Loading [MathJax]/extensions/tex2jax.js

0

2
5

文字

分享

0
2
5

習以為常的背景噪音,可能對大腦產生傷害?——《大腦這樣「聽」》

天下文化_96
・2023/02/09 ・2000字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在這個嘈雜的世界裡,我們不能再那麼漫不經心的看待日常的喧囂。

喧囂的城市由各種聲音組成。圖/Pexels

這些噪音並沒有達到或超過一般所認定的「危險」程度,它們不是新奇的聲音,也不是令人提高警覺的聲音,而是一些持續不斷的聲音,並且它們的聲學特質隨著時間推移後通常還能保持一致。因此,這些聲音傳遞不了多少訊息,它們大部分被視為「背景噪音」,所以經常遭到我們忽略。

不容忽視的背景噪音

我們不去聽這些聲音,但我們是真的沒聽到?或者我們只是在一種持續警戒的狀態下過活?我們都有過這種經驗:聲音消逝後才發現它的存在。

常見的例子有空調壓縮機的運轉聲,或是卡車怠速時的引擎運轉聲,等空調的壓縮機結束運轉循環或卡車引擎關閉後,我們才突然「聽見」了寂靜,然後長舒一口氣,短暫地陶醉在這份平靜裡,直到聲音再次響起或被其他擾人的聲音所取代。

如果我們的耳朵沒有因此受損,而多數時候也可以不去理睬這些聲音,那麼我們還需要關心這樣的噪音所帶來的困擾嗎?科學給我們的答案是:

-----廣告,請繼續往下閱讀-----

我們確實該注意這些聲音,並且為我們的大腦感到擔心。

我們該注意背景噪音,並為大腦感到擔心。圖/Envato Elements

暴露於中等程度的噪音後,聽力閾值屬正常的人可能會在有噪音的環境中出現難以理解語言的情況。除此之外,嘈雜的環境本來就有許多跟聽力無關的負面影響,但這種情況卻時常被低估。

長期暴露在噪音下如住在機場附近,會導致人們感受到整體生活品質的下降、感受到壓力增加並伴隨著壓力荷爾蒙皮質醇(cortisol)的分泌量增加、記憶力和學習能力產生問題、難以執行有挑戰性的任務,甚至會導致血管硬化和其他心血管疾病。

根據世界衛生組織估計,每一年因噪音暴露及其帶來的間接影響(如高血壓和認知表現衰退)而生病、引發殘疾,或早逝的人數相當驚人。

噪音使專注力下降

噪音還會對學習和專注度產生干擾。

在紐約市的公立學校,根據教室所在位置是學校鄰近繁忙的高架鐵路的一側,或是位於可屏蔽火車噪音的另一側,學生的閱讀測驗結果有明顯的差異;教室位於嘈雜側的學生閱讀能力落後同儕三到十一個月。

-----廣告,請繼續往下閱讀-----
噪音對學習和專注力有一定程度的影響。圖/Envato Elements

發現噪音有這般影響之後,紐約市公共運輸局在學校附近的鐵軌上鋪設了橡膠墊,教育局則是在環境最嘈雜的教室裡加裝了減噪建材,這兩項措施共計將噪音強度減少了 6 至 8 分貝,之後,不同教室間學生閱讀測驗的差異很快就消失了。

噪音造成的影響不只局限於聽覺相關,或是語言相關(如閱讀)之類的任務。有一項實驗要求受試者執行追蹤視覺物體的任務:用滑鼠跟著螢幕上一顆會動的球移動,與此同時,螢幕上還有其他動來動去的球。執行這項任務時,因為職業關係而長期暴露在噪音環境中的受試者遇到較多困難,尤其當任務搭配著隨機出現的噪音時更是如此,這些受試者的反應比較慢,無法緊跟著目標球。

睡眠凶手

在《為什麼要睡覺?》(Why We Sleep)一書中,加州大學柏克萊分校的睡眠科學家沃克(Matthew Walker)提到,缺乏良好的睡眠是「二十一世紀人類最大的公共衛生挑戰」。

環境中的噪音會影響睡眠品質,並降低睡覺時所感受到的放鬆感受。圖/Envato Elements

睡眠逐漸被視為是影響健康的重要因素,我們的心血管系統、免疫系統以及思考能力,都會受到睡眠的影響;噪音是阻礙一夜好眠的最大凶手。噪音,甚至是音量極低的噪音,會破壞睡眠的品質,導致我們醒著的時間變多了,醒來的時間也提早了。

