,也包括如何重新協商和定義什麼是隱私權。

如果我們隨著荷蘭技術哲學的腳步,轉向技術做什麼的問題,就會發現,技術中介論以及它的道德意涵,正好可以用於類比藝術,讓我們重新詮釋 Obvious 的行動能否算是藝術活動的問題。

藝術不只與人、也與物有關

首先,如果道德不是人類的專屬事務,那麼藝術亦然。我們常將藝術作品視為創作者意念或意圖的展現,並試圖從作品中讀出創作者賦予作品的意義,有時甚至有詮釋正確與否的爭議。但從技術中介論的角度來看,我們應當將藝術作品視為「創作者+創作工具」的產物:不只是創作者透過工具來呈現他/她的想法,所使用的工具也會反過來形塑他/她的表達。

這也就是為什麼,有的創作者會找尋並嘗試新的材料,從材料出發來創作、讓材料「發聲」。換句話說,藝術作品並非單純由人類所創作,而是人類+技術這個「創作體」的共同成果。

創作者+創作工具。圖/Pexels

一旦我們把藝術創作的單位從「人類」換成「人類+技術」,那麼拿著畫筆或雕刻刀來創作可以稱為藝術活動,使用演算法來創作亦然——兩者都是「創作體」的行為。從這個角度來看,問 AI 能否成為藝術家,似乎不具意義。人類是藝術家,但人類從未不透過技術來創作(即使拿著樹枝在地上畫圖,手上的樹枝也算是技術);同樣地,AI 當然可以是藝術家,但它即使是號稱自學的機器學習,也不曾脫離人類的編程與資料輸入。

當然,我們可能會問:「人類+畫筆」可以展現創意,但一個靠著演算法運作的 AI 加上人類,能夠展現任何創意嗎?這個問題的預設其實是:創意意味著某種出乎意料或不期而遇,但數學無法給予我們這些,畢竟它是可計算並預測的。這正是許多人對演算法作品的質疑。

然而,事實上並非如此,很多時候 AI 會丟出超乎編程人員預期之外的結果,有時候編程人員甚至無法在事後提出相關且合理的解釋。這正是許多論者視 AI 為危險的原因,然而,這種「危險」卻恰好反過來說明了 AI 也可以充滿創意。

另一方面,技術中介論表明,「什麼是道德」會隨著技術而改變,那麼「什麼是藝術」又未嘗不是?《觀察者的技術》一書,足以說明這種現象。作者 Jonathan Crary 認為,藝術史經常把藝術家看成是觀看方式的定義者,用藝術作品來引領大衆的視覺,但實際情況其實相反,是因為大眾的觀看方式早已轉變,才使得某些形式的作品得已被視為藝術。更重要的是,這種轉變與技術的發展互為表裡。

Crary 論證,17-18 世紀的技術物「暗箱」,引領並反映當時人們——包括科學家、藝術家、文學家——的觀看方式:人類只是被動的觀看者,外在世界會透過暗箱的透鏡投影到牆上,既無扭曲也沒變造。這種觀看方式意味著人類如何認識世界:透過不斷仔細描繪和收集外在世界的種種景象。在藝術上,是寫實主義的盛行,而在科學上,則是博物學的當道。那是一個「所是即所見」的時代。然而,到了 19 世紀初期,這種觀看方式一去不復返。

暗箱的原理。圖/維基百科

「後像」(afterimage)問題讓人們開始不再信任眼睛,也懷疑「所是及所見」的基本預設。利用各種視覺暫留與錯覺的技術產品大為盛行,其中以「立體試鏡」(stereoscope)為最。這種技術的流行,造成並反映當時人們的觀看方式:人類是主動的觀看者,外在世界究竟如何不得而知,人類能夠確定的只有眼睛所見的景象;換句話說,所見及所是。

這種觀看方式帶來了雙重的吊詭:一方面,人類失去了對真實的信心和掌握,只能依賴眼前的各種影像,有時甚至認為那些影像才是真的;但另一方面,人類開始試圖追逐甚至複製外在世界,以確保真實不會流失。之於前者,我們看到印象畫派的興起,認為「純描繪」印在眼睛上的像(尤其是光和影)才是真正的真實;之於後者,則是攝影技術的發展,有的人認為攝影只是複製真實毫無創意,而有的人則認為攝影也是一種藝術創作。

