Loading [MathJax]/extensions/tex2jax.js

2

12
2

文字

分享

2
12
2

史上最大口徑的 JWST 要如何塞進火箭?——認識韋伯太空望遠鏡(二)

EASY天文地科小站_96
・2021/10/07 ・3106字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/陳子翔|師大地球科學系| EASY 天文地科團隊創辦者

作為 NASA 最新一代旗艦級太空望遠鏡,詹姆士.韋伯望遠鏡在性能上當然必須是太空望遠鏡中的佼佼者。然而,工程師與科學家要如何設計韋伯望遠鏡,才能讓它擁有強大的觀測能力呢?這個問題深究起來相當複雜,不過大方向卻出乎意料的簡單,那就是:「越大越好」。

如何衡量望遠鏡的觀測能力

在說明望遠鏡為什麼越大越好前,讓我們先想想,要如何衡量一部望遠鏡的觀測性能好不好呢?一般來說,望遠鏡最重要的兩項性能指標,就是它的「解析力」和「集光力」。

解析力可說就代表望遠鏡的「視力」。解析力越好的望遠鏡,能拍出天體更多的細節,或是說分辨出解析力較差的望遠鏡無法分辨出來,兩顆非常接近的星星。就像是做視力檢查時,當無法看清楚視力檢查表上某一排的「E」到底指向何處時,其實就代表自己眼睛的「極限解析力」已經無法解析出那一排的「E」囉!而天文學家,當然會希望望遠鏡的「視力」超級好呀!

而集光力則可以衡量望遠鏡蒐集星光(來自天體的電磁波)的效率。平時我們用手機拍照時,通常只需要幾百分之一秒的曝光,就能夠拍清楚日常生活周遭的景像。但由於宇宙中的天體往往非常黯淡,要蒐集這些天體的資料,進行學術研究的天文學家對一個目標的曝光時間,經常都是好幾個小時起跳。有時甚至需要超過一星期的曝光時間呢!

-----廣告,請繼續往下閱讀-----

可以想像在這樣的情況下,一部望遠鏡的集光效率,是非常重要的一件事。如果你的望遠鏡的集光力是別人的四倍,那別人要花一個月才能拍攝到的目標,你只需要一個禮拜就可以完成。多出來的這些時間,就可以拿去拍攝更多目標,或是對同一個目標拍攝更長的時間,以研究更多黯淡的細節。

Hubble Ultra Deep Field
哈伯極深空,曝光時間大約是11.3天。圖/NASA, ESA, and S. Beckwith (STScI) and the HUDF Team

大口徑,真香!


解析力與集光力是望遠鏡最重要的性能指標,而且它們都與同一個因子息息相關,那就是望遠鏡的「口徑」,即望遠鏡主鏡的直徑大小。

若假設望遠鏡主鏡是完整的圓形,那解析力與口徑是成正比的,而集光力則是與口徑的平方成正比。例如一個口徑兩米的望遠鏡,相比其他條件都相同,但口徑只有一米的望遠鏡,其極限解析力就會高兩倍,集光力則會高四倍。說到這裡相信大家應該就能明白,為什麼天文望遠鏡基本上就是「口徑越大越好」了。

口徑長達 6.5 公尺,這樣塞得進火箭嗎?

既然大口徑這麼棒,那韋伯作為最新的旗艦太空望遠鏡,直上太空望遠鏡史上最大口徑,似乎是再合理不過的事了!

-----廣告,請繼續往下閱讀-----

韋伯望遠鏡的口徑是 6.5 公尺,比起前輩哈伯太空望遠鏡的 2.4 公尺大超過 2.5 倍。當初哈伯望遠鏡的鏡片口徑之所以會設計成 2.4 公尺,一大原因是如果口徑再更大,就塞不進太空梭的貨艙了。那麼問題來了,韋伯太空望遠鏡的口徑大小能一次升級那麼多,難道是因為發射韋伯的火箭,比起當時的太空梭還要大很多嗎?

哈伯望遠鏡與韋伯望遠鏡主鏡大小比較。圖/NASA

答案是否定的。事實上,世界上目前沒有任何一款火箭,能夠裝下一面直徑 6.5 公尺的鏡片!而且若是要為了發射韋伯而專門設計一款新火箭,那計畫的預算和進度一定會大大提升和延後,完全得不償失。不過,山不轉路轉,路不轉人轉,也許火箭不可能為了望遠鏡改變,但我們也許可以換個角度想,讓望遠鏡適應火箭呀!

