Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

「人前手牽手,背後下毒手」其他海底生物想跟章魚一起生活,沒那麼簡單!——《章魚的內心世界》

馬可孛羅_96
・2020/03/18 ・2137字 ・閱讀時間約 4 分鐘 ・SR值 485 ・五年級

  • 作者/賽.蒙哥馬利(Sy Montgomery);譯者/鄧子衿

雖然章魚通常不和同類打交道,和其他種類動物之間的關係,除了獵捕和被吃之外,也幾乎都不清楚。如果要在家飼養頭足類動物,專家的建議是不要把牠們和其他水族養在同一個水槽中,因為章魚可能會吃掉牠們。

也不是所有章魚都會毒死同槽,他們也可能會帶著同槽逃生呀(誤)。圖/GIPHY

不過章魚對於同槽水族也並非都處在敵對狀態。溫哥華水族館的館員丹尼.肯特(Danny Kent)發現在卑詩省水域展區中,「有些章魚能夠和許多石斑魚一起生活多年,不會吃牠們,但是有些章魚就會迫不及待的把同水槽中的其他動物吃掉。」

在這座水族館容量高達六萬五千加侖( 25 萬公升)的「喬治亞海峽」(Strait of Georgia)展示槽中,有一條章魚喜歡爬到接近水面的岩石上,把一條腕伸到流下的水柱中。肯特發現這條章魚把腕當成釣魚線,等著鯡魚撞到腕,就把鯡魚抓來吃。

複雜的「同槽」關係可能暗藏殺機

表面上章魚和同槽動物相安無事,背地裡卻偷偷的除掉那些「威脅」。圖/GIPHY

同槽水族之間的關係也可能非常複雜。2000 年,西雅圖水族館做了一個很冒險的決定:把一條北太平洋巨型章魚放到四萬加侖(15 萬公升)的水槽中,裡面有數條一公尺多長的白斑角鯊(dogfish shark,Squalus acanthias),他們覺得章魚如果受到鯊魚的威脅時,會好好躲著。但是他們錯了。

他們非常驚訝章魚非但沒有受到威脅,反而有計畫地逐一殺死了那些白斑角鯊(重現這個意外的影片在 2007 年放上網路後便瘋傳,有 290 萬人看過這個影片,也都非常驚訝)。研究人員發現鯊魚沒有消失,但是死亡了,沒有被吃掉。章魚沒有獵食牠們,也沒有因為直接威脅而馬上逃走。

-----廣告,請繼續往下閱讀-----

根據最原始的新聞報導和影片的字幕,在鯊魚進行瘋狂殺戮之前,章魚就先發制人,進行攻擊。在鯊魚還沒有機會造成威脅之前,章魚就先把有可能掠食自己的動物殺死了。

直擊章魚下毒現場?

在科蘇美,我親眼目睹了另一個不同的跨物種互動,我從來沒有看到有人報告過這樣的景象。

猜猜他在潛水過程,見到了什麼呢?圖/GIPHY

在這趟旅程中最後一次潛水時,我們前往的礁岩樸實無華,沒有幾個大朵的珊瑚頭,也沒有許多突出的長礁與岩石。在潛水半個小時後,我們下潛到約十公尺深,這時看到在突出岩塊下的白沙子上,有一條加勒比礁章魚(Caribbean reef octopus,Octopus briareus)。

我靠近到兩公尺,發現在章魚前面幾公分的位置,大約有十幾隻活螃蟹聚集,有紅的也有黑的,身體的殼約五、六公分大。這些螃蟹看起來非常平靜,想到這些螃蟹所處的狀況,我極為驚訝。有些螃蟹慢慢爬著,如果有一隻螃蟹想要遠離章魚,章魚便伸出腕,把螃蟹(我認為非常溫柔地)撥回來。

這個狀況非常詭異。章魚的周圍是牠最喜歡的食物,但是牠並沒有因為興奮而變成紅色。牠的皮膚是白色的,夾雜了些明亮的藍色。章魚並沒有用吸盤把溜走的螃蟹抓回來,而是用腕把螃蟹掃到自己面前。螃蟹沒有急忙逃脫,這也很奇怪。