透過 Crary,我們可以看到,技術的發展確實改變了藝術的內涵。一方面,過往不被描繪的印象變成可以描繪的主題,甚至成為所謂現代藝術的發端;另外一方面,當所見比所是更加重要時候,視覺的各種可能性被完全打開,使得什麼是藝術有了更大的發揮空間。就像當年有人爭論印象派根本算不是好的藝術作品、有人大力質問攝影能否列為藝術,我們如今也在推敲 AI 或演算法的作品算能否算是藝術。這些正是藝術邊界因為技術而悄悄改變的明證。

藝術與技術的相互敞開

AI 可以創作藝術嗎?演算法的作品可以被稱為藝術嗎?這些問題,技術哲學可以提供一點想法。如果從傳統的技術哲學(海德格)來看,答案是否定的。由於海德格認為現代技術的 Challenging-Forth 是一種糟糕的 Revealing,有違技術與藝術系出同源的 Bringing-Forth,並且反對現代科技所隱含的數學性與計算性,使得我們不得不導向AI或演算法和藝術相互排斥的結論。然而,這種觀點限縮了藝術的開放性,也忽略了藝術不斷挑戰自我邊界的各種實踐。

當我們不再追問技術是什麼的時候,我們也得以從藝術是什麼的泥沼中逃脫。轉向荷蘭學派的技術哲學,讓我們得以把藝術創作的行動者從人類轉換成人類+技術這個綜合體,並且再次將技術算進藝術內涵的變化之中。AI 當然可以創作藝術,但它從來不是獨自創作,正如同過往的偉大藝術家也未曾脫離他/她的繪畫工具。演算法的作品也有被視為藝術的可能,就像印象派和攝影都因為技術改變了藝術的內涵,而開始被稱為藝術一樣。

文章難易度
所有討論 2
再・創世 Cybernetic_96
11 篇文章 ・ 26 位粉絲
由策展人沈伯丞籌畫之藝術計畫《再・創世 Cybernetic》,嘗試從演化控制學的理論基礎上,探討仿生學、人工智慧、嵌合體與賽伯格以及環境控制學等新知識技術所構成的未來生命圖像。

0

1
1

文字

分享

0
1
1
準備出國啦!Surfshark VPN 快趁黑五買起來,上網購物最安心
鳥苷三磷酸 (PanSci Promo)_96
・2022/11/01 ・2113字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 Surfshark VPN 贊助。

兩、三年以來的防疫生活,終於迎來全面 0+7 的這一天啦!返國之後不再需要隔離的一天來了,冰友們,你是不是已經收拾好心情、收拾好行李,在進行機+酒的比價了呢?除了規劃好出國行程、找好景點與美食店家,想要讓自己不可或缺的網路生活也更加安全,一定要趁即將到來了感恩節黑五期間,把超優惠的 Surfshark VPN 服務買起來,為自己的網路生活加買最平安的保險!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

在疫情下,網購成為了更多人的日常。不僅各樣的在地購物節為網友帶來眾多優惠,全球化的購物活動,台灣當然也不會缺席!美國感恩節(Thanksgiving)都是 11 月第四個星期四,但是感恩節後的週五,便是聖誕節前的購物佳期啟動日,這一天通常都會業績超標(在收支表上呈現正向收入(顯示為黑色字體,而非赤字的紅色字體),各家的瘋狂優惠都會在黑五祭出!相信許多精打細算的朋友,對黑五購物節絕對不陌生(很可能還搶過很多優惠!!)

網購怎能漏掉「亞馬遜」!

雅虎奇摩之於台灣,就像是亞馬遜(Amazon.com)之於美國那麼的有名!絕對也是什麼都賣、什麼都不奇怪的最佳代表。

如果你平常就很喜愛一些美國品牌,趁著黑五的日子到亞馬遜清空購物車,覺對優惠不會讓你失望。這時候,透過 Surfshark 連線到亞馬遜美國站,絕對會顯示的價格絕對讓你眼睛為之一亮,這時候最新搭載 M2 晶片的 iPad Pro,獨家支援動態島顯示的 iPhone 14 Pro,絕對是最好入手的時機。除此之外,亞馬遜平台經典的 Kindle 閱讀器,也是超合適的禮物,送禮自用兩相宜啊!另外要特別留意,購買時可以確認商品有沒有幫忙送到台灣,如果還沒有,可以先跟美國的朋友確認一下,邀請他們回國時幫你一起帶回來!

跨國追劇最爽快

對於喜愛追劇的朋友,品味可能相當豐富且多元,畢竟欣賞優秀影視作品,不現語言,更是不限地區啊!只不過,若是你訂閱 Netflix 等跨國 OTT 服務,都會有各地不同的上架影視作品,可能會讓你無法在第一時間就能夠立即「追」到劇,讓你等得心癢癢!還好這一切只要連上 Surfshark VPN 都能解決,Surfshark 支援超過 100 國的 VPN 連線,無論你想看韓國、日本還是哪一國的最新戲劇,通通讓你一秒追到最新進度!

Surfshark 黑五限時 18 折折扣,額外加送兩個月

專屬連結:https://lihi2.cc/8XwRN

出差大陸翻牆超方便

在過往出國、返國都需要隔離的階段,肯定讓不少工作上需要經常往返多國之間的朋友,感到生活驟變。所幸,在防疫政策解封之後,一切都可逐漸恢復正常。對於經常有需要到中國大陸出差的朋友,肯定都會感受到網路斷聯的不方便,因為無論是 LINE、Facebook Messenger、YouTube、Gmail 等你可很能天天都在使用的網路服務,大陸都無法使用。這還不打緊,連跟家人、朋友報平安也很不便。這時候 Surfshark 連上,就可以幫助你輕鬆「翻牆」,跟台灣親人網路無距離!

 

上網不留痕跡,不被追蹤最自由

對於一個人來說,最私密的資料之一,除了你的個資,就屬我們每天耗費大量時間逗留的網路。我們所在網路上留下的痕跡,絕對是超真實的自己,當然你不會期待這樣的自己被「搜尋引擎」、「網路廣告」公司了解得太透徹,好像你在網路上的一言一行,都被監視著。

..0000000\0;也可隱藏IP位置,避免被廣告商追蹤;更可以為你我阻擋惡意程式、釣魚軟體等,讓你防止被攻擊,以及被網路充斥的廣告打擾,好處多又多!

如果對於 Surfshark 還覺得不夠熟悉的話,不得不告訴大家,今年 Surfshark 榮獲第六屆 CyberSecurity Breakthrough 頒發的「VPN 年度最佳解決方案」(VPN Solution of the Year),也就是成為今年最推薦的 VPN 方案。CyberSecurity Breakthrough 是全球領先的獨立市場情報組織,致力於表揚當今全球資訊安全市場上的頂尖企業、技術和產品。有了他們「掛保證」,代表 Surfshark 絕對是品質、信譽都讓你安心的VPN 服務。

講了這麼多,是不是讓你感到很心動了。如果你原本就是網路重度使用者,用來上網的設備是樣樣都有,Surfshark 一個帳號就能支援所有設備,CP 值超高!趁著年度超狂黑五購物節的到來,送給你自己兩年安心無虞的網路生活,肯定是送自己的最好禮物!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
交友軟體演算法成為當代科技月老?
喀報CastNet_96
・2022/12/03 ・4689字 ・閱讀時間約 9 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

交友軟體是現代社會中極其普及的交友途徑之一,而近年因為疫情的影響,人們使用交友軟體的頻率更是大幅度地提升。2019 年 12 月,中國武漢爆發不明原因的肺炎案例,隨即在短短兩個月,全球 Covid-19 確診病例破萬,疫情日益嚴峻。疫情的快速延燒,各國政府接連下達出國限制、取消大型集會活動、施行遠端工作,人與人之間的距離快速拉大。在疫情帶來高度焦慮及失去日常親朋好友親密陪伴的情況下,人們的情感需求無法得到回應,面對冰冷的螢幕,寂寞感無處宣洩,情感需求日益強烈。根據知名交友軟體《Tinder》與《報導者》的訪談內容指出,相比疫情爆發前,2020 年台灣 Tinder 會員的左右滑動數成長將近 4 成,使用頻率大增。交友軟體成為人們認識對象的捷徑,然而,交友軟體的演算法真的是孤寂人們的愛情靈藥嗎?還是反而導致愛情更加觸不可及?

透過交友軟體的幫助,單身長達兩年的 Amanda 終於找到新男友。

Amanda 是個生活繁忙且充實的女生,平常雖然會接觸到一些異性,卻沒有一個是情投意合的合適對象,在生活已經太過繁忙無法再擴大生活圈的情況下,她選擇打開交友軟體,希望可以離開交友舒適圈、認識更多潛在的可能對象,進而找到適合自己的伴侶。透過演算法的配對,她右滑相同學校的 Eli,送出代表有興趣的「Like」;而 Eli 也被照片中笑容燦爛的 Amanda 所吸引,並從文字介紹中發現她是一個興趣豐富的女生,於是也對 Amanda 右滑送出 Like,兩人成功配對。

經過一段時間的聊天、語音通話,兩人對彼此的了解逐漸加深,在互換社群帳號後,Amanda 和 Eli 決定約出來見面。透過實際的相處,他們發現彼此無論是個性還是價值觀都很相似,感情急速升溫,一個月後兩人升格情侶,至今戀情已維持 1 年多。

新一代的月老:幫你在茫茫人海遇到對的他(她)

Amanda 這樣的成功案例並不罕見,在史丹佛大學社會學家羅森非德(Michael Rosenfeld)和新墨西哥大學社會學家湯瑪士(Reuben Thomas)的研究中顯示,2017 年,美國有 39% 的異性戀伴侶是透過網路認識而交往,同性戀伴侶更是超過 60%。在交友軟體 Tinder 所發表的公開數據中,2020 至 2021 年間,Tinder 每天累計滑動配對的總次數達到 10 億,其中女性配對成功機率更是高達 56%,而其背後最大的功臣就是交友軟體的演算法。

交友軟體的演算法是如何找到適合我們的對象呢?簡單來說,交友軟體公司會根據其交友軟體的類型,選擇不同複雜程度的演算法幫助使用者進行推估,演算法類型從單純透過距離計算,到極其複雜的多面向綜合比例評估都有。

使用交友軟體長達八年、超過九款的資深使用者小 B(化名),在大學時期寫過交友軟體程式,他表示交友軟體主要分為兩類:隨機聊天型及配對型。前者僅透過簡單的限制(距離、性別)篩選,例如:Wootalk、Goodnight、Liveany,都被劃分在隨機聊天型的範疇。後者則會利用多重條件幫使用者配對,從基本的年齡、性向,到複雜的簡介照片分析、左右滑動偏好。演算法會依據這些條件進行評估分析,進而找到適合人選,例如:Coffee Meets Bagel、Pikabu、Tinder,都是屬於配對型交友軟體。

▲交友軟體分類。(製圖 / 孫慈媛)

根據 Tinder 官方公布的資料,2019 年以前,Tinder 使用「ELO 評分制」作為其演算法。ELO 評分制是以使用者在社會大眾審美標準中所被評斷的的魅力值為配對標準,為分數相近的人彼此推薦,讓人們能遇到與自己分數相似的對象,以外貌門當戶對為原則進行匹配。評分機制為當 ELO 分數比你高的人對你右滑「Like」,你的分數就會提升,相對地,如果 ELO 分數比你低的人對你左滑「Nope」,你的分數便會下降,最後統計出來的的分數總分就是 ELO 分數。這種將外貌作為唯一依據的評分方式,形成另一種社會階級,因而引發社會撻伐。

2019 年後,Tinder 取消 ELO 評分制,並於 2020 年宣布採用「動態式機制」:透過年齡、距離、性別偏好、距離、興趣及偵測簡介照片,為相似的使用者進行配對。

是媒婆不是月老:包介紹不包準確度

然而,多位使用交友軟體超過兩年的資深使用者,並不認同演算法真的有幫助到使用者更容易地找到對象。

「我喜歡先大量地配對到對象,再透過聊天逐一減少。可是滑久了,交友軟體上面的女生就全都被滑完了,因此演算法的配對沒有任何影響,畢竟當我把演算法推薦的對象滑完,接下來它也只能推薦給我不在限制內的對象,因此對我而言,演算法其實沒有存在必要性。」小 B 坦言。

「我覺得演算法只是把比較受歡迎和高機率配對的人放前面,滑到後面常常都是我沒有興趣的對象,就算遇到有興趣的也配對不到。」使用交友軟體超過兩年的小Z(化名)也提及。為了讓長期使用交友軟體的使用者可以持續滑到對象,演算法會不停調整並放寬原有條件,逐漸失去篩選功用。