想像一下,如果你有一筆錢,想要買輛腳踏車,讓你未來可以開車帶著腳踏車出遊,卻發現自己車子的後車廂裝不下一般的腳踏車時,你會怎麼辦呢?相信這時後,比起直接購買一台新的大車,選擇折疊式腳踏車會是更合理的選項。而設計 JWST 的工程師們也是採取這樣的策略,將整部韋伯望遠鏡設計成「折疊式」的,從主鏡、次鏡支架到遮陽帆等等機構,都可以收起來降低體積,讓韋伯望遠鏡能夠塞進空間相當有限的火箭整流罩中,並於發射到太空之後,再一步步自動展開成可以運作的狀態。

圖:摺疊裝入亞利安五號火箭整流罩中的韋伯望遠鏡。圖/ArianeSpace, NASA, ESA

韋伯望遠鏡的特殊設計

韋伯望遠鏡最明顯的特徵,就是由 18 面六邊形金色鏡片所組合而成,直徑 6.5 公尺的巨大主反射鏡。與哈伯望遠鏡不同的是,它並沒有鏡筒的構造,而是直接將望遠鏡的主鏡與次鏡露在外面,以支架的方式維持結構。而這樣的設計其實在地球上的大型天文台相當常見。

-----廣告,請繼續往下閱讀-----
在無塵室中的韋伯望遠鏡主鏡,此時次鏡是摺疊的狀態。圖/NASA

來自宇宙中天體的光線會透過主鏡與次鏡反射,進入主鏡位於中央的黑色錐狀構造。這個構造中設有一些鏡片組,會進一步將光線導至後方的相機和光譜儀。韋伯望遠鏡設有多個不同的相機與光譜儀,並各自有適合的觀測目標,提供各領域的天文學家重要的研究資料。

而巨大的主鏡下方,一層一層的銀色 「帆布」則是韋伯望遠鏡的遮陽帆。它能夠為望遠鏡擋下來自太陽、地球與月球的光線與熱輻射,讓望遠鏡能夠處在既黑暗又低溫的優良觀測環境中。

根據科學家的估算,當韋伯望遠鏡在太空中運作時,它的遮陽帆的面光側溫度可達到約攝氏 110 度,但望遠鏡所處在的背光面,則能維持攝氏零下 210 度左右的低溫。溫度越低,觀測儀器所受到的熱雜訊影響就越少。這樣低溫的環境,對紅外線望遠鏡至關重要。

韋伯望遠鏡的遮陽帆將望遠鏡分為面光側和背光側兩個部分,而望遠鏡的本體長期都會處在黑暗且低溫的背光側。圖/ NASA

遮陽帆的背光側提供了望遠鏡與相機所需,黑暗又低溫的運作環境,但並不是所有的設備都需要這樣的條件。比如提供電力的太陽能板,就需要的是充足的陽光才能運作。同時,也有一些設備是本身就會發熱的,例如維持軌道穩定用的小型火箭引擎與燃料,控制望遠鏡指向的反應輪等等。這些設備也都設置於遮陽帆的面光側,如此一來遮陽帆也能順便隔絕這些設備產生的熱,避免干擾望遠鏡的觀測。韋伯望遠鏡上不同設備的配置位置可說各取所需,相當有巧思。

-----廣告,請繼續往下閱讀-----
韋伯望遠鏡的面光側,設有太陽能板、通訊天線、火箭引擎等等設備。圖/ NASA

如本系列文章上集:《為何 NASA 不惜大撒幣也要把它送上太空?》所介紹,將紅外線望遠鏡送上太空能帶來許多的好處與研究潛力,然而設計並打造出這樣的科學儀器絕非容易的事。詹姆士.韋伯太空望遠鏡可說就是集結了頂尖科學、工程與技術,以及許多人共同努力的結晶,也期待將來它能帶來豐碩的觀測資料與成果。

延伸閱讀

-----廣告,請繼續往下閱讀-----
文章難易度
EASY天文地科小站_96
23 篇文章 ・ 1575 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
這些太空垃圾會不會阻礙我們太空旅行?太空垃圾怎麼清? 
PanSci_96
・2024/05/29 ・5682字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

人類上太空的夢想會被我們親自摧毀嗎?

