0

1
1

文字

分享

0
1
1

「人前手牽手,背後下毒手」其他海底生物想跟章魚一起生活,沒那麼簡單!——《章魚的內心世界》

馬可孛羅_96
・2020/03/18 ・2137字 ・閱讀時間約 4 分鐘 ・SR值 485 ・五年級

  • 作者/賽.蒙哥馬利(Sy Montgomery);譯者/鄧子衿

雖然章魚通常不和同類打交道,和其他種類動物之間的關係,除了獵捕和被吃之外,也幾乎都不清楚。如果要在家飼養頭足類動物,專家的建議是不要把牠們和其他水族養在同一個水槽中,因為章魚可能會吃掉牠們。

也不是所有章魚都會毒死同槽,他們也可能會帶著同槽逃生呀(誤)。圖/GIPHY

不過章魚對於同槽水族也並非都處在敵對狀態。溫哥華水族館的館員丹尼.肯特(Danny Kent)發現在卑詩省水域展區中,「有些章魚能夠和許多石斑魚一起生活多年,不會吃牠們,但是有些章魚就會迫不及待的把同水槽中的其他動物吃掉。」

在這座水族館容量高達六萬五千加侖( 25 萬公升)的「喬治亞海峽」(Strait of Georgia)展示槽中,有一條章魚喜歡爬到接近水面的岩石上,把一條腕伸到流下的水柱中。肯特發現這條章魚把腕當成釣魚線,等著鯡魚撞到腕,就把鯡魚抓來吃。

複雜的「同槽」關係可能暗藏殺機

表面上章魚和同槽動物相安無事,背地裡卻偷偷的除掉那些「威脅」。圖/GIPHY

同槽水族之間的關係也可能非常複雜。2000 年,西雅圖水族館做了一個很冒險的決定:把一條北太平洋巨型章魚放到四萬加侖(15 萬公升)的水槽中,裡面有數條一公尺多長的白斑角鯊(dogfish shark,Squalus acanthias),他們覺得章魚如果受到鯊魚的威脅時,會好好躲著。但是他們錯了。

他們非常驚訝章魚非但沒有受到威脅,反而有計畫地逐一殺死了那些白斑角鯊(重現這個意外的影片在 2007 年放上網路後便瘋傳,有 290 萬人看過這個影片,也都非常驚訝)。研究人員發現鯊魚沒有消失,但是死亡了,沒有被吃掉。章魚沒有獵食牠們,也沒有因為直接威脅而馬上逃走。

-----廣告,請繼續往下閱讀-----

根據最原始的新聞報導和影片的字幕,在鯊魚進行瘋狂殺戮之前,章魚就先發制人,進行攻擊。在鯊魚還沒有機會造成威脅之前,章魚就先把有可能掠食自己的動物殺死了。

直擊章魚下毒現場?

在科蘇美,我親眼目睹了另一個不同的跨物種互動,我從來沒有看到有人報告過這樣的景象。

猜猜他在潛水過程,見到了什麼呢?圖/GIPHY

在這趟旅程中最後一次潛水時,我們前往的礁岩樸實無華,沒有幾個大朵的珊瑚頭,也沒有許多突出的長礁與岩石。在潛水半個小時後,我們下潛到約十公尺深,這時看到在突出岩塊下的白沙子上,有一條加勒比礁章魚(Caribbean reef octopus,Octopus briareus)。

我靠近到兩公尺,發現在章魚前面幾公分的位置,大約有十幾隻活螃蟹聚集,有紅的也有黑的,身體的殼約五、六公分大。這些螃蟹看起來非常平靜,想到這些螃蟹所處的狀況,我極為驚訝。有些螃蟹慢慢爬著,如果有一隻螃蟹想要遠離章魚,章魚便伸出腕,把螃蟹(我認為非常溫柔地)撥回來。

這個狀況非常詭異。章魚的周圍是牠最喜歡的食物,但是牠並沒有因為興奮而變成紅色。牠的皮膚是白色的,夾雜了些明亮的藍色。章魚並沒有用吸盤把溜走的螃蟹抓回來,而是用腕把螃蟹掃到自己面前。螃蟹沒有急忙逃脫,這也很奇怪。

-----廣告,請繼續往下閱讀-----

另外,我在旁邊沒有看到有螃蟹殼和其他殘骸,章魚巢穴外面通常會有這些東西。不過這裡可能不是那條章魚的巢穴。不論如何,這裡的螃蟹也太多了,牠們或許是站在以前同伴留下的外骨骼上,但是我也沒有看到。章魚看了我一眼,就回去專心看顧那些螃蟹了。就算我近到只有一公尺,牠也沒有退避。

我想在這裡待久一點,但是海流強勁,我們是在放流潛水中,停不住。後來我問水族館中的朋友:那些螃蟹在幹什麼?為什麼不逃走?那條章魚在打什麼注意?章魚為什麼要看顧這群螃蟹?我半開玩笑地拋出一個點子:那條章魚是不是用墨汁對那些螃蟹下藥了?

墨汁除了掩人耳目,還真有可能影響其他動物的行為

阿~怎麼眼前一片黑?圖/GIPHY

美國海洋動物學家馬吉尼蒂夫婦(G. E. and Nettie MacGinitie)有次把一條熱帶海鰻放到有泥灘章魚(mudflat octopus)的水槽中。熱帶海鰻開始尋找章魚,章魚在牠靠得太近的時候,便對牠噴墨汁。熱帶海鰻會繼續狩獵,但是不會攻擊章魚。就算熱帶海鰻真的觸碰到章魚,也不會想要攻擊章魚或是吃掉章魚。每次都這樣。

章魚的墨汁中含有黑色素(melanin),以及其他有重要生物功能的成分,其中一種是酪胺酸酶(tyrosinase),這種酵素能刺激眼睛,並堵住鰓。不過它可能還有其他效果。

1962 年,《英國藥理學期刊》(British Journal of Pharmacology)上有一篇論文指出,這種酵素能夠阻礙催產素(「擁抱激素」)與血管升壓素(vasopressin)1這兩種激素的活性。鳥類、爬行動物、無脊椎動物(包括章魚)等,都有個別的催產素和增壓素,哺乳動物的催產素曾經試驗用在魚身上,結果改變了魚的社會性行為。

-----廣告,請繼續往下閱讀-----

如果這種激素正常的濃度受到影響,那麼像螃蟹這樣獨居的動物,可能會變得特別平靜,還能聚集在一起,面對主要掠食動物時也依然如此。

註解:

  1. 抗利尿激素,能夠影響血液循環。

——本書摘自《章魚的內心世界》,2019 年 9 月,馬可孛羅

文章難易度
馬可孛羅_96
25 篇文章 ・ 19 位粉絲
馬可孛羅文化為台灣「城邦文化出版集團」的一個品牌,成立於1998年,經營的書系多元,包含旅行文學、探險經典、文史、社科、文學小說,以及本土華文作品,期望為全球中文讀者提供一個更開闊、可以縱橫古今、和全世界對話的新閱讀空間。

0

1
1

文字

分享

0
1
1
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 53 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
大象你的鼻子怎麼伸得這麼長?因為多功能皮膚也能伸展!
Peggy Sha/沙珮琦
・2022/08/24 ・1627字 ・閱讀時間約 3 分鐘

「大象~大象~你的鼻子怎麼那麼長?」

在象鼻皺皺的皮膚下面,隱藏著超強伸展力。 圖/envatoelements

喬治亞理工學院(Georgia Institute of Technology)最新的研究發現,大象皺巴巴的「皮膚」竟然隱藏著超強的「伸展之力」,跟肌肉簡直就是完美搭檔。有了隱藏的伸展力,大象就能夠加倍發揮象鼻的各種功能,還能將象鼻伸得更長、更遠!

又硬又軟的萬用工具!象鼻究竟有多強?

象鼻實在是非常神奇的存在,它擁有超過四萬條肌肉,既能柔軟靈活地捲起水果和樹葉,又能強悍地打斷樹幹、抵禦攻擊。究竟它為何能這樣「又硬又軟」靈活切換呢?

神奇的象鼻,靈活地就像大象的手一樣。 圖/GIPHY

為了深入探索象鼻的秘密,研究團隊特別跑去亞特蘭大動物園(Zoo Atlanta),設置了高速攝影機,紀錄下非洲大象用象鼻拿取食物的過程。

乍看之下,軟軟的象鼻似乎就像我們的舌頭一樣,是充滿肌肉的無骨組織。然而,它真正派上用場時,可一點兒也不像舌頭呢!透過鏡頭,研究人員發現:象鼻頂部底部的運動狀況完全不一樣。當大象伸長象鼻時,象鼻外側的延伸能力比內側強多了。仔細看看畫面,就能發現外側的象鼻其實伸得更長!

-----廣告,請繼續往下閱讀-----
非洲象用象鼻拿取食物的過程。影/Georgia Tech College of Engineering

秘密就在皮膚裡!打開皺紋發揮伸展之力吧!

至於兩邊的長度為何會有如此大的差距呢?秘密原來就藏在象鼻的皺褶中!研究團隊解剖了大象屍體,發現象鼻外側與內側的皮膚非常不同——象鼻外側那摺疊起來的皮膚,比另一側的皮膚多出了約 15% 的彈性。

更有趣的是,大象移動象鼻的方式,跟章魚觸手這種軟趴趴器官常用的「平均伸展大法」十分不同,象鼻伸展時就像是打開了一把折疊傘,內部是固定的,而傘面則可以向外變寬、延伸。不只如此,大象們還會如同開折傘一樣「分批運動」象鼻喔!

怎麼說呢?牠們運用象鼻時,會先探出頂端,然後視需求一節一節依序運用後面的肌肉,不到萬不得已,絕對不會動到靠近身體這側的肌肉群!學者們表示,大象之所以會這樣動,是因為象鼻前端部分的肌肉量較少,動起來也比較不費勁,而大象其實就跟人類一樣懶,當然是追求越省力越好囉!

在拿取東西時,象鼻會由前往後一節節伸展。圖/envatoelements

借我學一下啦!皺褶象皮竟能應用在機器人身上?

另一方面,象鼻上這些皺巴巴的皮膚其實也十分堅硬,能起到重要的保護作用。比如說,在關節部分,一般肌肉容易拉伸,甚至拉傷,但如果有了皺褶,則需要花上整整 13 倍的力量才能拉伸。

-----廣告,請繼續往下閱讀-----

這樣的保護力有什麼用呢?在未來,或許可以應用在仿生機器人身上喔!許多仿生機器人都會設計液壓系統,雖然十分靈活,但施力時卻也非常容易斷裂。如果我們能在機器人身上添加一些皺巴巴的皮膚,不僅能提供更強大的保護力,也讓機器人在運用上出現更多不同的可能性。

參考資料

  1. Skin: An additional tool for the versatile elephant trunk
  2. Schulz, A. K., Boyle, M., Boyle, C., Sordilla, S., Rincon, C., Hooper, S., Aubuchon, C., Reidenberg, J. S., Higgins, C., & Hu, D. L. (2022). Skin wrinkles and folds enable asymmetric stretch in the elephant trunkProceedings of the National Academy of Sciences of the United States of America119(31), e2122563119. https://doi.org/10.1073/pnas.2122563119
  3. How Skin Helps Elephants Move and Twist Their Trunks
  4. 動物奇門功夫.象鼻神奇構造
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

1

3
0

文字

分享

1
3
0
影響臺灣石斑魚外銷日本的關鍵:「西卡毒」──《科學月刊》
科學月刊_96
・2022/08/06 ・2260字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/莊健隆 美國羅德島大學(University of Rhode Island)博士,曾任職農復會至農委會及美國飼料營養劑公司,著有《鱻故事魚文化》等書。

臺灣社群新聞媒體 ETtoday 新聞雲在今(2022)6 月 19 日的一篇新聞標題,寫著〈台灣石斑魚在日本沒有市場   農委會曝他們怕吃進「西卡毒」〉。

報導內容中描述:「農委會副主委陳添壽說明,臺灣石斑魚最大宗就是龍虎斑[註],而這樣的配種讓日本人很怕有『西卡毒』,擔心龍虎斑在岩礁成長時會吃下藻類,造成石斑體內有藻毒。而陳添壽稱將透過日台交流協會,讓日方了解臺灣石斑都是養殖而不會吃到藻類,若能解除日方疑慮,之後石斑銷日就有可能會再成長。」

註:由雄鞍帶石斑魚(Epinephelus lanceolatus,俗稱龍膽石斑)與雌褐點石斑魚(E. fuscoguttatus,俗稱老虎斑)雜交所產生的子代。

西卡毒素(又稱「雪卡毒素」)的結構,看起來像不像是很多雪花構成的呢?圖/Wikipedia

筆者曾請教臺大退休教授、藻類專家周宏農有關藻毒的問題,他說明曾有香港人食用來自吉里巴斯、加勒比海的十公斤以上野生龍膽石斑而中毒,毒源則來自會產生西卡毒素(ciguatoxins)的渦鞭毛藻(Gambierdiscus),且臺灣的遠洋漁船也曾發生過中毒事件。

不過他也補充,其實過去從未在養殖石斑魚發現西卡毒。由於日本人對石斑魚相對生疏、對石斑魚活魚的食用量更少,上述中毒事件也說明日本人的顧慮有所根據,更對比出過去臺灣鳯梨被中國禁止進口後積極開拓日本市場,但這次石斑魚卻不見喊出賣給日本的原因。

-----廣告,請繼續往下閱讀-----

比河豚毒素強 100 倍的西卡毒,究竟是什麼?

