Loading [MathJax]/extensions/tex2jax.js

2

4
2

文字

分享

2
4
2

2022 年《Science》年度十大科學突破(上):持續進化的 AI 與韋伯太空望遠鏡

PanSci_96
・2022/12/30 ・3733字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

回顧 2022 年,有沒有讓你印象特別深刻的科學新聞呢?約莫兩星期前,《Science》雜誌公布了今年的十大科學突破,從農業到藝術、從細菌到宇宙、從百萬年前的生態到人類的未來,每一項突破都和我們的日常生活息息相關。

好啦,廢話不多說,現在就來揭曉答案吧!

十大突破之首——遙望宇宙的韋伯太空望遠鏡

今年,韋伯太空望遠鏡(JWST)帶來的震撼,相信你我都印象深刻。

韋伯發布的第一批照片拍到了 SMACS 0723 星系團。圖/Science

早在 1990 年,哈伯太空望遠鏡發射升空後,科學家就開始規劃下一步。他們不只想看見更遙遠的宇宙,也想透過不同的波長,分析地外生命存在的可能性。

-----廣告,請繼續往下閱讀-----

哈伯望遠鏡的觀測波段以可見光為主。確實,紫外線和可見光波長最有利於觀測誕生不久的新星,但隨著數十億年過去,這些新星發出的光,穿過不斷膨脹的宇宙,來到地球,被拉伸到更長的紅外線波長後,哈伯就沒輒了⋯⋯

韋伯望遠鏡可以清楚看見狼蛛星雲的塵埃、氣體雲和碳氫化合物。圖/Science

那麼,要怎麼看見更遙遠的宇宙呢?去年底,歷時 20 年建造、造價 100 億美元的「韋伯太空望遠鏡」順利升空,開啟 150 萬公里的長征。韋伯搭載的科學儀器可以觀測紅外線波段,包括來自宇宙第一批恆星和星系發出的光。

韋伯利用四種不同的紅外線波段觀測系外行星 HIP 65426 b。圖/Science

今年 6 月底,韋伯開始收集數據,三星期後就傳回了第一批深空照片,讓科學家看見了更遙遠、更古老的新星系,徹底改寫我們對宇宙的認識。對於天文學界來說,這是一個充滿奇蹟的時代,韋伯望遠鏡也因此榮登 2022 年最重要的科學突破。

2022 年十大科學突破之首:韋伯太空望遠鏡。影/Science

研發多年生水稻 PR23,減輕農民耕作負擔

盤點世界上最主要的糧食作物,水稻肯定有一席之地!現今,大部分水稻都是一年二至三穫,每年收穫後都得重新種植,對農民來說是非常耗時、費力的工作。

-----廣告,請繼續往下閱讀-----

今年 11 月,中國雲南大學農學院的研究團隊在《Nature Sustainability》發表他們十餘年來嘔心瀝血的研究成果——多年生水稻「PR23」。這是長雄野生稻和 RD23 栽培稻的雜交種,不但可以達到和傳統水稻相仿的產量,還可以省下農民的大把時間、精力與成本。

PR23 第一年的稻作成本與傳統水稻差不多,但從第二年開始,農民就可以跳過育秧、犁田、移栽幼苗的步驟,降低約 50% 的人力成本,到了第五年才需要重新種植。

在中國,PR23 的種植面積超過了 15,000 公頃,平均產量則是每公頃 6.8 噸,略高於傳統水稻。根據非洲和東南亞的試驗數據,PR23 還可以改善土壤結構、增加有機質含量、減少梯田和高地的水土流失。

與此同時,科學家也正在觀察兩個潛在問題:一、雜草和病原體是否會積累在田地中,導致 PR23 需要更多除草劑,二、是否會排放更多的一氧化二氮,加劇溫室效應。但目前不可否認的是,多年生水稻有助於降低成本、提高收益,確實是一項重要的突破。

-----廣告,請繼續往下閱讀-----
有了多年生水稻,農民每年都能省下好幾週的工作量。圖/Science

誰說 AI 沒創意?AI 的創造力可是超乎想像呢!

說到 AI,有沒有讓你想起去年的十大科學突破呢?沒錯,去年的十大突破之首就是預測蛋白質 3D 結構的 DeepMind 團隊,而在今年,他們著手設計全新的蛋白質,用來開發疫苗、建築材料和奈米機器。

與此同時,DeepMind 發布了 AlphaTensor,用來找出更有效率的矩陣乘法演算法。高中就學過的矩陣是代數中最簡單的運算之一,可以用來壓縮網路資料、辨識語音指令、模擬與預測天氣、生成電腦遊戲圖形等。

另外,DeepMind 還發布了可以自主編寫程式、解決問題的 AlphaCode。在程式解題競賽網站 Codeforces 定期舉辦的比賽中,AlphaCode 甚至打敗了過半的參賽者,取得排名前 54% 的成績,跌破創辦人的眼鏡。