-----廣告,請繼續往下閱讀-----

環境中的噪音會影響我們的睡眠品質,促使身體產生動作、從睡眠中醒來,以及心跳速率變快。交通噪音會縮短睡眠時的快速動眼期(rapid eye movement,REM,即做夢期)和慢波期(slow-wave,即深眠期),並降低夜晚睡覺時所感受到的放鬆感受。

 

——本文摘自《大腦這樣「聽」:大腦如何處理聲音,並影響你對世界的認識》,2022 年 12 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
一次搞懂主動式 vs 被動式降噪,讓你耳朵甲百二的法寶
雅文兒童聽語文教基金會_96
・2024/08/27 ・2152字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • /王子宜|雅文基金會 聽力師

世界衛生組織 ( WHO ) 統計,目前全球約有 5% 人口正接受聽力復健措施,如:助聽輔具協助,並預估到 2050 年前,將有 2.5 億人口存在一定程度的聽力損失,並有近 700 萬人,聽力度數已影響日常聆聽需介入,也就是說每十人就有一人需要助聽輔具協助,顯示聽力問題持續存在,影響人數逐年提升,且為全球重視議題。除了受損後的介入處遇外,預防更勝於治療,WHO 也發現全球約 11 億人面臨噪音性聽損風險,且相關防護裝置的使用仍不普及,可見噪音暴露是為有損聽力健康之高風險因素之一。

有什麼方式可以幫助我們遠離噪音傷害呢?因應而生的就是「聽覺防護工具」,可以是使用被動式降噪的耳塞,或是現在風行的耳機搭配主動式降噪設計,那到底主動和被動,哪一個降噪效果比較好呢?用這些防護工具有沒有需要注意的地方?以下就讓我們來探探究竟。

被動式降噪

被動式降噪的操作方式是將聲音傳入耳朵的通道堵住,盡可能降低進到耳朵裡面的音量,但我們如何知道各款耳塞的降噪能力呢?可透過產品提供的 NRR 值估算,NRR ( Noise Reduction rating ) 值指的是噪音衰減率,若要評估環境中使用耳塞後耳內仍有的噪音量,可利用原廠提供的 NRR 值做簡單計算如下

耳內噪音量 ( ENL ) [ dBA ] = 環境噪音 ( dBC ) – NRR = 環境噪音 ( dBA ) – ( NRR – 7 )* 計算時仍需考量耳塞密合度的影響,普遍來說若耳塞無氣孔,且佩戴大致貼合,則降噪效果約為原廠提供 NRR 值的 50%~70%。

依照耳道共振的特性,當我們將耳道口以各式耳塞塞住,雖塞入深度及耳塞材質仍有影響,但研究顯示可產生的降噪音量為高頻多於低頻 ( 如下圖 ),尤其在 3000-6000Hz 處可達最佳降噪效益,此段頻率也恰為噪音型聽力損失前期,耳蝸毛細胞先受到損傷的區段吻合,由此可見雖然各家抗噪耳塞的設計及佩戴方式不進相同,但只要在可能有噪音暴露風險的聆聽環境中使用抗噪耳塞,就能夠減低使耳蝸毛細胞受損,進一步產生不可逆聽力損失的風險。

-----廣告,請繼續往下閱讀-----
參考資料 3 表 1.

剛剛提到耳塞的材質、密合度及使用方式也會相應的有不同降噪表現,以下舉兩種常見耳塞供讀者參考。

3M 耳塞

3M 廠牌推出各種造型及佩戴方式的防護工具,主要可分為耳罩式和塞入式兩種,右圖為市面常見的橘色塞入式耳塞,原廠提供的 NRR 值為 29 分貝,平均來說,各塞入式耳塞的 NRR 值約落在 25-33 分貝間,詳細降噪效果請見參考資料 4。

非塞入式矽膠耳塞

此種耳塞的使用方式為利用將矽膠的延展性,密封住耳道口,即不用將耳塞塞入耳道內,提升佩戴舒適性,部分耳塞可透過清洗方式清潔並重複利用,各家廠商的抗噪能力不盡相同,網路搜尋商品資訊,平均降噪能力 ( NRR值 ) 落在 20-40 分貝間。

矽膠耳塞佩戴方式 ↑ ( 參考自耳酷點子官網 )

主動式降噪

How Does Noise Cancelling Work? | Built In

-----廣告,請繼續往下閱讀-----

主動式降噪的操作原理簡單來說就是透過降噪系統產生與外界噪音相等的反向聲波,以破壞性干擾原理消除噪音,因此需先由耳機麥克風收集並分析外部聲源後,才能複製並產生反向聲波來進行降噪,對於持續出現的噪音,如:風切聲、交通工具運轉聲效果較佳,但若是突然出現的噪音,如:他人聊天對話,則會因來不及進行運算分析,降噪效益較有限。

參考自 Noise-cancelling headphones: originally appeared in How It Works (issue 80)

研究統計,主動式降噪音量平均為 30 分貝,針對重複性的低頻噪音有機會達 60 分貝的降噪量,但因麥克風濾波設計,主動式降噪技術對於高於 1000Hz 的音頻處理較弱,也就是說他主要能夠降低的外部干擾多為低頻噪音。目前幾家耳機大廠皆有針對主動式降噪搭配藍芽串流的耳機設計,若佩戴方式為耳道 ( 塞入 ) 式,因不像耳罩式耳機多了被動式透過耳罩多一層降噪的設計,所以在高頻方面的效益會稍弱一些,建議讀者可依據聆聽情境、使用需求及佩戴舒適性做綜合考量。

隨著聽力保健意識抬頭,科技的快速發展也幫助我們有更多的防護工具選擇,然這些抗噪工具並非萬能,在使用上也會有其不便利之處,如:雖目前研究皆顯示主動式降噪為安全有效的技術,但有部分個案對低頻反向波刺激大腦時會相應有頭暈的症狀、若在馬路行走時使用,當外部噪音都被消除時,會有交通安全上的疑慮。

想達到聽能保健之成效,除了有效利用工具之外,在日常生活的一些細節調整,如把握 66 原則:「在聆聽個人音訊裝置時,音量須小於 60% 且每天不超過 60 分鐘」,也能幫助自己在享受聲音的同時,有效避免面臨噪音性聽力損失的風險。

-----廣告,請繼續往下閱讀-----
  1. https://www.ctwant.com/article/257729
  2. NRR Rating – Custom Protect EarCustom Protect Ear
  3. Niloofar Ziayi Ghahnavieh, Siamak Pourabdian, and Farhad Forouharmajd, 2018. Protective earphones and human hearing system response to the received sound frequency signals.
  4. https://multimedia.3m.com/mws/media/1064417O/3m-hearing-line-card.pdf
  5. 聽不聽,由你決定:降噪技術背後的奧秘 – Samsung Newsroom 台灣
  6. How Does Noise Cancelling Work? | Built In
  7. How do noise-cancelling headphones work? – How It Works (howitworksdaily.com)
  8. 聽覺照顧雲 (psa.org.tw)
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
61 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

1
2

文字

分享

0
1
2
從昏迷到死亡錯覺:摩托車事故後的科塔爾症候群——《大腦獵奇偵探社》
行路出版_96
・2024/08/24 ・3933字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

摩托車事故後的幻覺

一九八九年十月,二十八歲的股票經紀人,姑且稱之為威爾(Will),發生了嚴重的摩托車意外。他腦部受到重創,陷入昏迷,雖然幾天後恢復意識,但他在醫院裡住了好幾個月,治療腦傷以及其他損傷引起的感染。

到了隔年一月,威爾的復原情況非常良好,已經可準備出院。他的身上有些問題永遠好不了,例如右腿行動困難以及喪失部分視覺。但是最困擾他的問題發生在他的腦袋裡:他相當確定自己已經死了。威爾的母親為了幫助兒子早日康復,帶他去南非度假。但南非的炎熱讓威爾相信這個地方就是(真正的)地獄,因此更加確定自己必定是個死人。母親難以置信地問他是怎麼死的,他說了幾個可能的死因。有可能是血液感染(這是治療初期的風險),也有可能是他之前打黃熱病疫苗之後的併發症。此外他也提出自己可能死於愛滋病,雖然他沒有感染 HIV 病毒或愛滋病的任何跡象。

威爾康復出院,但堅信自己已經死亡。連他母親帶他去南非度假,都被他認為自己身在地獄。 圖/envato

有一種強烈的感覺纏上威爾,揮之不去─他覺得身旁所有東西都……這麼說好了……不是真的。車禍前熟悉的人和地方,他現在都不太認得,所以他愈發覺得自己住在一個奇怪又陌生的世界。連母親都不像真的母親。其實在南非度假的時候,威爾就曾這麼說過。他認為真正的母親在家裡睡覺,是她的靈魂陪伴他遊歷陰間。

喪失現實感:大腦如何捏造非理性的死亡解釋

四十六歲的茱莉亞(Julia)有嚴重的雙相情緒障礙症(bipolar disorder),入院時她相信自己的大腦和內臟都已消失。她覺得她早已不存在,只剩下一副空殼般的軀體。她的「自我」消失了,所以她(無論從哪個意義上看來都)是個死人。她不敢泡澡也不敢淋浴,因為怕自己空空如也的身體會滑進排水孔流走。

-----廣告,請繼續往下閱讀-----

三十五歲的凱文(Kevin)憂鬱的情況愈來愈嚴重,幾個月之後,腦海中的念頭漸漸演變成妄想。一開始,他懷疑家人正在密謀要對付他。接著,他認為自己已經死了,也已經下地獄,只是身體仍在人間。現在這副身體是空殼,裡面一滴血液也沒有。為了證明自己的想法沒錯,他從岳母家的廚房裡拿了一把刀,反覆戳刺手臂。他的家人明智地叫了救護車,將他送進醫院。

科塔爾症候群患者的大腦顯然有問題。發病之前,通常發生過嚴重的神經系統事故(中風、腫瘤、腦傷等等),或出現精神疾病(憂鬱症、雙相情緒障礙症、思覺失調症等等)。不過這些情況導致科塔爾症候群仍屬少見,神經科學家尚未找到明確原因,可以解釋科塔爾症候群患者的大腦為何如此與眾不同。再加上每個患者的症狀都不太一樣,判斷起來更加困難。話雖如此,有些共同症狀或許能提供蛛絲馬跡,幫助我們了解這種症候群。

科塔爾症候群的患者經常說,他們身處的世界莫名其妙變得很陌生。多數人看到自己曾邂逅多次的人事物時,大腦都能點燃辨認的火花,但這件事不會發生在科塔爾症候群的患者身上。舉例來說,患者可能認得母親的臉,但就是莫名的感到陌生。她似乎缺乏某種無形──但重要的─個人特質,所以患者即使看到這個生命中最重要的人,卻無法產生預期中的的情感反應。

患者也可能會有疏離感,彷彿自己是這世界的旁觀者,而不是參與者。術語叫做人格解離(depersonalization)。此外,周遭的一切都散發超現實的氣氛,讓患者相信自己生活在擬真的夢境裡─這是一種叫做喪失現實感(derealization,亦稱失實症)的症狀。科塔爾症候群患者體驗到的陌生感、人格解離、喪失現實感,都會嚴重扭曲他們眼中的現實世界。不難想像這會讓大腦難以負荷。

-----廣告,請繼續往下閱讀-----

大腦碰到如此矛盾的情況會拚命尋找原因。對大腦來說,能夠合理解釋各種生活事件是非常重要的。若找不到合理的解釋,世界很快就會變成無法預測、無法理解,最終變得無法忍受。因此為了清楚解釋所經歷的事情,大腦會無所不用其極。如果在經驗裡出現大腦難以合理解釋的元素,它會退而求其次:自己捏造合理的答案。

每個人的大腦都會這麼做,而且隨時隨地都在做,只是我們察覺不到。例如有研究發現,我們每天做的決定不計其數─從什麼時間吃點心,到要跟誰出去約會──但我們做這些決定時總是不假思索。我們好像大部分的時間都處於自動駕駛模式。可是每當有人問我們為什麼做這樣的決定時,大腦幾乎總能想出好答案來合理化我們的選擇。但有時候,它想出來的答案完全不合理。

有一項研究讓男女受試者看兩名女性的照片,請他們選出比較好看的那位。受試者做出決定之後,研究人員隨即將照片放在他們面前,要他們解釋為什麼選這個人。但受試者不知道的是,研究人員會偷偷調換照片(占比約二十%),要受試者解釋自己為什麼挑中這個(他們明明沒挑中的)人。大多數受試者都沒有識破研究人員的詭計。他們通常不會質疑照片上的人不是自己選的那個,而是當場想出合理的答案,說明為什麼覺得眼前照片上的人比較好看,例如「她看起來很辣」,或是「我覺得她比較有個性」(兩張照片差異甚大,所以受試者不是單純的認錯人)。

這種非刻意的捏造叫做虛談(confabulation),大腦做這件事的頻率比你以為的更高。虛談的原因可能有百百種,但這似乎是大腦遇到自己無法明確解釋的事件時,會使用的策略。神經科學家相信,科塔爾症候群患者的大腦也做了類似的事情。從這個角度來說,科塔爾症候群的起點,是前面提過的幾種狀況(例如創傷、腫瘤等等)導致大腦功能異常。

-----廣告,請繼續往下閱讀-----

大腦合理性檢查機制失靈

大腦功能異常導致現實感喪失與人格解離,進而使患者覺得周遭的一切很陌生,欠缺他們預期中的「真實感」。於是患者的大腦努力理解這樣的經驗,瘋狂尋找合理的解釋。基於不明原因,科塔爾症候群患者容易把注意力轉向內在,認為如果外在經驗不對勁,毛病可能出在自己身上。

結果基於某些更加不明的原因,大腦找到的解釋是他們已經死了、正在腐爛、被邪靈附體,或其他稀奇古怪的、與存在有關的原因。這一連串環環相扣的假設聽起來有點誇張。畢竟,喪失現實感這樣的症狀沒那麼少見;很多人(某些估計高達七十五%)會有類似的─但非常短暫的─喪失現實感的經驗。但有這種經驗的人,幾乎都不會認為自己已經死了。

顯然,科塔爾症候群患者的大腦裡還發生了別的事情。神經科學家相信,或許是重要的合理性檢查機制(plausibility-checking mechanism)沒有發揮作用。大腦偶爾會錯誤解讀生活裡發生的事,但我們通常不會想出一個明顯不合理的解釋。

或許是因為大腦錯誤解讀現實,讓科塔爾症患者對現實理解出現錯覺。 圖/envato

大腦似乎有一套用來評估邏輯的機制,確保我們的邏輯可以通過合理性的檢驗。在多數有過喪失現實感或人格解離等症狀的人身上,這套合理性檢查機制能使他們立刻否決「我感覺到自己脫離現實,是因為我已經死了」的想法;大腦認為這個提議很荒唐,很可能再也不會想起它。但是在科塔爾症候群的患者身上,這套合理性檢查機制顯然壞掉了。大腦將脫離現實的感覺歸因於他們已經死了,這個想法不知為何保留了下來,而大腦也認為這個解釋站得住腳。於是在其他人眼中絕對是妄想的念頭,成了他們深信不移的答案。

-----廣告,請繼續往下閱讀-----

醫生在為科塔爾症候群患者(以及後面會介紹的另外幾種行為古怪的精神障礙患者)尋找腦部損傷時,經常發現腦傷位於右腦。神經科學家因此假設合理性檢查機制位於右腦。大腦分為兩半,叫做大腦半球(cerebral hemispheres)。左腦半球和右腦半球的劃分簡單有力,因為有一道裂縫將大腦一分為二。乍看之下,左右兩邊一模一樣,但受過訓練的神經科學家用肉眼就能看出兩者並非完全對稱。透過顯微鏡觀察,差異更加顯著。因此左腦與右腦的功能有差異或許不足為奇。

長期以來,一直有人拿這些差異做文章,用錯誤的方式來解讀左腦和右腦的不同,以偏概全又過於誇大。例如斬釘截鐵地說,有些人較常使用右腦,也就是「右腦人」,所以擅長創意思考,「左腦人」則比較有邏輯。這是大家耳熟能詳的觀念,但神經科學家認為這只是迷思。實際上,我們使用大腦時不會特別偏左或偏右,而是完整使用兩個半腦。不過有些功能(例如語言的某些能力)會比較依賴某一個大腦半球。所以科塔爾症候群與右腦損傷有關的假設,並非全然不可能。

但科塔爾症候群(可能也包括合理性檢查機制)與右腦的關聯性依然只是假設,只不過許多(但不是所有)神經科學家深入研究過的科塔爾症候群案例,都支持這項觀察結果。無論合理性檢查機制確切位於何處,但在推演患者如何發展出科塔爾症候群的通用模型中,這個假設的機制扮演著重要角色。首先,大腦功能異常造成疏離症狀,例如喪失現實感與人格解離。大腦出於習慣,會先試著為眼前的情況找答案。問題是,仔細檢查並淘汰不合理答案的能力也受損了,於是大腦只好捏造稀奇古怪的答案,告訴自己身體已經死了(或是邪靈附體、正在腐爛等等),而且不會因為這個答案不合理而淘汰它。

有人認為,這種階段性的妄想形成過程也適用於另一些妄想症。這些妄想症的症狀也很古怪,不亞於科塔爾症候群。

-----廣告,請繼續往下閱讀-----

——本文摘自《大腦獵奇偵探社:狼人、截肢癖、多重人格到集體中邪,100個讓你洞察人性的不思議腦科學案例》,2024 年 7 月,行路出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing