0

3
3

文字

分享

0
3
3

解析韋伯太空望遠鏡第一批影像背後的科學意義

EASY天文地科小站_96
・2022/07/14 ・4350字 ・閱讀時間約 9 分鐘

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

萬眾矚目的詹姆士韋伯太空望遠鏡,在經過半年的校準與測試後,終於公開了它拍攝到的第一批成果。這些五彩斑斕、美麗絕倫的照片究竟是什麼樣的天體,照片的背後又有哪些深藏的意義?就讓我們一起深入解密,韋伯的第一批照片吧!

韋伯望遠鏡是什麼?

詹姆士.韋伯太空望遠鏡是美國、歐洲與加拿大太空總署合作開發的新一代旗艦級紅外線太空望遠鏡,也是無數天文學家夢寐以求、能幫助人類破解許多未解天文迷團的利器。

韋伯的研發其實早從 1996 年就已經開始,但是由於開發時遇到諸多困難,導致嚴重的預算超支與進度延宕,這台耗資上百億美金的超級望遠鏡,直到去年年底才終於從法屬圭亞那發射中心,用一枚亞利安 5 號運載火箭發射升空,前往距離地球 150 萬公里的日地第二拉格朗日點。

拉格朗日點是什麼?

日地拉格朗日點一共有五個。當物體在這些點上,其受到來自太陽與地球的重力恰到好處,因此太空船只需要少量的燃料,就可以長期與地球和太陽保持穩定的相對位置,可謂是地球軌道附近的風水寶地。

而韋伯繞行的,是位於地球後方的第二拉格朗日點,簡稱 L2。之所以選擇這裡,是因為只有 L2 的位置剛好會讓地球、太陽、月亮都在同一側,而這三個星體正是天文望遠鏡的主要紅外線光害來源。位在 L2 的韋伯,就可以用它的遮陽帆一次把三顆星體全部擋住,認真凝望遠方而不受干擾,因此 L2 可以說是觀測宇宙的絕佳地點。升空的幾個月之間,韋伯已經完成一系列的儀器校準工作,一步步把望遠鏡調整到最佳狀態。

相比知名前輩「哈伯太空望遠鏡」,韋伯的優勢不只是擁有比哈伯大六倍的鏡面,更重要的是它是以紅外線為主力觀測波段。宇宙膨脹造成嚴重紅移,但哈伯望遠鏡的守備範圍主要是可見光,波長範圍是 90 – 2500 奈米,可說是鞭長莫及啊。

這時換上以波長 600 – 28500 奈米的紅外線為守備範圍的韋伯,就可以讓我們看到更遙遠、更古老的宇宙。此外,同一個天體在可見光和紅外線看起來,往往長得相當不一樣。這個強大的紅外線觀測能力,正是韋伯最引以為傲的武器。

作為深具儀式感的第一批科學影像,韋伯這次公布的影像分別對應四個主要科學主題:早期宇宙星系演化恆星的生命循環系外行星

1. 早期宇宙—— 星系團 SMACS 0723 與重力透鏡效應

星系團 SMACS 0723。圖/Webb Space Telescope

畫面中心黃白色的天體,是由成百上千的星系共同組成的星系團 SMACS 0723。在韋伯之前,哈伯太空望遠鏡就曾經花費數個禮拜的時間拍攝這個星系團。然而擁有更大鏡面、更精良儀器的韋伯,僅用了 12.5 個小時就拍出了解析度更高、畫面品質更好的照片,讓我們看到許多以前難以辨識的黯淡星系。可見哈伯與韋伯在觀測能力上的差距。

對天文學家來說,圖中最令人興奮的其實不是前景壯闊的星系團,而是後方這些經過重力透鏡扭曲和放大的小小星系們。星系團龐大的質量扭曲了周圍的時空,讓整個星系團好像一塊巨大的放大鏡一樣,可以偏折和聚焦通過的星光,稱為「重力透鏡效應」。

當星系團後方更遙遠、更古老的星系發出的光線通過星系團時,就會被星系團的重力透鏡效應偏折和聚焦,形成而圖中無數弧形的扭曲影像。

紅圈為照片上受重力透鏡影響的區域之一,可以看到星系被拉長。

這些仍在襁褓中的小小星系,往往正在快速的孕育新的恆星,或是互相合併,因此有著混沌不規則的形狀。離我們越遠的星體發出的光,需要越長的時間才能到達我們的眼中。因此研究這些遙遠且古老的星系,能幫助天文學家理解宇宙早期的模樣。

2. 星系演化——史蒂芬五重奏(Stephan’s Quintet)

上一張照片讓我們認識星系的起源,這張「史蒂芬五重奏(Stephan’s Quintet)」則可以讓天文學家更仔細地研究星系內的複雜結構,以及星系與星系之間的交互作用。

史蒂芬五重奏(Stephan’s Quintet)。圖/Webb Scape Telescope

正如其名,「史蒂芬五重奏(Stephan’s Quintet)」是由五個視覺上相當靠近的星系所組成。但其實最左邊的這個星系(NGC7320)與另外四者並無關聯,只是從地球上看剛好位在天空中差不多的位置而已。

圖片中偏向黃白色,感覺如絲綢般順滑的部分是在近紅外線波段拍攝,主要顯示的是星系中恆星的分布;而醒目的橘紅色,則是來自中紅外波段的資料,展示的是星系中的高溫塵埃,以及星系中的氣體高速對撞時產生的震波(Shock wave)。

除了影像,韋伯還使用光譜儀仔細檢視了影像中右上方的星系(NGC 7319)中心,因為那裏有一顆比太陽重 2400 萬倍的超大質量黑洞,正在吸食周遭的氣體,並在過程中釋放巨大的能量。

藉由觀察光譜的細節,韋伯可以分辨出像是氬離子、氖離子或是氫分子等等化學組成,甚至知道氣體的溫度、運動速度這些從一般照片難以辨識的資訊。

史蒂芬五重奏就像一個天然的實驗場,讓天文學家研究星系演化的詳細過程。

3. 系外行星——WASP-96 b 的大氣光譜

這一張照片可能是整批影像中,視覺上最不起眼的一張,它是系外行星 WASP-96 b 的大氣光譜。

WASP-96 b 的大氣光譜。圖/Webb Scape Telescope

最近 20 多年來,人類對太陽系以外行星的認識越來越多。截至今日,人類已經發現超過 5000 顆系外行星。然而,以現有的觀測技術,天文學家通常只能用一些間接的方法,測量它們的質量、半徑、軌道週期等粗略的特性。想知道這個行星是否適合生命生存,就不能少了行星大氣層的化學組成和溫度資訊。

那要怎麼取得行星的大氣資訊呢?當行星通過恆星跟地球中間時,恆星的一部分星光將會通過行星的大氣層,並被行星的大氣吸收。吸收的多寡和波段,取決於行星大氣層的溫度和化學組成等特性。此時,天文學家就可以藉由分析光譜中的各種特徵,去回推行星大氣層的性質。

圖片中的白點,即是韋伯實際觀測 WASP-96 b 時取得的光譜資訊。而藍色的線,則是天文學家認為最貼合觀測數據的理論模型。

根據這個觀測結果,天文學家計算出 WASP-96 b 的大氣溫度約為 725°C,大氣中明顯有著水氣,並推測可能還有雲和霾存在。未來進一步的分析和觀測,將為世人揭開更多系外行星的神祕面紗。

4. 恆星的生命循環——「南環狀星雲」與「船底座大星雲(Carina)」

最後兩張照片都與恆星的生命循環有關。正如人會有生老病死,恆星也是一樣。

恆星一般誕生在巨大分子雲中,氣體在重力吸引下逐漸塌縮、升溫並點燃核融合,成為一顆恆星。

當小質量的恆星步入晚年,其結構容易變得不穩定,最終將自己的外層氣體拋射出去,形成美麗的行星狀星雲,也將氣體吐回到星際空間中,成為下一代恆星的養分。氣體都拋射完之後留下的核心,就是白矮星。

各位現在看到的,是暱稱「南環狀星雲」的行星狀星雲,左右兩張圖分別於近紅外線與中紅外線拍攝。

南環狀星雲。圖/Webb Scape Telescope

我們可以看到,左圖中的影像比右圖要更清晰一些,這是因為在相同的望遠鏡口徑下,波長越短所能達到的理論解析度就越高。

有趣的是,在左圖中看起來位於星雲中心的明亮恆星,其實並不是行星狀星雲的核心。真正的核心其實是在其左下方,一顆被塵埃包裹著的黯淡白矮星。在近紅外線波段的影像中,這顆白矮星幾乎淹沒在隔壁恆星的炙烈星芒之中。

但在中紅外波段,由於恆星的亮度相對降低,包裹著白矮星的塵埃發出的光就變得清晰可見。再次展示即使是同一個天體,使用不同的波段進行觀測,往往可以看到不同的東西。

最後這片壯麗的宇宙山崖,則是位於「船底座大星雲 Carina」西北角的 NGC3324 恆星形成區。在這裡,源自星雲中無數初生恆星所發出的炙烈輻射、恆星風與噴流,吹散、游離了星雲中原有的濃密氣體與塵埃。交織出這片壯闊而複雜的結構。

船底座大星雲(Carina)。圖/Webb Scape Telescope

這張照片一共結合了這六個不同的濾鏡的影像拍攝而成。每個濾鏡涵蓋的波段各不相同,代表的物理意義也不一樣。比如(F090W、F200W、F444W)這三個寬帶濾鏡,分別在影像中按照波長順序,以藍色、綠色和紅色這三原色呈現,為照片打下骨幹。而在此之上,照片的製作團隊又疊上青色代表氫原子的(F187N)濾鏡影像,以黃色代表氫分子的(F470N)濾鏡影像,以及用橘色代表甲烷和多環芳香烴的 (F335M) 濾鏡影像,為照片再添更多的細節。

想要將這麼多個波段的影像全部結合起來,仔細調整讓細節更加突出,最終呈現出一張如此絢麗又震撼的照片,是非常不容易的。這展示了韋伯太空望遠鏡不僅在科學上相當重要,在藝術上也價值非凡。

最後別忘了,以上只挑選介紹了第一批資料中最具代表性的幾張,更多關於五個目標的照片和光譜,可以在韋伯的官網上找到。而這批照片,又只是韋伯未來二十年服役生涯中,前兩個月的小試牛刀而已。韋伯的時代,才剛剛要開始!

文章難易度
EASY天文地科小站_96
20 篇文章 ・ 586 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

6
0

文字

分享

0
6
0
順利升空只是開始!韋伯太空望遠鏡升空後「必須完美」的 29 天旅程
楊燿綸_96
・2021/12/29 ・2569字 ・閱讀時間約 5 分鐘
  • 作者/楊燿綸|美國維吉尼亞大學天文系博士後研究員
  • 作者/張珮綺|自由撰稿人

“ trois, deux, unités, top ” ​

美東時間 12 月 25 日的清晨,亞利安五號火箭在任務指揮官 Jean-Luc Voyer 的倒數下點火。 ​

歷經 20年、100 億美元設計建造,即將成為世界上最大的太空望遠鏡 — 詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope)緩緩升空,揭開人類對宇宙了解的下一個篇章。​

繼哈伯之後,次世代太空望遠鏡

​韋伯太空望遠鏡提供了前所未有的觀測能力,讓我們可以看到宇宙大爆炸之後的初代星系、橫跨宇宙時間的星系演化、系外行星的大氣組成、以及恆星行星形成的過程。​​​不同於哈伯太空望遠鏡以及大部分在地表的望遠鏡,韋伯太空望遠鏡主要觀測紅外光。

史無前例的望遠鏡設計,史上最高靈敏度

由於任何有溫度的物體(包括望遠鏡本身)都會放出紅外光,為了提高觀測的靈敏度,望遠鏡必須越低溫越好。 因此韋伯太空望遠鏡攜帶了各種「冷卻設備」,以及五層如隔熱紙一般薄、如網球場一樣大的「遮陽膜」。 ​ 

望遠鏡的位置也是一大關鍵,需要放在長期背向太陽、距離地表 150 萬公里的軌道中,讓韋伯太空望遠鏡可以繞行在太陽與地球重力影響的一個穩定點 L2。​相較之下,哈伯太空望遠鏡則是距離地表 545 公里。

韋伯望遠鏡的遮陽帆將望遠鏡分為面光側和背光側兩個部分,而望遠鏡的本體長期都會處在黑暗且低溫的背光側。圖/NASA

韋伯太空望遠鏡主鏡的直徑是 6.5 公尺,哈伯太空望遠鏡為 2.4 公尺,另外一個去年退役的紅外光太空望遠鏡 史匹哲(Spitzer) 的主鏡只有 0.85 公尺。望遠鏡的鏡面越大,能夠收集到的光也越多,讓望遠鏡更靈敏。​韋伯太空望遠鏡的靈敏度比現有的望遠鏡高 50 – 100 倍,空間解析度在中紅外光也提升了 2.5 到 7 倍。​

太空工程大躍進

​工程技術層面,這次的任務需要挑戰把一座網球場大小的望遠鏡發射到太空中。目前載貨空間最大的火箭亞利安五號(Ariane 5)只能容納約 5 公尺大小。 因此,韋伯太空望遠鏡必須要像「摺紙」一樣,折成可以放入火箭的大小,進到太空中以後再展開。 ​這是太空工程的極大挑戰, 韋伯太空望遠鏡的展開的過程必須要「萬無一失」。

摺疊裝入亞利安五號火箭整流罩中的韋伯望遠鏡。圖/ArianeSpace, NASA, ESA

必須完美的 29 天旅程

從發射開始,韋伯太空望遠鏡要經歷長達 29 天的旅程,到達 L2 並展開到可以運行的樣貌。 有幾個時間點特別關鍵:​

⏱ 發射後 27 分鐘:韋伯太空望遠鏡脫離發射的火箭,脫離後望遠鏡就要靠自己了!​
⏱ 發射後 33 分鐘:展開太陽能板讓韋伯太空望遠鏡有電可用​
⏱ 發射後 12.5 小時:第一次的軌道修正(也是最關鍵一次), 韋伯太空望遠鏡要用攜帶的燃料推進到前往 L2 的軌道​
⏱ 發射後 5-8 天:展開五層網球場大小的遮陽膜。展開的過程中有 107 個機關必須要同時啟動去鋪開這五層遮陽膜,任何一個機關失敗,韋伯太空望遠鏡就沒有辦法進行原定的科學任務了​
⏱ 發射後 10 天:放下第二反射鏡​
⏱ 發射後 13 天:展開主要反射鏡。這時候韋伯太空望遠鏡就完全展開了!​
⏱ 發射後 29 天:進行最後的軌道修正進入 L2​

​這段旅程中有超過 300 個「必須成功的步驟」!當韋伯太空望遠鏡到達 L2 後,科學任務就正式展開!儀器團隊會先花幾個月校正各項儀器,確保韋伯太空望遠鏡一切如設計般的運作,發射後六個月「觀測任務」將會正式展開。​

主要研究方向

韋伯太空望遠鏡的設計可以用來進行各種的觀測計畫,包含前所未見的觀測計畫,大幅地推進我們對於宇宙的了解。​

  1. 了解宇宙誕生的過程:高靈敏度的紅外光觀測可以看到大爆炸之後初代的星系。​
  2. 了解星系的演化:觀測宇宙不同時期的星系,像是暗物質對於星系的影響等等。​
  3. 也許會知道哪些行星是否適合人類居住:在紅外光可以看到很多不同分子(像是二氧化碳、水、甲烷等)獨特的光譜,透過韋伯太空望遠鏡我們可以量測系外行星的大氣組成。​
  4. 恆星與行星形成的過程:恆星與行星剛形成時多半環繞著塵埃組成的雲氣,有點像是我們常看到的雲霧,擋住了視線。而紅外光觀測可以看透這些雲氣。​

相關連結:

延伸閱讀:

  1. 出事了哈伯!細數哈伯太空望遠鏡 31 年來的維修升級史 – PanSci 泛科學
  2. 天文學未來 10 年的 3 大目標:探索適居行星、動態宇宙與星系演化—— Astro2020 報告 – PanSci 泛科學
文章難易度
楊燿綸_96
1 篇文章 ・ 2 位粉絲
天文物理學家,目前於美國維吉尼亞大學天文系擔任博士後研究員,期待扮演天文學家跟大眾的翻譯蒟蒻,讓大家能更了解我們的宇宙。本身研究專注於透過紅外光、遠紅外光及無線電波觀測,了解恆星及行星長大的過程,也特別關注恆星誕生時伴隨的化學演變。

2

12
2

文字

分享

2
12
2
史上最大口徑的 JWST 要如何塞進火箭?——認識韋伯太空望遠鏡(二)
EASY天文地科小站_96
・2021/10/07 ・3106字 ・閱讀時間約 6 分鐘

  • 作者/陳子翔|師大地球科學系| EASY 天文地科團隊創辦者

作為 NASA 最新一代旗艦級太空望遠鏡,詹姆士.韋伯望遠鏡在性能上當然必須是太空望遠鏡中的佼佼者。然而,工程師與科學家要如何設計韋伯望遠鏡,才能讓它擁有強大的觀測能力呢?這個問題深究起來相當複雜,不過大方向卻出乎意料的簡單,那就是:「越大越好」。

如何衡量望遠鏡的觀測能力

在說明望遠鏡為什麼越大越好前,讓我們先想想,要如何衡量一部望遠鏡的觀測性能好不好呢?一般來說,望遠鏡最重要的兩項性能指標,就是它的「解析力」和「集光力」。

解析力可說就代表望遠鏡的「視力」。解析力越好的望遠鏡,能拍出天體更多的細節,或是說分辨出解析力較差的望遠鏡無法分辨出來,兩顆非常接近的星星。就像是做視力檢查時,當無法看清楚視力檢查表上某一排的「E」到底指向何處時,其實就代表自己眼睛的「極限解析力」已經無法解析出那一排的「E」囉!而天文學家,當然會希望望遠鏡的「視力」超級好呀!

而集光力則可以衡量望遠鏡蒐集星光(來自天體的電磁波)的效率。平時我們用手機拍照時,通常只需要幾百分之一秒的曝光,就能夠拍清楚日常生活周遭的景像。但由於宇宙中的天體往往非常黯淡,要蒐集這些天體的資料,進行學術研究的天文學家對一個目標的曝光時間,經常都是好幾個小時起跳。有時甚至需要超過一星期的曝光時間呢!

可以想像在這樣的情況下,一部望遠鏡的集光效率,是非常重要的一件事。如果你的望遠鏡的集光力是別人的四倍,那別人要花一個月才能拍攝到的目標,你只需要一個禮拜就可以完成。多出來的這些時間,就可以拿去拍攝更多目標,或是對同一個目標拍攝更長的時間,以研究更多黯淡的細節。

Hubble Ultra Deep Field
哈伯極深空,曝光時間大約是11.3天。圖/NASA, ESA, and S. Beckwith (STScI) and the HUDF Team

大口徑,真香!


解析力與集光力是望遠鏡最重要的性能指標,而且它們都與同一個因子息息相關,那就是望遠鏡的「口徑」,即望遠鏡主鏡的直徑大小。

若假設望遠鏡主鏡是完整的圓形,那解析力與口徑是成正比的,而集光力則是與口徑的平方成正比。例如一個口徑兩米的望遠鏡,相比其他條件都相同,但口徑只有一米的望遠鏡,其極限解析力就會高兩倍,集光力則會高四倍。說到這裡相信大家應該就能明白,為什麼天文望遠鏡基本上就是「口徑越大越好」了。

口徑長達 6.5 公尺,這樣塞得進火箭嗎?

既然大口徑這麼棒,那韋伯作為最新的旗艦太空望遠鏡,直上太空望遠鏡史上最大口徑,似乎是再合理不過的事了!

韋伯望遠鏡的口徑是 6.5 公尺,比起前輩哈伯太空望遠鏡的 2.4 公尺大超過 2.5 倍。當初哈伯望遠鏡的鏡片口徑之所以會設計成 2.4 公尺,一大原因是如果口徑再更大,就塞不進太空梭的貨艙了。那麼問題來了,韋伯太空望遠鏡的口徑大小能一次升級那麼多,難道是因為發射韋伯的火箭,比起當時的太空梭還要大很多嗎?

哈伯望遠鏡與韋伯望遠鏡主鏡大小比較。圖/NASA

答案是否定的。事實上,世界上目前沒有任何一款火箭,能夠裝下一面直徑 6.5 公尺的鏡片!而且若是要為了發射韋伯而專門設計一款新火箭,那計畫的預算和進度一定會大大提升和延後,完全得不償失。不過,山不轉路轉,路不轉人轉,也許火箭不可能為了望遠鏡改變,但我們也許可以換個角度想,讓望遠鏡適應火箭呀!

想像一下,如果你有一筆錢,想要買輛腳踏車,讓你未來可以開車帶著腳踏車出遊,卻發現自己車子的後車廂裝不下一般的腳踏車時,你會怎麼辦呢?相信這時後,比起直接購買一台新的大車,選擇折疊式腳踏車會是更合理的選項。而設計 JWST 的工程師們也是採取這樣的策略,將整部韋伯望遠鏡設計成「折疊式」的,從主鏡、次鏡支架到遮陽帆等等機構,都可以收起來降低體積,讓韋伯望遠鏡能夠塞進空間相當有限的火箭整流罩中,並於發射到太空之後,再一步步自動展開成可以運作的狀態。

圖:摺疊裝入亞利安五號火箭整流罩中的韋伯望遠鏡。圖/ArianeSpace, NASA, ESA

韋伯望遠鏡的特殊設計

韋伯望遠鏡最明顯的特徵,就是由 18 面六邊形金色鏡片所組合而成,直徑 6.5 公尺的巨大主反射鏡。與哈伯望遠鏡不同的是,它並沒有鏡筒的構造,而是直接將望遠鏡的主鏡與次鏡露在外面,以支架的方式維持結構。而這樣的設計其實在地球上的大型天文台相當常見。

在無塵室中的韋伯望遠鏡主鏡,此時次鏡是摺疊的狀態。圖/NASA

來自宇宙中天體的光線會透過主鏡與次鏡反射,進入主鏡位於中央的黑色錐狀構造。這個構造中設有一些鏡片組,會進一步將光線導至後方的相機和光譜儀。韋伯望遠鏡設有多個不同的相機與光譜儀,並各自有適合的觀測目標,提供各領域的天文學家重要的研究資料。

而巨大的主鏡下方,一層一層的銀色 「帆布」則是韋伯望遠鏡的遮陽帆。它能夠為望遠鏡擋下來自太陽、地球與月球的光線與熱輻射,讓望遠鏡能夠處在既黑暗又低溫的優良觀測環境中。

根據科學家的估算,當韋伯望遠鏡在太空中運作時,它的遮陽帆的面光側溫度可達到約攝氏 110 度,但望遠鏡所處在的背光面,則能維持攝氏零下 210 度左右的低溫。溫度越低,觀測儀器所受到的熱雜訊影響就越少。這樣低溫的環境,對紅外線望遠鏡至關重要。

韋伯望遠鏡的遮陽帆將望遠鏡分為面光側和背光側兩個部分,而望遠鏡的本體長期都會處在黑暗且低溫的背光側。圖/ NASA

遮陽帆的背光側提供了望遠鏡與相機所需,黑暗又低溫的運作環境,但並不是所有的設備都需要這樣的條件。比如提供電力的太陽能板,就需要的是充足的陽光才能運作。同時,也有一些設備是本身就會發熱的,例如維持軌道穩定用的小型火箭引擎與燃料,控制望遠鏡指向的反應輪等等。這些設備也都設置於遮陽帆的面光側,如此一來遮陽帆也能順便隔絕這些設備產生的熱,避免干擾望遠鏡的觀測。韋伯望遠鏡上不同設備的配置位置可說各取所需,相當有巧思。

韋伯望遠鏡的面光側,設有太陽能板、通訊天線、火箭引擎等等設備。圖/ NASA

如本系列文章上集:《為何 NASA 不惜大撒幣也要把它送上太空?》所介紹,將紅外線望遠鏡送上太空能帶來許多的好處與研究潛力,然而設計並打造出這樣的科學儀器絕非容易的事。詹姆士.韋伯太空望遠鏡可說就是集結了頂尖科學、工程與技術,以及許多人共同努力的結晶,也期待將來它能帶來豐碩的觀測資料與成果。

延伸閱讀

參考資料

文章難易度
EASY天文地科小站_96
20 篇文章 ・ 586 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

1

7
1

文字

分享

1
7
1
整個宇宙都是我的動物園?——歡迎進入「天文化學」的思考領域
ntucase_96
・2021/09/24 ・3150字 ・閱讀時間約 6 分鐘

  • 撰文|許世穎

本文轉載自 CASE 科學報整個宇宙,都是我的動物園——天文化學

整個宇宙就像是一座「分子動物園」,藉由研究的分子光譜,我們可以得知這分子的分佈、溫度等性質;而由於不同的分子有著不同的「習性」,我們還可以得知孕育這些分子的星際環境。

要了解星際環境,可以從透過分子開始!圖/ESA/Hubble, CC4.0

天文化學是什麼?

天文學是研究宇宙間天體的自然科學,除了一般大眾較為知道的「天文物理學」以外,宇宙擁有很多的面向,其中一個就是本文的主題:「天文化學」。

同樣都是研究「物質」的科學,物理學與化學卻是以不太一樣的方式來觀察這個世界。天文化學著重那些宇宙間「不同天體環境中的原子、分子、離子」等,研究它們的形成、分布、彼此之間的交互作用,或是與環境的交互作用。(接下來為了方便起見,我們將分子、離子等統稱為分子。)

天文學雖然是最古早的科學之一,但是天文化學這個學門,則要到 20 世紀中期才開始慢慢出現。理由很簡單:因為分子看不到呀!星星那麼大一顆,用望遠鏡都不一定能看清楚了,更何況是擺在眼前都看不到的分子呢?

因此要研究宇宙中的分子,必須要靠特別的技術才行;其中,最重要的技術之一,就是「光譜學」。

研究宇宙中的分子,必須依賴「光譜學」才行。圖/envato elements

光譜(spectrum)是將光依照波長或頻率排列出來的圖案,像「彩虹」就是一種光譜,是太陽光依照不同頻率分開來的圖案。而光的範疇除了可見光以外,還有很多肉眼看不到的波段,例如無線電波、紅外線、紫外線、X光……等。

每一種分子都有著屬於自己的光譜,在地球上的我們,如果想要知道分子的光譜長什麼樣子的話,除了可以做實驗量測以外,更多的是用電腦做精密的模擬計算來預測。分子的光譜就像它們的「指紋」,就像警察會將採集到的指紋與資料庫比對,來得知這枚指紋是哪個人留下來的,天文學家則是將觀測到的光譜與資料庫比對,來得知遙遠星際的另一端有哪些分子,甚至是它們的含量、溫度等(圖 1)。

想要了解更多天文學家如何使用光譜學,可以參考:<把光拆開來看:天文學中的光譜>。

銀河系中央的光譜,從中可以分析出很多不同的分子,甚至包括他們的含量、溫度、分佈等等。圖/ESO/J. Emerson/VISTA, ALMA (ESO/NAOJ/NRAO), Ando et al. Acknowledgment: Cambridge Astronomical Survey Unit [2]

為什麼宇宙是「分子動物園」

動物們往往能反應出當地的環境,舉例來說,看到河馬就知道那邊是有水有草的環境;看到櫻花鉤吻鮭就知道有水溫偏低的溪流 [3]。將宇宙視為分子動物園也是一樣的,觀察分子的分佈、含量,也可以讓我們回推物理環境。目前,我們已從星際間,觀測到了約 200 多種分子,這裡就介紹幾種常見的星際分子吧!

宇宙中有很多不同的分子,分佈在不同的地方(示意圖)。圖/EAS2020[4]

氫分子(molecular hydrogen, H2

宇宙中含量最高的分子,也是「分子雲」的主要成分。分子雲中每一立方公分大約有一萬個氫分子(104 cm-3)。

分子雲是恆星、行星誕生的地方,所以了解氫分子的分佈,能幫助我們研究恆星形成。同時,氫分子能與較重的元素反應,是許多化學反應的催化劑,產生其他的分子如一氧化碳(CO)、二氧化碳(CO2)、 氰基自由基(CN)等。

氫分子對天文化學來說相當重要,可惜在分子雲這種均溫只有零下 200 多度的環境,幾乎是不太可能觀測到(因為它是個對稱的分子,有興趣的讀者可以再進一步了解。)[5][6]

一氧化碳(carbon monoxide, CO)

一氧化碳分佈在星際間低溫、高密度的區域。它是星際間含量第二高的分子。

比起氫分子,一氧化碳容易觀測太多了,所以天文學家更容易從一氧化碳的圖像,來得知分子雲的分佈。由於分子雲幾乎沒辦法用可見光直接觀測,早期的科學家根本不知道我們周邊有這麼多分子雲的存在,直到觀測了一氧化碳的圖像之後才大開眼界。 [5][6][7]

被戲稱為「中指星雲」的分子雲。圖/維基百科, CC0

氨(ammonia, NH3

氨也是很容易被觀測到分子。歷史上第一個觀測到的分子是就是氨。氨有許多譜線,而這些譜線的強度對於環境變化非常敏感,能對應到很多種不同的星際環境。對氨的觀測能讓我們更精確地回推出該處的環境狀況 [8][9]

宇宙中的環境變化太大了,不同的環境下化學反應可能會有很大的差異。宇宙間的發散星際雲(diffuse cloud)、密集分子雲(dense cloud)、恆星形成的熱原恆星核(hot core)等這些已經偵測到大量分子的區域,溫度分佈從 10 K~1000 K(約攝氏 -200 度到 +800 度)、密度從每立方公分一百顆粒子到十兆顆粒子(102 cm-3~1013 cm-3)都有!

這裡接著再介紹幾種分子含量高的星際環境。

恆星形成區域(star-forming region)

分子雲內部高密度、正在形成恆星的地方。獵戶座 KL 星雲(Orion KL)是獵戶座大分子雲中,恆星形成最活躍的區域。在這裡有許多的「複雜飽和有機分子」出現,如:甲醇(CH3OH)、甲酸甲脂(HCOOCH3)等,也有一些長鏈的碳分子,如:氰基乙炔(HCCCN)[10]

獵戶座 KL 星雲。圖/NASA, ESA/Hubble [10]

彗星 67P/Churyumov-Gerasimenko (comet 67P/C-G)

在近幾年的觀測資料中,科學家在這裡看到了含量極高的氧分子(molecular oxygen, O2),這讓他們感到非常意外。因為氧分子在宇宙中很容易起反應、變成其它的分子,而在彗星這麼樣一個容易揮發的環境中,卻能有高含量的氧分子存在,代表這些氧分子很有可能是在彗星形成的時候,就已經存在周遭的環境中,並且冰封在彗星上 [11][12]

彗星 67P/C-G(右)以及它的光譜(左)。圖/ESA/Rosetta/NAVCAM [12], CC 3.0(右)A. Bieler et al. (2015) (左)[11]

天文化學所牽涉到的範圍很廣,橫跨了許多不同的領域。 整個宇宙就是一座「分子動物園」。天文學家觀察這些宇宙中的分子,來得知遙遠天體中具有什麼樣的環境。星際間也發現了許多有機分子,研究這些分子甚至能幫助我們理解生命的起源,這是現在天文化學研究的一個重點方向。

參考資料

文章難易度
所有討論 1
ntucase_96
30 篇文章 ・ 505 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。