除了科學、數學、程式設計之外,AI 在藝術領域更是大放異彩。

繼 OpenAI 去年發布繪圖軟體 DALL-E 後,今年 4 月發布了進化版的 DALL-E 2,只要輸入幾個字詞,AI 模型就能自動生成圖像。在 9 月,有一位藝術家利用類似的 AI 繪圖工具 Midjourney 奪下美國科羅拉多州博覽會首獎。

-----廣告,請繼續往下閱讀-----

此舉在藝術界掀起一股旋風,卻也引來了哲學辯論和道德抨擊,但毫無疑問的是,人類可以借助逐年進化的 AI 拓展創造力,開發出更多、更好的工具。

使用 Midjourney 創作的科羅拉多州博覽會首獎作品。圖/Science

超級華麗的大~大~大細菌!

在你的印象中,細菌是不是都很小、不用顯微鏡就看不見呢?今年 2 月,科學家在法屬西印度群島發現一種肉眼可見的巨無霸細菌——華麗硫珠菌(Thiomargarita magnifica),震驚了生物學界。

一般來說,細菌沒有細胞核和膜狀胞器,遺傳物質都在細胞中自由漂浮,但華麗硫珠菌真的很華麗,不只可以長到 2 公分,比多數細菌大上 5000 倍,而且還有隔間可以容納 1200 萬個基因組——這大概是多數細菌基因總量的 3 倍。

身為一種不應該有膜的原核生物,華麗硫珠菌的結構或許即將改寫原核生物和真核生物的定義,甚至有機會成為一塊拼圖,補足細胞進化過程中缺失的環節。

-----廣告,請繼續往下閱讀-----
華麗硫珠菌挑戰了「細菌」的傳統定義。圖/Science

開發新疫苗,呼吸道合胞病毒治療現曙光

在這 COVID-19 肆虐之年,美國感染呼吸道合胞病毒(RSV)的病例數也急遽上升。呼吸道合胞病毒傳染性極強,通常只會引起類似感冒的輕微症狀,但在嬰幼兒身上,這種病毒會使肺部發炎,而在老年人身上,會使既有的心肺疾病惡化。

早在 50 多年前,就有科學家試圖開發呼吸道合胞病毒的疫苗,但在臨床試驗導致 80% 的接種者住院、2 名兒童死亡後,開發就此中斷。後來,科學家發現敗筆在於這種殺死病毒後製成的「滅活疫苗」所引發的抗體較弱,不只殺不掉活生生的病毒,還能反過來幫助病毒破壞氣管。

如今,莫爾豪斯醫學院(Morehouse School of Medicine)開發了能夠引發強效抗體的新疫苗。在輝瑞(Pfizer)和葛蘭素史克藥廠(GSK)進行臨床試驗後,證實這兩種新疫苗可以保護嬰兒和老年人,不會引起嚴重副作用,而在孕婦注射後,也能將抗體傳給胎兒。

雖然過往的失敗讓開發團隊心存疑慮,但目前沒有任何數據顯示疫苗不安全,其中幾種候選疫苗也可能將在明年獲得監管機構批准上市。

-----廣告,請繼續往下閱讀-----
RSV 疫苗證實能有效保護易受感染的嬰幼兒和老年人。圖/Science

好啦~這篇到這裡,先介紹前五項突破就好!因為《Science》今年提供的內容實在是太精彩了,為了避免讀者一次閱讀太多字很累,只好拆成上下兩篇⋯⋯看完這篇後,如果你好奇另外五項突破是何方神聖,就來看第二篇吧!

接續下篇:2022 年《Science》年度十大科學突破(下):EBV 病毒與發燒的地球

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
PanSci_96
1262 篇文章 ・ 2413 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
沒有症狀也不能大意!30 歲後女性都該注意的子宮頸癌預警指南
careonline_96
・2025/06/18 ・2608字 ・閱讀時間約 5 分鐘

圖 / 照護線上

「即使完全沒症狀,也一定要接受子宮頸癌篩檢!」隨著羅氏診斷女性健檢週活動開跑,林口長庚婦產部教授張廷彰醫師如此表示。根據衛生福利部國民健康署 111 年癌症登記報告,子宮頸癌長期位居女性癌症死因前十名,儘管政府長年推動篩檢政策,仍有約 20% 至 30% 的患者在確診時已屬中晚期(二期以上)[1]。近年政府積極推動 HPV 疫苗,但許多 30 歲以上女性仍屬「疫苗空窗世代」,未能在黃金施打年齡接種疫苗,此類族群更應建立定期檢查習慣。

「早期發現對子宮頸癌非常重要!」張廷彰強調,若能及時接受標準治療,一期子宮頸癌的五年存活率可超過 90%,如果進展至中晚期子宮頸癌,便可能會需要接受大範圍手術,再搭配放射治療或全身性治療,對工作及生活造成影響,存活率也比較差。