-----廣告,請繼續往下閱讀-----

另外,我在旁邊沒有看到有螃蟹殼和其他殘骸,章魚巢穴外面通常會有這些東西。不過這裡可能不是那條章魚的巢穴。不論如何,這裡的螃蟹也太多了,牠們或許是站在以前同伴留下的外骨骼上,但是我也沒有看到。章魚看了我一眼,就回去專心看顧那些螃蟹了。就算我近到只有一公尺,牠也沒有退避。

我想在這裡待久一點,但是海流強勁,我們是在放流潛水中,停不住。後來我問水族館中的朋友:那些螃蟹在幹什麼?為什麼不逃走?那條章魚在打什麼注意?章魚為什麼要看顧這群螃蟹?我半開玩笑地拋出一個點子:那條章魚是不是用墨汁對那些螃蟹下藥了?

墨汁除了掩人耳目,還真有可能影響其他動物的行為

阿~怎麼眼前一片黑?圖/GIPHY

美國海洋動物學家馬吉尼蒂夫婦(G. E. and Nettie MacGinitie)有次把一條熱帶海鰻放到有泥灘章魚(mudflat octopus)的水槽中。熱帶海鰻開始尋找章魚,章魚在牠靠得太近的時候,便對牠噴墨汁。熱帶海鰻會繼續狩獵,但是不會攻擊章魚。就算熱帶海鰻真的觸碰到章魚,也不會想要攻擊章魚或是吃掉章魚。每次都這樣。

章魚的墨汁中含有黑色素(melanin),以及其他有重要生物功能的成分,其中一種是酪胺酸酶(tyrosinase),這種酵素能刺激眼睛,並堵住鰓。不過它可能還有其他效果。

1962 年,《英國藥理學期刊》(British Journal of Pharmacology)上有一篇論文指出,這種酵素能夠阻礙催產素(「擁抱激素」)與血管升壓素(vasopressin)1這兩種激素的活性。鳥類、爬行動物、無脊椎動物(包括章魚)等,都有個別的催產素和增壓素,哺乳動物的催產素曾經試驗用在魚身上,結果改變了魚的社會性行為。

-----廣告,請繼續往下閱讀-----

如果這種激素正常的濃度受到影響,那麼像螃蟹這樣獨居的動物,可能會變得特別平靜,還能聚集在一起,面對主要掠食動物時也依然如此。

註解:

  1. 抗利尿激素,能夠影響血液循環。

——本書摘自《章魚的內心世界》,2019 年 9 月,馬可孛羅

-----廣告,請繼續往下閱讀-----
文章難易度
馬可孛羅_96
25 篇文章 ・ 19 位粉絲
馬可孛羅文化為台灣「城邦文化出版集團」的一個品牌,成立於1998年,經營的書系多元,包含旅行文學、探險經典、文史、社科、文學小說,以及本土華文作品,期望為全球中文讀者提供一個更開闊、可以縱橫古今、和全世界對話的新閱讀空間。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
螃蟹有痛感嗎?我們是怎麼知道的?
F 編_96
・2025/01/16 ・1669字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live science

螃蟹一直是海鮮美食中的明星,從油炸軟殼蟹到清蒸螃蟹,餐桌上經常見到牠們的身影。有地方也習慣直接將活螃蟹丟沸水煮熟,認為這能保留最多的鮮味。過去人們認為甲殼類缺乏複雜神經結構,不會感受到痛苦,因此不必過度憂心道德問題。但近年來,越來越多研究開始挑戰此一想法,指出螃蟹與龍蝦等甲殼動物可能具備類似疼痛的神經機制。

以前大家相信甲殼類缺乏複雜神經結構,但近期這一認知逐漸受到質疑。 圖 / unsplash

甲殼類是否能感覺到痛?