倘若演算法只推薦完全符合條件的對象,使用一定時間後,使用者便沒有對象可以再配對,交友軟體也會失去其功能性。另外,現今市面上免付費的交友軟體幾乎都存在著配對限制,使用者每天能夠送出的 Like 數量有限,因此使用者會開始研究如何以最少的機會成本配對到最多潛在對象。小 Z 說:「一開始都會很好配對到人,兩個禮拜後機率都會大幅度下降,這種時候我就會刪掉帳號重來。」

實際上,每個交友軟體的限制與重置時間都不太一樣,如 Tinder 每 12 小時會重置一次,每次可以送出 50 個 Like;OMI 每天早上 5 點會重置,每天可以送出 Like 給 50 人;探探每天有 50 個 Like;柴犬則是每天早上 5 點重置,每天可以與 50 人配對,另外有 3 個機會是可以送滿分給對方,每個機會可以換成多滑 10 個配對對象;Coffee Meets Bagels (簡稱CMB)每天中午 12:00 會推送 21 位女性,提供男性選擇是否要按 Like,女性則是每天可以看到 10 位對自己按 Like 的對象,並掌握配對的主導權,決定是否回應對方。

多位受訪者皆提到 Tinder 的配對規則:程式打開後第一位一般都是在軟體上人氣很高的對象,第二個是已經 Like 你的人,第三到第四位是很高機率會 Like 你的人,如果將程式關掉重開,就會重新循環這個規律。小 Z:「按照這個模式配對,配對成功率基本上是百分之百,一個晚上最多可以配到 30 多人。」

▲ 各交友軟體配對規則。(製圖 / 孫慈媛)

成功配對後:沒有付出時間仍是陌生人

全球用戶超過 3.6 億、在台灣擁有眾多使用者的交友軟體「探探」的數據顯示,截至 2019 年,探探已經成功完成 1 億 7000 萬次配對,可見對於現代人而言,交友軟體確實能夠幫助建立人際關係。透過持續不斷地左滑、右滑,使用者可以輕易地擴展自己的交友圈,滿足對於交友的渴望,然而,配對成功後,真正維持聯絡的人卻是少之又少。

小 Z 坦言,使用一陣子後,會發現配對到很多對象其實不見得是好事,因為每天的時間是很有限的。在時間跟心力有限的情況下,使用者並沒有充裕的時間與每一個配對到的人聊天,深度交流更是困難。網路交友的不信任感及距離感,導致多數使用者即便配對成功,關係卻始終停留在泛泛之交。一旦配對成功的對象過多,使用者便無法記得每個人的資訊、聊過的話題和內容,只有偶爾心情低落的時候,或是情感需求特別強烈的時候,才有機會展開單一次的深度談話,一旦滿足情感需求後,他們便又轉頭退出,不再繼續。

交友軟體開啟了一扇讓使用者能夠輕易接觸陌生人的大門,但要真正了解一個人,需要一定的時間成本,相較於現實交友,如果想要與螢幕另一頭的對方建立如摯友甚至是親密愛人的關係,所需的成本明顯更多。

網路交友多為萍水相逢,若要加深彼此的認識需要耗費大量的時間,加上為了找到最適合的對象,我們不會一次只與一位對象配對、進行交流互動,而每去了解、認識一人,就需要一定的社交能量,在快速拓展交友圈的背後,我們也必須消耗大量社交能量。除此之外,網友關係的現實是只要一方不再回應,這段緣份便戛然而止,彼此再也不會有任何交集,許多人在歷經幾次失敗後,身心俱疲並斷然放棄,其他可能有理想發展的關係也隨之告終,實屬可惜。

經驗分享:找到伴侶的成功法則

綜合六位受訪者經驗,我們總結出五點要素,能夠幫助使用者提高在交友軟體上找到伴侶的機率:

▲  有許多情侶是在交友軟體上認識的。(照片來源 / Pexels
  1. 合宜的照片

無論是在交友軟體抑或是真實世界,乾淨的外表代表著一個人的自律,在對彼此一無所知的情況下,照片成為認識對方最大的線索,也成為最重要的自我行銷管道,六位訪談者皆提及照片是認識一個人的門檻,必須通過門檻才會想要認識這個人的內在,如果照片本身並不吸引人,就不會選擇右滑。

  1. 真實的自我

在交友軟體 Plent of Fish 的調查中,有高達 84% 的使用者期待對方表現出最真實的自己,除了避免上當受騙,也不希望將精力和時間投注在錯誤的對象身上。 因此適當地透露真實的自己除了能提升他人對自己的信任感,更能展現交友的真誠,提高對方的交流意願。

  1. 頻繁的交流

交朋友的過程中需要花費時間培養感情、了解彼此,但交友軟體上認識的對象與自己生活圈大多沒有重疊,在雙方完全不了解、甚至不認識彼此的情況下,更是需要頻繁的交流才能夠變得熟悉,進而提升好感。

  1. 實際的見面

無論雙方在交友軟體上認識多久,回歸現實,手機的另一端終究是一個陌生人。交友軟體像是一個敲門磚,讓使用者可以接觸到更多的人,但最終還是需要實際見面,才能夠真正觀察與認識對方是怎樣的人,也才能破除網路的距離感,讓兩方皆放下戒心,深入地了解彼此。

  1. 多元的共通點

兩人如有共通點(例如:同年齡層、同地區、同校、同職業……等)可以大大提升成功機率,除了兩人價值觀、想法較能產生共鳴,在交友軟體上也會有更多的共同話題,實際見面甚至是交往,也較有發展的可能性。

擁有工具和捷徑卻沒有努力,神仙也難幫

交友軟體是擴大朋友圈的工具,演算法是捷徑,幫助我們找到共通點較多的對象。透過交友軟體,我們可以跨出交友的舒適圈,觸及自己未曾接觸過的人事物,聽到更多不同的人生故事,除了尋找伴侶,亦能增廣自己的視野、提升人生的寬度與深度。

高度相似的兩人,或許有相對更多的共通話題,但並不代表必定適合成為伴侶;相反地,那些不經意右滑的對象也不一定不適合自己。關係的提升還是需要經歷時間的考驗,總地來說,不論是網路上還是現實中的朋友,都需要時間去培養感情、了解對方,透過聊天和實際相處才能知道兩人是否合適。

兩年半來用過六款交友軟體的小 Y 提及,單純透過網路聊天是很難有進一步發展的,人們始終活在現實世界,見面是進一步瞭解彼此的必經之路,如果不願意見面,緣份就會難以維持,最終停留在聊天室中無疾而終。

與此同時,我們必須銘記,網路上的東西都是經過包裝的,我們不需要,也不應該全盤相信,只有清楚認知每個人光鮮亮麗的一面並不是全部,而是包裝過後的選擇性展現,才不會有被欺騙的感受,同時避免掉入陷阱,在保護好自己的前提下,享受交友軟體帶來的益處與樂趣。

參考資料

  1. 大解密 — 強大配對功能的幕後功臣
  2. 透過線上交友結婚的伴侶 比較容易離婚嗎?
  3. COVID-19大事記:從全球到台灣,疫情如何發展?
  4. 世紀之疫下的親密關係:被演算法推升的數位愛情,撫慰了誰?
  5. 寂寞、不安、疏離…… 從大數據看疫情下台灣交友軟體用戶的真實心情
喀報CastNet_96
7 篇文章 ・ 5 位粉絲
國立陽明交通大學傳播與科技學系大三學生自媒體,文章撰寫類目含括科技新知、藝文評論、人物特寫、社會議題和專題新聞,以大學生的觀點出發撰寫與自身和社會相關的文章,內容豐富。 喀報CastNet網站:https://castnet.nctu.edu.tw/

0

5
1

文字

分享

0
5
1
從「自動化」進化成「智動化」——智慧製造是半導體產業的未來趨勢
鳥苷三磷酸 (PanSci Promo)_96
・2022/08/15 ・3611字 ・閱讀時間約 7 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/曾繁安

台灣擁有傲視全球、成熟完整的半導體產業聚落,在世界科技領域中扮演舉足輕重的角色。這個國家的經濟命脈,經過全自動化的時代後,即將迎來另一次生產技術的大變革——智慧製造。

當訂單越來越多,人力卻不夠,半導體業者該怎麽辦?

半導體產業包含了矽晶圓[註]、相關化學品與氣體及導線架等封裝材料,其中又以晶圓厰為大宗,例如台積電便是全球規模最大的晶圓代工厰。素有「現代科技應用的大腦與心臟」之稱的半導體,是現代多數電子產品的核心單元,因為各項產品正是利用半導體電導率變化的特性來處理資訊。然而,目前半導體製造業卻面臨人力資源跟不上產量需求提高的挑戰。

晶圓是積體電路製程中的載體基片。圖/wikimedia

一般半導體廠場域面積大,人力短缺使企業面臨管理人手吃緊,再加上人員進出無塵室的過程繁瑣耗時,也是另一大負擔。與此同時,在廠內儀器參數比對和規劃生產計劃上,傳統人力也可能有出現誤差的風險。疫情時代也促成在宅經濟和 5G 應用的高速發展,各領域對晶片的需求大增,造成半導體產業出現產量需求高,但人力短缺的現象。

因此對不少業者而言,可有效緩解人力不足、大幅提升作業效率的數位轉型(Digital Transformation),可謂勢在必行。

從「自動化」升級到「智動化」的智慧製造

那半導體產業的數位轉型,該怎麽做?所謂數位轉型,不僅僅只是將資料或作業數位化,還包括導入人工智慧(Artificial Intelligence,簡稱 AI)與數位科技,來改變企業的整個營運生產模式。AI 指的是電腦程式可模擬人類思維過程的能力,而在 AI 概念下的機器學習(Machine Learning,簡稱 ML),即為機器可以根據已收集的大量數據,經由建立模型對新數據進行推測,學習找出最佳解、改善效能

結合 ML 的製造執行系統,需搭配裝置在工廠各處的多個傳感器(Sensor),來收集與回傳各樣的生產數據。它們與工廠設備的相互連接,即是運用了物聯網(Internet of Things)的技術。有賴於 5G 科技的發展,數據可以達成高速率傳輸與低延遲,使得機器與機器之間可以達成溝通,在整合分析各方數據資訊後,有效率地完成各種指令操作,可以比自動化製造系統,更進一步為人類代勞工廠運作的大小事務。

舉例來説,當工廠的生產過程出現問題,自動化系統只會跳出異常通知,還是需要仰賴人員來進行手動排除;但換作應用 ML 系統的話,便可透過自我學習,來自動調整製作流程以解除異常狀況,無需人力介入便可自主解決,提升良率,達成「智動化」智慧製造(Smart Manufacturing)的最終目的。

機器可以根據已收集的大量數據,經由建立模型對新數據進行推測,學習找出最佳解、改善效能。 圖/elements

懂得精益求精、提高品質產量的智慧工廠

一座運用智慧製造的半導體工厰,不但能自主克服製程中的疑難雜症,更能幫助提高晶圓的產量品質。在研發方面,AI 可以協助理解高複雜、高維度的製程開發挑戰,也可與 ML 軟體分析感測資料和檢測影響,進行品質管理與缺陷檢查。

此外,數據治理和數位分身,也是智慧製造的關鍵策略。對企業整體的數據進行管理和控制以提高數據的價值將因為數據產生的成本風險降到最低,是數據治理(Data Governance)的核心精神。

在兼顧資訊安全下,數據治理的體系能使跨部門間的數據共享更為方便暢通。輔以 AI 及 ML 的運算,便可以使業務部門的客戶需求、供應鏈管理等資料,與工廠生產部門的設備控制與品管等流程,有更迅速緊密的配合,規劃好合適的未來生產計劃,指導人員進行相關作業。

如同我們可以在電玩游戲或社交媒體上,按照自己的個人形象,來打造自己的虛擬化身,工厰也能藉助現今的科技,來為產品的物理實體,在資訊化平臺或系統的虛擬空間中,打造一個類比實物數位分身(Digital Twin)

數位分身模型之概念圖。圖/wikimedia

數位分身也是物聯網的應用之一,半導體廠中,由傳感器所收集到的晶圓製造數據,在 AI、ML 和軟體分析的協助下被整合,對映成數位空間中「雙胞胎」的存在。這位孿生兄弟不僅能夠隨物理實體的變化而即時做出相應變化,還可以提供無法在實體產品上測試計算的數據。

理想情況下,數位分身可以經由機器學習,分析過去的歷史資料或多重來源的數據,來推估實體的未來情境。因此在危機或異常事件發生前,業者便可預先進行預測性的設備維護與產品的良率分析,比起傳統人力的判斷更加精確,降低技術風險,大大提高生產效率。