預防子宮頸癌
圖 / 照護線上

遠離子宮頸癌威脅,三道防線守護健康

子宮頸癌的發生多與人類乳突病毒(Human Papillomavirus, HPV)的感染有關,主要經由性接觸傳染,或透過接觸帶有病毒的物品造成間接感染。張廷彰指出,多數人感染後沒有明顯症狀,甚至可能自行痊癒,但有部分人感染高風險HPV後,因體質因素無法清除病毒,造成高風險HPV持續感染,持續的定義為達半年以上,進而演變為子宮頸癌前病變或癌症。

由於HPV感染與初期病變通常無明顯症狀,許多女性容易忽略定期篩檢的重要性,若等到出現異常出血等明顯警訊時,多已進展為子宮頸癌,往往已錯過早期治療的最佳時機。因此,張廷彰強調女性應透過「三道健康防線」及早防治:第一,建立安全性行為觀念;第二,接種HPV疫苗;第三,定期接受子宮頸癌篩檢,包括抹片與高危HPV DNA檢測,才能有效攔截疾病於早期,守住自身健康防線。

-----廣告,請繼續往下閱讀-----
子宮頸抹片搭配HPV DNA檢測篩檢更完善
圖 / 照護線上

子宮頸抹片搭配HPV DNA檢測 助精準掌握健康風險

目前子宮頸癌的篩檢方式主要有兩種:子宮頸抹片檢查與高風險HPV DNA檢測。抹片檢查是透過顯微鏡觀察子宮頸細胞型態,檢視是否有可疑性的癌細胞存在;而高危HPV DNA檢測則是利用基因技術分析是否有感染高風險型HPV,能在病變尚未發生前就偵測出潛在風險,讓防線更提前。

張廷彰醫師建議女性可搭配兩種篩檢方式使用,以提升篩檢準確度。若HPV DNA檢測結果為陰性,代表近期感染風險較低,可每五年再進行一次篩檢,不僅能減少不必要的頻繁檢查,也能更早掌握健康風險、規劃後續追蹤。

此外,目前政府亦有相關補助政策,鼓勵女性善加利用公費資源以守護健康:

  • 25至29歲婦女:每三年一次免費子宮頸抹片檢查
  • 30歲以上婦女:每年一次免費子宮頸抹片檢查
  • 當年度年齡為35歲、45歲、65歲女性可接受一次免費HPV DNA檢測

透過這些篩檢工具與政策支持,女性可更有效掌握自身健康,及早防範子宮頸癌風險。

-----廣告,請繼續往下閱讀-----
子宮頸癌高風險族群要注意
圖 / 照護線上

9 大子宮頸癌高風險族群要注意!醫:定期檢查遠離威脅

除了公費補助對象為,高風險族群應每年做一次子宮頸抹片檢查,也建議搭配高危人類乳突病毒 HPV DNA 檢測。高風險族群包括未曾接種過HPV疫苗、較早發生性行為、有多重性伴侶、HIV 感染、接受器官移植、使用免疫抑制劑、有家族病史、反覆陰道感染、抽菸或飲酒者等。即使沒有症狀,也應該定期接受子宮頸癌篩檢,才能及早處理。

張廷彰醫師表示,自 2025 年起國民健康署擴大補助子宮頸癌篩檢,符合公費篩檢條件的女性朋友務必好好把握,若未符合資格也可自費進行篩檢,守住健康防線,也呼籲民眾「挺身而出守護健康」,主動提醒身邊女性來一場健康篩檢約會!

筆記重點整理

  • 早期發現對子宮頸癌非常重要,若能及時接受標準治療,一期子宮頸癌的五年存活率可超過 90%,如果進展至中晚期子宮頸癌,可能會需要接受大範圍手術,再搭配放射治療或全身性治療,對工作及生活造成影響,存活率也比較差。
  • 子宮頸癌的發生大多與人類乳突病毒(HPV)感染有關,HPV 第 16、18 型屬於高危險人類乳突病毒,可能導致子宮頸癌前病變、子宮頸癌以及男女外生殖器癌;低危險人類乳突病毒則可能會引起生殖器疣(菜花)。
  • 預防子宮頸癌有三道關鍵防線,包括安全性行為、接種人類乳突病毒 HPV 疫苗、定期接受子宮頸癌篩檢。過去,子宮頸癌篩檢主要仰賴子宮頸抹片檢查近年來許多國家已開始採用 HPV DNA 檢測,因為HPV DNA 檢測能更準確預測未來罹患癌症的風險。
  • 自 2025 年起衛生福利部國民健康署擴大子宮頸癌篩檢,除了子宮頸抹片檢查,還納入 HPV DNA 檢測。在子宮頸抹片檢查部分,25 歲至 29 歲婦女,每 3 年 1 次子宮頸抹片檢查;30 歲以上婦女,每年 1 次子宮頸抹片檢查。當年度為 35 歲、45 歲、65 歲的女性,可接受 1 次人類乳突病毒 HPV DNA 檢測。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----