人類長期習慣以哺乳類的神經構造作為痛覺判斷依據,由於螃蟹沒有哺乳動物那樣的大腦腦區,便被認為只憑簡單反射行動,談不上真正「痛」。然而,新興科學證據顯示包括螃蟹、龍蝦在內的甲殼類,除了可能存在被稱為「nociceptors」的神經末梢,更在行為上展現自我防禦模式。這些研究結果顯示,螃蟹對強烈刺激不僅是本能抽搐,還有可能進行風險評估或逃避策略,暗示牠們的認知或感受方式比我們想像更精緻。

關鍵證據:nociceptors 與自我保護行為

近期實驗在歐洲岸蟹(Carcinus maenas)中觀察到,當研究人員以刺針或醋等刺激手段測量神經反應,牠們顯示與痛覺反應類似的神經興奮;若只是海水或無害操作,則無此現象。此外,透過行為實驗也可看出,寄居蟹在受到電擊時,會毅然捨棄原本的殼子逃離電源,但若同時存在掠食者味道,牠們會猶豫要不要冒著風險離開殼子。這些結果使科學家認為,螃蟹並非單純反射,而可能有對於痛感的判斷。若只是「低等反射」,牠們不會考慮掠食風險等外在因素。

痛覺與保護:實驗結果引發的道德思考

以上發現已在科學界引發廣泛關注,因為餐飲業與漁業中常見「活煮」或「刺穿」處理螃蟹方式,如今看來很可能讓牠們承受相當程度的不適或疼痛。瑞士、挪威與紐西蘭等國已開始禁止活煮龍蝦或螃蟹,要求先以電擊或機械方法使其失去意識,試圖減少痛苦。英國也曾討論是否將甲殼類納入動物福利法保護範圍,最後暫時擱置,但此爭議仍在延燒。

-----廣告,請繼續往下閱讀-----
英國對於是否將甲殼類列入動物福利法的保護範圍,有所爭議。 圖 / unsplash

部分學者保持保留態度,認為雖然甲殼類展現疑似痛覺的行為與神經反應,但與哺乳類相同的「主觀痛感」仍需更多研究證明。大腦與神經系統結構畢竟存在很大差異,有些反射也可能是進化而來的自衛機制,而非真正意義上的感受。然而,科學家普遍同意,既然相關證據已經累積到一定程度,毋寧先採取更謹慎與人道的處理模式,而非輕易推卸為「牠們不會痛」。

海洋生物福利:未來的規範與影響

如果螃蟹被證實擁有痛覺,將牽動更廣泛的海洋生物福利議題,包括鎖管、章魚或多種貝類也可能具有類似神經機制。人類一直以來習慣將無脊椎動物視為「低等生物」,未必給予與哺乳類相同的法律或倫理關注。但若更多實驗持續指出,牠們同樣對嚴重刺激展開避痛行為,社會或終將呼籲修訂漁業與餐飲相關法規。未來可能要求業者在捕撈與宰殺前使用電擊或麻醉,並限制活煮等方式。這勢必對漁業流程與餐廳文化造成衝擊,也引發經濟與文化折衷的爭議。

龐大的實驗數據雖已暗示螃蟹「會痛」,但確鑿的最終定論仍需更多嚴謹研究支持,包括更深入的大腦活動成像與突觸路徑分析。同時,落實到實際操作也需追問:是否存在更快、更人道的宰殺或料理方式?能否維持食材鮮度同時保障動物福利?這種思維轉變既考驗科學進程,也考驗人類對自然資源的態度。也許未來,既然我們仍會食用海產,就該以最小痛苦的方式對待那些可能感受痛苦的生物,為牠們提供基本尊重。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
0

文字

分享

0
1
0
大象你的鼻子怎麼伸得這麼長?因為多功能皮膚也能伸展!
Peggy Sha/沙珮琦
・2022/08/24 ・1627字 ・閱讀時間約 3 分鐘

「大象~大象~你的鼻子怎麼那麼長?」

在象鼻皺皺的皮膚下面,隱藏著超強伸展力。 圖/envatoelements

喬治亞理工學院(Georgia Institute of Technology)最新的研究發現,大象皺巴巴的「皮膚」竟然隱藏著超強的「伸展之力」,跟肌肉簡直就是完美搭檔。有了隱藏的伸展力,大象就能夠加倍發揮象鼻的各種功能,還能將象鼻伸得更長、更遠!

又硬又軟的萬用工具!象鼻究竟有多強?

象鼻實在是非常神奇的存在,它擁有超過四萬條肌肉,既能柔軟靈活地捲起水果和樹葉,又能強悍地打斷樹幹、抵禦攻擊。究竟它為何能這樣「又硬又軟」靈活切換呢?

神奇的象鼻,靈活地就像大象的手一樣。 圖/GIPHY

為了深入探索象鼻的秘密,研究團隊特別跑去亞特蘭大動物園(Zoo Atlanta),設置了高速攝影機,紀錄下非洲大象用象鼻拿取食物的過程。

乍看之下,軟軟的象鼻似乎就像我們的舌頭一樣,是充滿肌肉的無骨組織。然而,它真正派上用場時,可一點兒也不像舌頭呢!透過鏡頭,研究人員發現:象鼻頂部底部的運動狀況完全不一樣。當大象伸長象鼻時,象鼻外側的延伸能力比內側強多了。仔細看看畫面,就能發現外側的象鼻其實伸得更長!

-----廣告,請繼續往下閱讀-----
非洲象用象鼻拿取食物的過程。影/Georgia Tech College of Engineering

秘密就在皮膚裡!打開皺紋發揮伸展之力吧!

至於兩邊的長度為何會有如此大的差距呢?秘密原來就藏在象鼻的皺褶中!研究團隊解剖了大象屍體,發現象鼻外側與內側的皮膚非常不同——象鼻外側那摺疊起來的皮膚,比另一側的皮膚多出了約 15% 的彈性。

更有趣的是,大象移動象鼻的方式,跟章魚觸手這種軟趴趴器官常用的「平均伸展大法」十分不同,象鼻伸展時就像是打開了一把折疊傘,內部是固定的,而傘面則可以向外變寬、延伸。不只如此,大象們還會如同開折傘一樣「分批運動」象鼻喔!

怎麼說呢?牠們運用象鼻時,會先探出頂端,然後視需求一節一節依序運用後面的肌肉,不到萬不得已,絕對不會動到靠近身體這側的肌肉群!學者們表示,大象之所以會這樣動,是因為象鼻前端部分的肌肉量較少,動起來也比較不費勁,而大象其實就跟人類一樣懶,當然是追求越省力越好囉!

在拿取東西時,象鼻會由前往後一節節伸展。圖/envatoelements

借我學一下啦!皺褶象皮竟能應用在機器人身上?

另一方面,象鼻上這些皺巴巴的皮膚其實也十分堅硬,能起到重要的保護作用。比如說,在關節部分,一般肌肉容易拉伸,甚至拉傷,但如果有了皺褶,則需要花上整整 13 倍的力量才能拉伸。

-----廣告,請繼續往下閱讀-----

這樣的保護力有什麼用呢?在未來,或許可以應用在仿生機器人身上喔!許多仿生機器人都會設計液壓系統,雖然十分靈活,但施力時卻也非常容易斷裂。如果我們能在機器人身上添加一些皺巴巴的皮膚,不僅能提供更強大的保護力,也讓機器人在運用上出現更多不同的可能性。

  1. Skin: An additional tool for the versatile elephant trunk
  2. Schulz, A. K., Boyle, M., Boyle, C., Sordilla, S., Rincon, C., Hooper, S., Aubuchon, C., Reidenberg, J. S., Higgins, C., & Hu, D. L. (2022). Skin wrinkles and folds enable asymmetric stretch in the elephant trunkProceedings of the National Academy of Sciences of the United States of America119(31), e2122563119. https://doi.org/10.1073/pnas.2122563119
  3. How Skin Helps Elephants Move and Twist Their Trunks
  4. 動物奇門功夫.象鼻神奇構造
-----廣告,請繼續往下閱讀-----
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。