「西卡」(cigua)是指稱食用珊瑚礁魚類而中毒,而過往學者就曾指出,造成此種中毒的毒素稱為西卡毒素,是一種透過食物鏈由草食性魚種採食珊瑚礁藻類,草食性魚種又被較大的肉食性魚吞食而累積的毒素。換言之,毒素產生的源頭來自於珊瑚礁附近的多種底棲微藻,其中最主要的是一種名為崗比甲藻(Gambierdiscus toxicus)的雙鞭毛藻(dinoflagellate)。

別看它小小的,石斑魚賣不出去就是因為這個小東西。圖/Wikipedia

西卡毒素為脂溶性物質,毒性甚至比河豚毒素(tetrodotoxin)強 100 倍。全球平均每年發生西卡毒素中毒達五萬人之多,而過去的中毒事件多半侷限於加勒比海水域和北緯 35 度與南緯 35 度之間的太平洋海域。然而,隨著魚產品的貿易市場擴大,該毒素影響區域也擴大至印度洋沿岸、中國南海諸島,以及香港附近的海域。

若不小心食入西卡毒素,初期會有腹痛、噁心、下痢、嘔吐等症狀,其次會感到疲勞、無力,四肢及口喉刺痛與麻痺、運動失調,嚴重者可能因呼吸困難而致死。

然而我們目前對於西卡毒仍缺乏檢測標準,雖然美國公司 Oceanit 曾生產過商品化試劑西卡毒素檢測套組(Cigua-Check® test kit),但它的使用者多為釣客、消費者、研究單位,並沒有被食安官方單位列入經常性追蹤。

-----廣告,請繼續往下閱讀-----

即使有毒,大家還是吃得很開心

日本在明治維新時期開始進行西化式行政管理制度、現代化教育政策、吸取科學化精神,但也保留自身的傳統文化。以吃河豚文化的傳承為例,日本早在西元前 4 世紀就開始烹調、食用極富魅力的河豚,雖然在 17 世紀前後國內戰事頻繁,許多士兵飽受河豚毒之害,使得幕府政權曾一度頒布法令、禁食河豚;然而受到 19 世紀末西化的影響,在當時的首相伊藤博文推動下,山口縣取消了河豚禁食令,進而全國也逐漸取消禁令。

而在河豚解禁的同時,他們也設立了相關配套措施:由政府運營一套河豚處理師的培訓系統,有法律規定各餐廳內需有具備資格的河豚處理師才能提供河豚料理,而這些領有官方認證執照的師傅會把河豚有毒的部位包括內臟、卵巢等,在不汙染到魚肉的狀態下移除,並以大量水洗去河豚肉上的血液。這些處理過的河豚肉,常切成很薄的刺身、排列精美,且限定每人的食用分量。

最受歡迎的河豚生魚片,需要有證照的師傅才能處理。大家是不是看得都想吃了呢?圖/Wikipedia

香港人、廣東人有歷史悠久的食用生猛海鮮的飲食文化背景,而臺灣人過往並沒有食用活石斑魚的習慣,但為了供應香港巿場需求,澎湖地區在 1972 年開始捕撈野生魚苗、蓄養石斑魚。1979 年澎湖水試所嘗試以賀爾蒙催熟、並成功孵化人工苗,接著在 1995~1997 年由澎湖水試所與屏東枋寮龍佃養殖場合作,確立了開發龍膽石斑魚苗及成魚的量產技術。到了 1990 年末期,全臺的養殖石斑魚年產量達 3000 公噸,時至今日更可達到每年 2 萬公噸上下。

將龍虎斑外銷日本固然值得努力,但是日本人對龍虎斑的接受度絕對遠低於鳯梨,這是因為後者早在 1920~1930 年的日治時代,日本企業家就曾來臺灣設廠生產鳳梨罐頭銷往日本,具有近百年歷史。

-----廣告,請繼續往下閱讀-----

而石斑魚則是嶄新產品,甚至就連在臺灣本土市場,石斑魚對一般消費者,尤其是家庭主婦而言也並不熟悉,總是認為那是餐廳、辦桌用的「場面魚」。有關單位部門若要推廣石斑魚,除了指導民眾「石斑魚家常菜」的烹調方式,似乎也可以講講石斑魚變色、變性(先雌後雄),以及臺灣漁人在石斑魚養殖、研發過程中努力而動人的故事。

  • 〈本文選自《科學月刊》2022 年 8 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 1
科學月刊_96
249 篇文章 ・ 3615 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。