隨著火箭成本降低,人人都能把衛星丟上太空,現在,當你晚上抬頭看天空,你看到的星星可能不是星星,而是人造衛星。你看到一閃而過的的流星,可能只是墜入大氣的太空垃圾。

這些多到不行的太空垃圾已經成為隱憂,更可怕的是,這些以超音速飛行的太空垃圾可能摧毀其他衛星,在衛星軌道上製造更多不可預期的致命飛彈。有人擔心,人類終有一天會無法穿過這片垃圾雲,天空永遠被自己封閉。 終於,有人提出清理太空垃圾的方法了,但這些方法真的可行嗎?

現在的太空垃圾有多少?

最大的太空垃圾可能是整節火箭!

所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭,例如 1960 年代太空競賽時大量發射的火箭,有許多至今還在宇宙遊蕩,每一個都像公車一樣大。而小東西,則包含太空人在太空漫步時遺忘的東西,或是太空垃圾互相碰撞後產生的碎片,最小可能只有數毫米,小的像隻蚊子。但不論太空垃圾來自哪裡,只要缺乏妥善的管理和追蹤,就可能成為其他運作中設施和儀器的致命血滴子。

-----廣告,請繼續往下閱讀-----
所有在繞行地球的軌道上失去功能的東西,都會成為太空垃圾,最大的包含壞掉的衛星、和大量運送衛星上太空的第二節推進火箭。
圖|PanSci YouTube

為什麼說太空垃圾真的很危險?

為了不被地心引力拉入大氣,墜向地球,在軌道上繞行地球的物體大多都以非常快的速度在移動,包括現在還在運作的衛星與各種設施。舉例來說國際太空站位於距離地球表面四百公里高的近地軌道(Low Earth Orbit),以大約每秒 7 ~ 8 公里的速度高速移動,是地表音速的 20 倍。也就是說,太空上的車禍可嚴重多了,來自不同方向或不同傾角的物體,可能會以超過每秒 10 公里的相對速度發生碰撞。別說公車大小的太空垃圾了,只要直徑超過 1 公分的碎片就足以對太陽能板或玻璃造成損害。更麻煩的是,大小在 10 公分以下的物體,大多還因為尺寸過小難以追蹤。

那麼,我們的頭上有多少太空垃圾呢?

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1 公分到 10 公分的則高達一百萬個。

根據歐洲太空總署 ESA 的資料,目前軌道上有 6800 個運作中的衛星,相對的有超過 3 萬 2 千個可追蹤的太空垃圾。但如果估計所有無法追蹤的物體,大於 10 公分的物體可能有超過 3 萬 6 千個,介於 1公分到 10 公分的則高達一百萬個。
圖|PanSci YouTube

在這些太空垃圾中,大多數大型太空垃圾就是來自發射衛星後,一起留在太空的第二節推進火箭,小型太空垃圾則來自火箭爆炸或各種大大小小碰撞所產生的碎片。

太空上曾發生過嚴重的太空垃圾碰撞事件?

歷史上比較嚴重的一次撞擊事件發生在 2009 年,銥衛星公司運作中的通訊衛星,重量 700 公斤的 iridium 33,和失效、重 900 公斤的蘇聯軍用衛星 kosmos 2251,在 789 公里的高空,兩台衛星以每秒 11.7 公里的相對速度直接撞上,化成了兩團在軌道上繞行的碎片團。

-----廣告,請繼續往下閱讀-----

NASA 估計,這單一次的碰撞產生了超過 2000 片可追蹤的碎片,雖然許多碎片受地球引力慢慢墜入大氣燒毀,但直到到 2023 年 2 月的統計,大約還有一半,也就是 1000 片碎片留在軌道上。過往也曾經觀察到碎片從距離國際太空站僅 100 多公尺的位置驚險掠過。

如何解決太空垃圾的問題?

太空垃圾又多又危險,真的有辦法清除嗎?