工業 4.0 浪潮來襲,智慧製造是產業未來趨勢

運用通訊科技、資料庫和電腦系統達成全自動化生產,已不是新鮮事,如今人類社會正迎來第四次工業革命的新一波浪潮。主打網絡與機械相互連接的核心精神,導入人工智慧、機器學習、物聯網感測與大數據分析等人機協作的智慧製造,是因應多變市場需求的時下趨勢。

在半導體領域中,企業龍頭台積電可説是數位轉型的成功案例,從二十年前的全自動化製造系統,如今致力於打造組織內部友善 AI 的工作環境,努力向智慧製造全面轉型。數位轉型的技術支援不能沒有半導體產業製造的晶片,而如今數位轉型也有望帶領半導體產業突破產能吃緊、人才短缺的困境,走向智慧製造的新紀元。

以台灣在地企業的智慧製造覆蓋率而言,就已在短短 6 年內成長 50%。舉全台最大的國際半導體展 SEMICON Taiwan 為例,智慧製造相關的展商在近六年內的成長幅度也同樣攀升了 50%。

今年高科技智慧製造特展將以歷年最大規模之姿登場,與全台最大半導體盛宴 SEMICON Taiwan 2022 國際半導體展同期同地舉辦,匯集橫跨高科技製造業智慧製造解決方案業者、系統整合、軟硬體商及智慧製造需求端業者,如盟立自動化、倍福自動化、家登精密、攝揚企業、日商 JEL 等不容錯過。

今年高科技智慧製造特展將以歷年最大規模之姿登場,與全台最大半導體盛宴 SEMICON Taiwan 2022 國際半導體展同期同地舉辦。圖/SEMI

因應疫情下數位轉型成為全球企業的重要任務,今屆展覽中的「高科技智慧製造論壇」將由美光科技、 Lam Research、 Rockwell Automation、Siemens 等知名企業專家以人工智慧工廠為主軸,探討 GEC 技術藍圖,內容包含五個部分包含數據管理、智能分析、數位分身預測等重點實務經驗分享,從晶圓厰到設備製造商和解決方案提供者的角度,讓參與者得以探究 AI 智能工廠的前景和挑戰,跟上數位轉型的步伐。

除了智慧製造議題,展覽期間共有超過 20 場重磅級的國際趨勢論壇,豐富主題涵蓋先進製程、異質整合、化合物半導體、車用晶片、永續製造、半導體資安及人才。論壇將在今年 9 月 13 日率先開幕,展覽則於 9 月 14 日至 16 日於臺北南港展覽館一館盛大開場,規模創歷年新高,届時將有 700 間國內外指標性大廠共襄盛舉,現場將有 2,450 個攤位展出,完整串聯全球半導體供應鏈,目前展會參觀與論壇皆已開放報名,參與席次有限,有興趣者趕快手刀至官網報名起來!

註:晶圓(Wafer)是半導體晶體圓形的簡稱,是從半導體材料如最常見的矽,經過拉製、提煉等一系列處理過程,製成的圓柱狀半導體晶體經過切片、抛光而來。這些圓形薄切片被用於積體電路製程中的載體基片,也可用來製作太陽能電池。

參考資料

  1. 半導體是什麼?晶片產業一次看懂
  2. About SEMI Smart Manufacturing initiative
  3. 【獨家披露】台積電數位轉型的下一步,靠AI推動全面轉型(上
  4. 【獨家披露】台積電數位轉型的下一步,靠AI推動全面轉型(下)
  5. 泛科學:每分鐘 15 次的駭客攻擊,5G 世代的臺灣資安挑戰——資安所王仁甫策略總監專訪
  6. Data Governance – 臺灣人工智慧行動網
  7. 「數據治理」:人工智慧企業的基本功
  8. 科技大觀園:從全自動化製造邁向智慧製造
  9. 聯剛科技股份有限公司
  10. 【新興領域:9月焦點8】數位分身(Digital Twin)技術發展趨勢與不同層次應用模式
  11. 半導體資安的新挑戰!後疫情時代,如何全面打造半導體供應鏈數位韌性
  12. 工業4.0大全,從淺到深一篇搞懂它!
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia