在陸上水槽內養殖鮪魚的技術過去在日本、澳洲、美國都有成功的經驗,但品種皆與這次西班牙海洋研究所養殖的大西洋藍鰭鮪魚(Thunnus thynnus)不同,這也是歐洲首次陸上養殖鮪魚的成功案例。這些小藍鰭鮪魚中有一部份是用無倒勾的魚鉤釣上,然後直接運送到位於Mazarrón的西班牙海洋研究所,另外一部分則曾在海灣的流籠中適應過一段時間,也因此這些小藍鰭鮪魚全數在水槽中存活,並展現旺盛的食慾跟活動力。來自ScienceDaily的報導。
在陸上水槽內養殖鮪魚的技術過去在日本、澳洲、美國都有成功的經驗,但品種皆與這次西班牙海洋研究所養殖的大西洋藍鰭鮪魚(Thunnus thynnus)不同,這也是歐洲首次陸上養殖鮪魚的成功案例。這些小藍鰭鮪魚中有一部份是用無倒勾的魚鉤釣上,然後直接運送到位於Mazarrón的西班牙海洋研究所,另外一部分則曾在海灣的流籠中適應過一段時間,也因此這些小藍鰭鮪魚全數在水槽中存活,並展現旺盛的食慾跟活動力。來自ScienceDaily的報導。
本文與 高柏科技 合作,泛科學企劃執行。
當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。
2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。
不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。
但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!
這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。
換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。
要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。
散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。
在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。
現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。
為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。
那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。
典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。
為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。
OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?
傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。
其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。
3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。
在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。
整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。
從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。
隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。
然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。
另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。
高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。
討論功能關閉中。
108 課綱開啟全新閱讀素養時代。
科學素養不再侷限於考試的解題方法,學生閱讀科學讀物時,如何在氾濫資訊中找到高品質、適合學習程度的科學素材,是教育現場至關重要的課題。
臺灣師範大學 SmartReading 團隊將 AI 讀物難度分級技術,透過測驗、選書、閱讀、讀後回饋四大功能,完整記錄孩子的學習歷程,提升中小學生科普閱讀動機,成為自律自主的科普學習者。
臺灣師範大學於 110 年至 111 年間,與國科會、新北市、臺中市等單位合作,連續辦理三屆「SmartReading 科普閱讀力大賽」,每屆競賽歷時半年。競賽組別以國小三年級至高中一年級共分七個組別。參賽學校涵蓋臺北市、新北市、臺中市、臺南市、高雄市、花東等十九縣市,報名參賽人數累計八千餘人。
競賽期間,參賽學生使用「SmartReading 適性閱讀」系統,透過精準快速的中文閱讀能力診斷,將閱讀程度與讀物難度適配。藉由系統已建置,適合國小三年級至高中一年級的 2,180 餘本科普讀物,不僅能激勵其學習動機,更可有效提升選擇的效率,降低科學閱讀恐懼。第三屆科普閱讀力大賽不受疫情波擾,採實體與線上兩種施測方式,於 111 年 5 月份圓滿完成賽事。
111 年 9 月 24 日於臺灣師範大學舉行頒獎典禮,邀請新北市教育局張明文局長、臺北市教育局鄧進權副局長、臺灣閱讀協會陳昭珍理事長、康橋國際學校秀岡校區卓意翔副校長、親子天下兒童產品事業部副總經理林彥傑、新北市信義國小陳桂蘭校長到場擔任頒獎嘉賓。參賽學校師生、家長齊聚典禮會場,為優秀的得獎同學喝采。
臺師大宋曜廷副校長表示,數位閱讀邁向新時代,團隊使用「SmartReading 適性閱讀」系統作為科普賽競賽平台,期望在知識爆炸的時代,藉由測驗、選書、規劃的「智慧閱讀三步驟」,培養學子的跨領域閱讀力與閱讀習慣,讓學生們手握知識大門的鑰匙,成為自律自主的「SmartReader」。
一、適配閱讀能力與圖書難度,擴增多元書籍與文章素材
參賽學生首先須參加中文適性閱讀能力診斷(DACC),依據診斷結果,配合其當前閱讀能力的科普推薦書單,讓學生選書有依據、個人化。本競賽目前共有「推薦書單」、「推薦文章」等 2 種閱讀素材,主題包含植物/動物、數學、天文地科、物理/化學等 8 大類別。「推薦文章」功能,則與「PanSci 泛科學」及「數感實驗室 Numeracy Lab」合作評選,當前提供 600 餘篇線上科普短文,競賽期間提供已超過 4,000 人次的瀏覽次數。
二、綜合性閱讀五力分數,開啟學生全方位閱讀力
本競賽賽程為期半年,學生透過「前測、閱讀任務挑戰、後測」三個階段。競賽期間,系統詳細記錄每週閱讀歷程,並產出線上「閱讀五力分數」報表。自主規劃閱讀期間計算為「規劃力」;讀後評量填答結果計算為「執行力」;閱讀多元書籍類別的結果計算為「博學力」;閱讀單一書籍類別的深化成果則計算為「精進力」;前後測成長結果計算為「成長力」。將閱讀能力數據化、可視化。
三、閱讀任務徽章,深化學生文化素養與科普閱讀興趣
本競賽內建徽章蒐集系統,參賽者於指定時間依據提示完成閱讀任務,即可獲得期間限定的特色科普徽章。任務內容包含閱讀指定的書單及文章類別、世界性科普節日、科學家生辰、台灣重要節慶與其他隱藏任務。本屆各年級累計獲得徽章達 20423 枚,因設計活潑及任務類型多樣,大受參賽者好評。
一、科普閱讀參與,國小男性最踴躍
活動期間參賽者共完成約 21,153 本的書籍評量。以不同學習階段來看;國小參賽者整體閱讀平均本數為 24 本,男生平均閱讀本數為 28 本,女生平均閱讀本數為 20 本。國、高中參賽者因科普讀本難度較高,需要較長的閱讀時間及一定的科學基礎知識,國中參賽者整體平均閱讀書籍數為 10 本;高中參賽者中女性平均閱讀本數多於男性,整體平均閱讀書籍數為 7 本。
總閱讀量/本 | 人數 | 平均閱讀量/本 | |
---|---|---|---|
全體學生 | 21,153 | 1,100 | 19 |
女 | 8,051 | 505 | 16 |
男 | 13,102 | 595 | 22 |
國小學生 | 17,479 | 716 | 24 |
女 | 6,474 | 325 | 20 |
男 | 11,005 | 391 | 28 |
國中學生 | 3,459 | 355 | 10 |
女 | 1,461 | 166 | 9 |
男 | 1,998 | 189 | 11 |
高中學生 | 215 | 29 | 7 |
女 | 116 | 14 | 8 |
男 | 99 | 15 | 7 |
二、學生偏好閱讀動物/寵物類與地球生態/天文類書籍
整體參賽學生對於科普書籍的喜愛程度,以植物/動物類(男生 28.19%、女生 27.91%)最能引起學生的閱讀興趣(如:《昆蟲老師上課了!:吳沁婕的超級生物課》、《小島上的貓頭鷹》、《神奇樹屋》等系列)。在次要類別,男女皆喜好生態/生命科學類的書籍(男生 15.20%、女生 16.87%)。
三、參賽學生閱讀歷程的質與量均佳,表現令人驚豔
本次參賽學生皆積極參與競賽。
以三年級組第一名得主,臺北市立大同國小的林靖軒同學為例,競賽期間閱讀書籍本數高達 383 本,書籍讀後評量的通過率更高達 95%,書籍不僅讀得多,更是能讀得要領。
四年級組第一名為第二次參賽的新北市信義國小謝秉言同學,本次競賽期間共閱讀 427 本書。
其中五年級組為本次競爭最激烈的一組,臺北市立長春國小的黃葦川同學以及高雄市立集美國小的吳勁毅同學,兩者僅以極小的分數差距位居第一及第二名。
此外,第一次參與競賽的高雄市立正義國小的孫政遠,競賽期間閱讀 281 本書籍,通過率達到 97%。
四、教育主管機關、學校師長及家長支持鼓勵,帶動學生優異表現
新北市教育局致力於推動智慧閱讀教育,不遺餘力,成果豐碩。本屆競賽全台共 2,104 人報名參與,全國賽獎項獲獎學生共計 36 人,其中新北市得獎學生便囊括 14 位,表現相當亮眼。
家長與學校師長共同陪伴,使得學生能專注於本次競賽,並有相當卓越的成果,例如新北市康橋國際學校、臺中市明道中學、臺中市葳格國際學校、臺北市東山中學等校,皆因全力推廣閱讀活動,才能有優異的競賽成果。以新北市康橋國際學校國中部為例,此次七年級組參賽者,全國賽前5名得主中,康橋中學就獲有 3 名的佳績。
延續前三屆廣受好評之科普賽事,第四屆科普賽將擴大辦理,邀請「PanMedia 泛科知識股份有限公司」馮瑞麒總經理、「數感實驗室 Numeracy Lab」賴以威教授、「國立臺灣大學科學教育發展中心」賴亦德執行長,持續提供參賽者更生活化、趣味化的科普文章,預期第四屆科普閱讀力大賽將能讓全球讀者有更高品質的閱讀體驗和更充實的閱讀收穫。
活動詳情請參閱官方網站。
新聞聯絡人:高等教育深耕計畫辦公室——鄭德蓉 02-2366-0916 #111
2022 年 6 月 10 日,中國大陸以檢出禁用藥物隱性結晶紫為由,全面禁止臺灣石斑魚輸入,引起我國一陣軒然大波。後來陸方聲稱,因過去多次從臺灣石斑魚中驗出土黴素超標,還有檢出孔雀石綠和結晶紫等兩種禁藥,故禁止臺灣石斑魚銷陸。
而我方行政院農業委員會 (以下簡稱農委會)漁業署回應,近年已加強正確用藥宣導,及未上市水產品產地監測措施,市場上石斑魚已鮮少檢出用藥不合格情事[1]。同時也公告 11 家石斑魚養殖場之禁藥抽驗結果,包括孔雀綠/還原型孔雀綠、結晶紫/還原型結晶紫等均未檢出[2]。
你也喜歡吃石斑嗎?
台鐵便當特別推出期間限定的龍膽石斑魚便當,支持台灣漁民。
對此我國養殖業者表示,政府稽核抽查的對象多針對合法業者,但更多的是業者未納管、未被抽查。再者,漁貨在出口前,若數量不足,可能會有養殖業者併貨,向其他養殖業者買貨集貨,增加禁藥感染的風險。因此一出事就拖垮整個產業,使合法業者跟著倒楣[3, 4]。
為何水產養殖業會如此需要用藥呢?上述提到那麼多種用藥,是否已經令你眼花撩亂?
臺灣地處亞熱帶,「水產養殖業」為我國重要的經濟活動之一,國人食用養殖水產比例比遠洋水產多,主要的養殖物種有吳郭魚、石斑魚、鰻魚、虱目魚、 牡蠣、文蛤、蜆及白蝦等。
但由於地狹人稠,可利用的土地空間有限,故養殖水產業者多採取高密度養殖的經營方式,極易造成養殖動物緊迫及疾病發生,因此需使用動物用藥品以控制疾病。
然而,不當的使用藥物,不僅容易對養殖動物造成嚴重的傷害,更容易對環境造成長久的藥物殘留,危害人類健康,甚至直接影響各國的進口貿易。
如 2003 年進口英國的魚隻約有 3% 被驗出有孔雀綠殘留[5];2005 年屏東養殖石斑也被驗出孔雀綠,嚴重影響國內養殖業者及外銷市場。還有 2012 年來自中國湖南的進口大閘蟹、2015 年銷日的鰻魚,皆與孔雀綠的殘留有關[6]。
相信「孔雀綠」大家已經在新聞上有所耳聞,只是不太清楚為何它會被禁用。
孔雀綠(malachite green),亦稱孔雀石綠,是一種人造的三苯甲烷類染料,呈綠色結晶固狀,顏色鮮豔,常用於紡織品及紙類的染色。
其具有絕佳的抗菌能力,在水產養殖生產過程中,廣泛使用於預防魚卵感染病菌或治療魚體的寄生蟲、真菌及原蟲等疾病,加上價格低廉、容易取得,故自 1930 年代就廣泛運用於水產養殖。
而孔雀綠可快速被魚體吸收,並代謝成穩定的代謝物還原型孔雀綠(leucomalachite green),為脂溶性化合物,可在環境中或魚體內殘留很久(半衰期長達 40 天),不易代謝及排除。
但是,孔雀綠對魚類也有劇毒之影響,因在用藥的過程中,有時中毒濃度和治療濃度十分相近,導致魚類孔雀綠中毒。
動物實驗也證明,孔雀綠會傷害肝臟功能,導致貧血、甲狀腺與腫瘤、影響胎兒生長,具有致癌、致突變和致畸形等風險。
因此許多國家都已明令禁止在供給人食用的動物及水產品中使用該物質,而我國行政院衛生署(現衛生福利部)早就於 97 年訂定,水產品中孔雀綠/還原型孔雀綠為不得檢出[5]。
除了上述的孔雀綠,這次被大陸檢出的禁藥「隱性結晶紫」,亦是屬於三苯甲烷類的染劑,具有殺菌或殺寄生蟲作用。
結晶紫(crystal violet)進入生物體內經轉化後,同樣也會被還原成脂溶性、無色的還原型結晶紫(leucocrystal violet),又稱隱性結晶紫。具有致癌性、基因突變、致畸胎性等風險,故很早也被法規列為不得檢出的禁藥[4]。
所以現在水產養殖業常見的合法用藥有哪些呢?
依農委員今年最新修正的《動物用藥品使用準則》[7] [註 1]中,第三條附件一「水產動物用藥品使用規範」,清楚明訂了水產動物用藥品之品目、 使用對象、用途、用法、用量、停藥期及使用上應注意事項等。
規範中指定之藥品品目計有 17 項,其對象水產動物計有吳郭魚等 50 種以上。且應依照獸醫師(佐)處方藥品販賣及使用管理辦法之相關規定,加強藥品之使用管理,防範其被濫用。
就本文事件主角石斑魚來說,比較常見的合法用藥如安默西林(Amoxicillin)、脫氧羥四環黴素(Doxycycline)、紅黴素(Erythromycin)、氟滅菌(Flumequine)、歐索林酸(Oxolinic acid)與羥四環黴素(Oxytetracycline)等,依各養殖戶的用藥習慣而有所不同。
其中,羥四環黴素便是陸方聲稱過去多次從臺灣石斑魚中驗出超標的「土黴素」。
羥四環黴素,被稱為地靈黴素或土黴素,是養殖業中使用最為廣泛的抗生素之一,其具有廣效性、良好的體液和組織滲透性,以及低成本和低毒性風險,在中國、日本、美國及歐盟都將其列為允用藥之一。
在國內常用於治療親水性產氣單胞菌及弧菌等,雖能治療疾病,但若過量用藥,易引起魚類的緊迫以及不良的後果。如有研究證實,其可導致虹鱒 DNA 損傷、增加氧化壓力及脂質過氧化;也會引起大西洋鮭魚的肝臟損害[7]。
所以要注意,水產動物用藥品主要為抗生素或合成抗菌劑。若過量使用,除了會引起魚類的不良的後果之外,藥品殘留於環境亦會對生態有所影響,直接或間接影響到水生生物,甚至可能經由食物鏈而轉移至消費者,危害人類的健康。
故水產動物用藥品在使用上,應遵守中央主管機關訂定之使用準則,如能適當使用,不但能治療水產動物疾病保持其健康,提高生產力、降低生產成本,更可促進水產事業的發展,對水產事業有很大貢獻。
註解:
1. 2005 年第一次公告,法源為《動物用藥品管理法》第三十二條,明訂「動物用藥品之使用對象、用途、用法、用量、停藥期及使用上應注意事項等,應遵守中央主管機關訂定之使用準則」。