2023 年三月,NASA 發表一篇研究,整理了關於各種清理太空垃圾的方法與成本,包含從地面或太空發射雷射推動垃圾改變軌道,或是直接物理性撞擊改變軌道,還有透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用等方法。

透過捕捉垃圾,直接在太空將垃圾循環利用,作為燃料或其他用途的再利用。
圖|PanSci YouTube

清理不同大小的物體,要用的方法跟產生的效益也不同,因此他們評估了針對兩種策略。第一種策略將會優先處理目前最大、最具威脅性的 50 個太空垃圾,例如完整的第二節火箭或是失去功能的完整衛星。第二種策略則是優先移除 1 到 10 公分的十萬個小型垃圾。NASA 分別評估處理這兩種目標帶來的效益,恩,所謂的效益,就是預估能減少多少因為太空垃圾碰撞而產生的損失。

要如何移除太空垃圾呢?

移除大型垃圾主要的方法主要是再入大氣層(re-entry),簡單來說就是讓垃圾落入大氣層燒毀。這個方法預計讓運送任務完成的火箭載具,透過剩餘的推進燃料,順手將其他大型垃圾帶下來。移除這 50 個大型垃圾預計總共會花費 10 億美金,但在移除 30 年後所帶來的效益,將會超過花費的成本,非常划算。

-----廣告,請繼續往下閱讀-----

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。發射雷射的裝置可以設置在地面或是太空中,單純以使用效率來說,設置在太空所需要的能量較低,但是設置在地面維護和管理比較方便。然而這也衍伸了許多爭議,主要圍繞在這個清除垃圾的雷射也可以作為武器使用,例如在戰爭爆發時用雷射攻擊敵國的衛星。不過如果順利設置的話,清除十萬個小型垃圾後大約只要十年就可以達到等同於成本的效益,比移除大型垃圾能更快回收成本。

至於小型太空垃圾,主要使用的方法將會是成本較低的雷射。藉由雷射產生的微弱動能來改變垃圾的軌道,將它們送入大氣層或推離常用的軌道。
圖|PanSci YouTube

方法有了,但我們真的能讓太空再次乾淨嗎?

太空垃圾問題有解嗎?

現在的太空有多擁擠?

如果把歷史發射資料整理出來,會發現近五年人類的衛星發射數量幾乎是直線攀升,2012 年一整年全世界也只發射了 200 多顆衛星,到了 2022 年已經成長到一年 2000 多顆衛星。而且絕大部分都是來自於美國的衛星,想當然很大一部份都來自於 SpaceX 的星鏈計畫。而受益於獵鷹九號的高成功率和可回收造就的低廉成本,也能夠發射更多的中小型衛星,像是我們臺灣也發射了不少自主研發的立方衛星上太空,例如 2021 的「飛鼠」和「玉山」以及最近才剛發射的珍珠號立方衛星。

如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。

-----廣告,請繼續往下閱讀-----
如果所有的衛星與火箭都會變成太空垃圾,我們清理垃圾的速度又不夠快,還有可能發生凱斯勒現象(Kessler syndrome),也就是碰撞產生的碎片引發連鎖反應,造成更多撞擊和更多碎片,讓不可控的太空垃圾快速增加,直到新的火箭與衛星都難以穿越,我們將無法前往太空,被自己的創造出的人造物封鎖在地球。
圖|PanSci YouTube

治標也要治本,我們對於即將發射進太空的人造物能有套管理辦法嗎?

1967 年在聯合國通過並簽署的《關於各國探索和利用包括月球和其他天體的外太空活動所應遵守原則的條約》,簡稱為《外太空條約》。這個條約制定了各國在外太空活動所應該遵守的原則,其中和人造衛星有關的原則主要有三個:

  1. 國家責任原則:各國應對其航太活動承擔國際責任,不管這種活動是由政府部門還是由非政府部門進行的
  2. 對空間物體的管轄權和控制權原則:射入外空的空間物體登記國對其在外空的物體仍保持管轄權和控制權
  3. 外空物體登記原則:凡進行航太活動的國家同意在最大可能和實際可行的範圍內將活動的狀況、地點及結果通知聯合國秘書長

也就是說,雖然各國需要將太空活動回報給聯合國統計,但實際上在制定規範和進行管制的還是各國本身。以美國來說,分別需要和 FAA 聯邦航空總署申報火箭發射和再入大氣層的計畫,以及向 FCC 聯邦通訊委員會申報衛星的通訊規格,至於要如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。

如何避免在太空發生碰撞,是發射單位要自己負起責任,公部門只提供有追蹤的物體軌道資料。
圖|PanSci YouTube

不過對於衛星任務結束後的處置,FCC 倒是有相關的規定和罰鍰。因為如果衛星有動力系統,可以在任務結束時就控制墜入大氣層或飛離常用軌道,進到所謂的死亡軌道(Graveyard Orbit),而通常在申請發射衛星時,也需一併提供任務結束後的處置方式。

去年,衛星電視業者 Dish Network 沒有按照它在 2012 年所制定的衛星處置計畫,將衛星從離地 36000 公里的地球同步軌道再往外推 300 公里。這顆衛星在移動的半途中就燃料耗盡失去了動力,只離開原本的軌道 120 公里,FCC 因此對衛星電視業者開罰了 15 萬美元。這起首次針對太空垃圾的開罰,對於太空垃圾的管制具有重大的意義,代表著對太空垃圾危害性的重視,也代表著清理太空垃圾的商機正在逐漸成長。

-----廣告,請繼續往下閱讀-----

清除太空垃圾能有商業價值?

隨著商業化的太空活動逐漸熱絡,如何讓清理太空垃圾不只是空談也成了一個重要的問題。如果軌道上的垃圾減少,受益的會是所有使用軌道的衛星。就與現存的回收與垃圾處理方式一樣,我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。

我們可以規定所有衛星的生產者都必須繳交「太空垃圾處理費」,如果在發射的過程中產生額外的太空垃圾,則必須提高費率。相對的,如果一家公司提供清理太空垃圾的服務,則可以獲得這些「太空垃圾權」並換成對應的金額。
圖|PanSci YouTube

另外,雖然目前對於在軌道上進行捕捉再回收的直接經濟效益並不突出,但如果未來在太空可以建立起專門的處理設施,或許可以作為一個長期的太空垃圾處理機制,沒想到吧,人類要成為跨行星文明的第一步,竟然是得先成立太空垃圾清潔隊。

不過話說回來,要讓各國政府願意砸大錢在太空垃圾回收產業可能還需要一點時間。畢竟相較於直接影響到生活的全球暖化,太空垃圾的危害並不那麼可怕,大型垃圾的撞擊也可以預測並提前避開,因此短時間內也還不會有明顯的感受,但如果你是需要觀測的天文學家,可能就覺得垃圾好礙眼了。

最後想問問大家,你覺得處理太空垃圾最好的辦法會是什麼呢?

  1. 向所有太空公司徵收處理費,培育回收業者,資本的事情資本解決。
  2. 從技術研發著手,火箭能回收,想必衛星回收技術很快也能做出來。
  3. 都別處理了,就等人類把自己鎖死在地球,宇宙垃圾就不會再增加了!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

0

6
2

文字

分享

0
6
2
歐幾里得望遠鏡開工——目標是尋找暗物質證據!一起從科學家的角度欣賞這片夢幻光景!
PanSci_96
・2024/01/27 ・6276字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

14 億歐元天文望遠鏡拍出的照片,你看過了嗎?你看到現在這些照片,揭開了宇宙過去與現在、空間與時間所交織的祕密嗎?

今年 11 月 7 日,位在 L2 拉格朗日點的歐幾里得望遠鏡,終於傳回來它升空後的第一批照片。這 5 張照片不只展示了望遠鏡的強大性能,更讓我們窺見過去無法看到的,宇宙深處的幽美與奧秘。就讓我們一起透過這些獨特的照片,來一場探索宇宙的奇異之旅吧!

歐幾里得望遠鏡有什麼厲害之處?

今年 7 月 1 號升空的歐幾里得望遠鏡,任務是觀察宇宙大尺度結構,來研究暗物質與暗能量在宇宙中的分布與性質,讓我們進一步了解自己身處的這個宇宙。

去年七月,接棒哈伯望遠鏡任務的詹姆斯.韋伯太空望遠鏡,傳回來了升空後的第一批相片,每張照片都美的震撼人心,也帶著我們從全新的視角,眺望遙遠的系外行星、恆星、星雲與早期宇宙。當時,我們製作了一集節目,和大家分享這批照片背後的重要意義。我們也提到,每個望遠鏡在完成校準以後,都會發布一批「開光照」,向外界傳達望遠鏡已經可以順利運作的好消息,同時也讓大家了解這台新望遠鏡身上,背負了哪些重要的使命與任務。

-----廣告,請繼續往下閱讀-----

而這次,新升空的歐幾里得望遠鏡也終於完成校正,傳回來不同於韋伯望遠鏡,從另一個視角看宇宙的開光照。先讓我們來了解一下歐幾里得望遠鏡。它的觀測波段是可見光到近紅外線波段,目標是觀測大範圍、不同遠近的宇宙天體。預計在 6 年的服役期間,建立完整清晰的宇宙 3D 立體圖像。只是,剛退役的哈伯太空望遠鏡,主要任務就是可見光波段的研究,去年剛任務正式開始的韋伯太空望遠鏡,則是紅外線波段的佼佼者。那歐幾里得望遠鏡有什麼突破之處嗎?這座花費 14 億歐元的望遠鏡當然有它獨到之處,它強大的地方在於,可以在更短時間內獲得更高解析度的照片,同時拍攝更大範圍的宇宙。比如哈伯太空望遠鏡需要好幾天觀測的天體,歐幾里得望遠鏡一個小時就可以搞定,而且解析度更高。

歐幾里得太空望遠鏡。圖/wikimedia

其實看它們的任務目標就能很快理解,現在在天空上的韋伯和歐幾里得,雖然有部分任務重疊。但韋伯更著重在尋找系外行星與觀察星系、恆星系統的演化。歐幾里得呢,則是將視野放大到整個宇宙,希望了解暗物質、暗能量在整個宇宙間扮演的角色。所以比起韋伯太空望遠鏡著重在拍攝小範圍、高解析度的天體照片,歐幾里得望遠鏡一開始的設計,就是要在短時間內掃描更大片的宇宙。因此,歐幾里得望遠鏡也確實成為建立宇宙 3D 立體圖像的最佳望遠鏡,定期的大範圍掃描天空,讓我們能一窺宇宙隨時間的演化動態。

那麼,就讓我們來欣賞歐幾里得望遠鏡的第一批照片吧!

歐幾里得望遠鏡第一批照片公開!

第一張照片,像是在宇宙這張巨大的黑布上,撒下大小珍珠。它是一張距離地球 2.4 億光年,英仙座星系團的影像照。

-----廣告,請繼續往下閱讀-----

宇宙中有許多星系團,英仙座星系團就是其中之一,裡面包含超過 1000 個星系,是宇宙中最大的結構之一。除此之外,這張照片不僅清楚拍下了星系團,如果將照片放大來看,還會發現背景中有許多過去難以看到的星系,數量超過 10 萬個,最遠的甚至達 100 億光年。為什麼第一批照片要選擇拍攝星系團呢?因為研究星系團能幫助我們了解宇宙大尺度結構,進一步推算暗物質與暗能量的比例。

宇宙中的星系分佈其實是不均勻的,有些地方有許多星系,有些區域則幾乎沒有。整個宇宙中天體的分布看起來就像是一張巨網。可是,為什麼宇宙的大尺度結構是網狀的呢?天文學家認為宇宙大爆炸之後,物質在宇宙中的分佈會有些微的不均勻。當宇宙逐漸冷卻,氣體物質密度較高的地方會因為重力吸引而塌縮。但因為溫度很高,高溫產生的巨大壓力又讓氣體團反彈回來,就像擠壓一個壓力球一樣。來回震盪的過程中氣體會像聲波朝四面八方傳遞出去,稱為重子聲學振盪(BAO,baryon acoustic oscillations)。最後整個宇宙就像下毛毛雨時的池塘,形成由許多漣漪交織的網狀結構,波腹的地方氣體密度較高,變成星系高度聚集的區域,我們稱為星系團。其他地方氣體密度低,形成的星系數量較少,就像是宇宙間的孔洞。

而根據宇宙學家計算,要形成星系團、宇宙網(cosmic web)這類的宇宙大尺度結構,只靠已知物質提供的重力是不夠的,很可能還有許多我們還不了解的物質參與其中,也就是暗物質。這張照片不僅能幫助科學家研究宇宙大尺度結構,更彰顯歐幾里得望遠鏡的重要任務之一,就是幫助科學家深入了解暗物質的分佈與本質。

第二張照片是螺旋星系 IC342,離地球只有 1100 萬光年,算是離地球很近的星系,但由於它被明亮的銀河系盤面擋住了,觀測的難度非常高。歐幾里得望遠鏡利用近紅外線儀器穿透塵埃進行觀察,並移除許多銀河系中的恆星光芒,最後才形成這張極高解析度的照片,展現了它觀測隱藏星系的實力。

-----廣告,請繼續往下閱讀-----
IC342。圖/Judy Schmidt

這個螺旋星系在天空中的大小相當於一個滿月那麼大,要一次觀測這樣大範圍的天空,同時保有超高解析度,目前只有歐幾里得望遠鏡才辦得到。由於螺旋星系 IC342 和銀河系很像,觀察它的演化有助於科學家理解銀河系的形成過程。未來歐幾里得望遠鏡也會觀測更多隱藏星系和遙遠的天體,繪製出它們的 3D 分佈圖。

第三張照片是不規則星系 NGC 6822。雖然跟 IC342、銀河系一樣也是星系,但形狀不是螺旋而是不規則的。

透過光譜分析,我們知道這個星系中的重元素含量很低。重元素是透過大質量恆星核融合所產生的,重元素含量少表示星系裡的恆星才剛形成,也就是一個很早期、相對年輕的星系。科學家認為,在宇宙早期星系剛開始演化時,大部分的星系就長得像這樣,質量小、形狀也不太規則。之後這些小星系會因為重力吸引其他星系,彼此相撞、融合成更大的星系,逐漸產生旋轉的結構,形成像銀河系這樣的大質量螺旋星系。所以藉由觀測這些早期星系,可以幫助科學家了解星系的形成過程。

另外,照片中一顆顆藍色的圓形區域,是球狀星團。球狀星團中的星星都是由同一團氣體產生,是宇宙最早形成的天體之一,有些甚至比星系本身還早。透過觀測這些球狀星團的運動,能協助我們更了解這個星系的形成史。

-----廣告,請繼續往下閱讀-----

球狀星團大部分分佈在星系的外圍,以很慢的速度繞行星系,可能要好幾年才能觀察到要它們的運動。那科學家要怎麼知道這些星團是如何移動的呢?凡走過必留下痕跡,其中一種方式就是觀察到它們與星系本身互動所留下的痕跡。在歐幾里得望遠鏡傳回來的第四張照片中,就呈現了這些細節。第四張照片是球狀星團 NGC 6397,一個繞行銀河系的球狀星團。

當星團經過星系中的高密度區域,比如暗物質集中區、旋臂或星系盤面,星團中的星星會受到不同強度的重力吸引,使得星星彼此遠離,這個力量稱為潮汐力。顧名思義與潮汐的產生是相同的原理,由於地球各處受到太陽與月亮的重力總和不相同,在重力較強的地方海水受拉伸而漲潮,重力較弱的地方就會退潮。同樣道理,球狀星團在靠近星系中心的一側受重力較強,遠離星系的一側則較弱,球狀星團因而被拉伸,形成一條由星星組成的尾巴,稱為潮汐尾。

透過觀測潮汐尾,就可以了解球狀星團,乃至星系的演化過程。如果沒有潮汐尾,也可能代表有暗物質暈阻止外層恆星逃脫,能幫助我們進一步了解暗物質在星系當中的分佈。但要瞭解潮汐尾的形成過程,必須有星團中每顆星星的移動資料,也就是需要同時進行大範圍、短時間、高精度的觀測。而歐幾里得望遠鏡的優勢此時就能充分發揮,它可以一次拍攝整個球狀星團,而且只須一小時就可以得到這張高解析度的照片,連裡面的很暗的星星也看的一清二楚。只要每隔一段時間拍攝一張照片,就可以製作成動畫,了解星團中星體的運動軌跡。

最後,我們來介紹最後一張照片。它看起來最為夢幻,猶如一張宇宙中以繁星點綴的絲綢。它是距離地球約 1375 光年的馬頭星雲,也是離我們最近,正在形成新生恆星的區域。在星雲的上方(照片之外),有一顆明亮的恆星:獵戶座 sigma 星,這顆星輻射出的紫外光激發了位在馬頭後方的星雲,形成明亮、宛若薄紗的區域。組成馬頭的暗星雲氣體則因為溫度較低,只有些微的熱輻射,形成較為黯淡的前景,並稍微遮掩背後的明亮星雲。前後星雲層層堆疊,就像一幅宇宙給我們的水彩畫。更進一步,藉由歐幾里得望遠鏡高解析度的照片,科學家得以從中看到更多類木星、棕矮星、嬰兒恆星等,協助科學家了解星雲中的恆星形成過程。

-----廣告,請繼續往下閱讀-----
圖/wikimedia

對了,在我們介紹韋伯望遠鏡時有提到過,這些宇宙照通常不是它可見光波段下,真正我們肉眼所見的樣貌。而是選定特定波長後透過顏色校正,甚至將不同波段的照片疊合,才得到的結果。也就是說,選則不同的電磁波波段,或是採取不同的調色方式,得到的照片都會有不同風味。

所以如果你覺得這張淡麗的馬頭星雲不滿意,也有這張,特別強化氫元素的紅色光譜與氧元素藍色光譜後,成為一張猶如滅世風格,帶有點詭譎濾鏡的另一種美照,是不是跟剛才的氛圍完全不一樣呢?

馬頭星雲。圖/wikimedia

順帶一提,對我來說,一樣是星雲照片,韋伯望遠鏡校色出來的照片還是覺得比較好看。例如之前介紹過的,韋伯望遠鏡開光照之一的船底座星雲。還有原本是望遠鏡大前輩哈伯代表作,後來韋伯又重新翻拍的創世之柱,都更令人讚嘆不已,對比與彩度都高上許多,給人一種正在仰望廣闊宇宙的壯烈感。

韋伯望遠鏡所拍攝的船底座星雲。圖/wikimedia
創生之柱,左哈伯、右韋伯。圖/PanSci YouTube

我們更了解這個宇宙了嗎?

我們對於宇宙的瞭解還太少,目前宇宙中的已知物質,包括元素週期表上的所有原子,根據計算只佔宇宙質能的 5%,剩下的估計都是暗物質與和能量。

-----廣告,請繼續往下閱讀-----

但宇宙的奧秘就像一張複雜的拼圖,每拼上一小塊,都會給我們一些線索,猜測周圍的拼圖可能會是什麼。當拼的夠多,我們終有一天能得知宇宙整體的圖畫長什麼樣貌。恆星形成、星系演化方式、暗物質、暗能量等等,都各自是一塊塊重要的拼圖,唯有了解它們才能逐步得知暗物質與暗能量的奧秘。

舉例來說,暗物質所提供的重力在星系形成中扮演重要角色,目前最被科學界接受的冷暗物質(cold dark matter)模型,假設暗物質是由質量很大的粒子所組成,透過重力吸引聚集成許多小塊,小塊暗物質再彼此融合成更大的暗物質團塊,質量足夠大的團塊就可以吸引夠多的氣體,形成早期星系,之後再彼此融合成為更大的螺旋或橢圓星系。但透過數值模擬,科學家發現這個模型有些問題。理論上來說應該要有數百到數千個小衛星星系,繞行像銀河系這麼大的螺旋星系旋轉。但是天文學家實際上只觀測到約十個小星系繞行銀河系,這是著名的衛星遺失問題(Missing satellite problem)。

因此科學家又提出更多暗物質模型,比如與冷暗物質相對的熱暗物質(warm dark matter)模型,可以透過熱運動所產生的壓力抵銷重力,使得小暗物質團塊變得不穩定,從而解釋為何小星系的數量這麼少。除了熱暗物質以外,還有眾多的暗物質模型。但要證明哪個模型是正確的,就需要更多觀測數據與星系演化的模擬結果進行比較,才能得到答案。

不過看過歐幾里得望遠鏡傳回來的第一批照片,並了解其中代表的重要意義,就能充分感受到我們離解開這個謎團又更近了一步。還沒完,預計於 2027 年升空的羅曼太空望遠鏡(Nancy Grace Roman Space Telescope),與歐幾里得望遠鏡相同,都肩負研究暗能量與暗物質的重要任務。兩座望遠鏡將一同一個從可見光,一個從紅外線波段觀察大範圍宇宙,期待能為科學家帶來寶貴的數據,解開這盤旋好幾十年的謎團。

-----廣告,請繼續往下閱讀-----

最後問問大家,在這批照片中,你最喜歡的是哪一張呢?

  1. 英仙座星系團,大尺度的宇宙圖像,原來長這樣。
  2. 螺旋星系 IC342,我們的鄰居竟然這麼漂亮,這麼具有螺旋力。
  3. 馬頭星雲,有層次感的星雲照,真的令人目不暇給。
  4. 更多你喜歡的照片,或希望我們來介紹的天文照片,分享給我們吧!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。