而他的成果,就是在 Sora 官網上看到的驚人影片,那種絲滑的高畫質、毫無遲滯且高度合理、具有空間與時間一致性的動作與運鏡,甚至可以輕易合成跟分割影片。
不過啊,能把 Sora 模型訓練到這個程度,依舊是符合 OpenAI 大力出奇跡的硬道理,肯定是用了非常驚人的訓練量,要是我是 Runway 或 Pika 這兩家小公司的人,現在應該還在咬著牙流著血淚吧。別哭,我相信很多人還是想要看威爾史密斯繼續吃義大利麵的。
在訓練過程中,Sora 從提取影像特徵,到形成有意義的 patch,到最後串聯成序列,如果你接觸過認知心理學,你會發現這其過程就跟認知心理學描述人類處理訊息的過程如出一轍。都是擷取特徵、幫特徵編碼形成意義、最後組合長期記憶形成序列,可以說 Sora 已經接近複製人類認知過程的程度。
-----廣告,請繼續往下閱讀-----
這邊是我的推測,影片中那些逼真的物理效果,不是有特定的物理模型或遊戲引擎在輔助,而是在 patch 的訓練與序列推理中,就讓 Sora 理解到要讓物體這樣動,看起來才會是真實的,這跟 GPT-4 並不需要文法引擎是一樣的,只要玩文字接龍,就能生成流暢又有邏輯的文字跟代碼。但這也是為什麼,GPT 依舊很會胡說八道,產生幻覺。如果不是這樣,我很難想像 Sora 會算出這種影片。
Sora 能理解並產生人類眼睛能接收的視覺影片,同樣的技術若能做出聽覺、觸覺等其他人類感官,這樣我們被 AI 豢養的時刻是不是就越來越近了呢?
後 Sora 時代到底會發生什麼事,老實講我不知道,上面提到的 diffusion transformer 或 patch,都是近一年,甚至是幾個月前才有研究成果的東西。
臉書母公司 Meta 的首席人工智慧科學家 Yann Lecun 也在他自己的臉書公開抨擊 Sora 這種基於像素預測的技術註定失敗,但這篇感覺比較像是對自己的老闆 Zuckerberg 喊話:「欸這沒戲,不要叫我學 Sora,拿寶貴的運算資源去搞你的元宇宙。」是說今年初就有新聞說祖老闆 2024 年預計買超過 35 萬顆 H100 處理器,這明顯就是要搞一波大的吧,這就是我想要的血流成河。
-----廣告,請繼續往下閱讀-----
而且,從去年 ChatGPT 出來開始,我感覺就已經不是討論 AI 會怎麼發展,而是要接受 AI 必定會發展得越來越快,我們要怎麼面對 AI 帶來的機會與衝擊。
我們去年成立泛科學院,就是希望跟大家一起,透過簡單易懂的教學影片,把對 AI 的陌生跟恐慌,變成好奇與駕馭自如。Sora 或類似的模型應該可以協助我把這件事做得更好,可惜的的是目前 OpenAI 僅開放 Sora 給內部的 AI 安全團隊評估工具可能帶來的危害與風險,另外就是與少數外部特定的藝術家、設計師跟電影製片人確保模型用於創意專業領域的實際應用,若有新消息,我會再即時更新。