0

1
0

文字

分享

0
1
0

利用宇宙射線找到金字塔內的神秘空間,《刺客教條:起源》真是神預測啊

Peggy Sha
・2017/11/08 ・3800字 ・閱讀時間約 7 分鐘 ・SR值 550 ・八年級

古埃及的金字塔舉世聞名,數千年來,關於這些神秘建築的研究和傳說從沒停過,而最近在一項掃描金字塔的計畫(ScanPyramids)中,科學家更發現了一個神秘的魔術大空間(?),在解密的同時又為金字塔添上了不少想像空間。

古夫金字塔:被洗劫一空的世界奇蹟

透過筆者不專業不正統調查顯示,但凡提到「金字塔」三個字,大概有 87% 的人類會在大腦中浮現這張圖片:

別騙我了,你一定想到了這張圖片對吧!圖/By soupysquirrel @Pixabay

為什麼吉薩三大金字塔的形象會如此深植人心呢?除了它們本身宏偉的外觀之外,其中最大的古夫金字塔(又稱吉薩大金字塔,Great Pyramid of Giza)更是古代世界七大奇蹟中,年代最為古老且目前唯一尚存的建物。這座金字塔約建於西元前 25802560 年間,高度達 140 公尺,曾經盤踞「世界最高建築」榜上第一名長達數千年時間。

然而,也正是因為它們如此顯眼,從古至今,盜墓者始終絡繹不絕,因此,古夫金字塔中原先已知的兩個墓室──國王墓室、皇后墓室內早已被洗劫一空,讓不少研究者只能扼腕。

想探索金字塔,就來掃描一下吧!

不過,如果要科學家們就此罷手,那可就太小看他們了。正所謂人外有人、天外有天,墓室外可能也有墓室(?)秉持著不放棄的研究精神,「掃描金字塔計畫」於焉誕生。

裝個掃描機看看金字塔吧!圖/By ScanPyramids

此計畫顧名思義,旨在「掃描」埃及金字塔的內部,期望在不傷害古文物的狀態下,採用 μ 子透視圖(muography)的成像技術,對金字塔進行更深度的研究。這種技術在過去 50 年間日臻成熟,曾被用來研究冰川、火山以及福島的核子反應爐。

透視了這麼多東西,這種透視到底是怎麼個透法?

說到這透視,就不得不談談「宇宙射線」,也就是來自宇宙的高能粒子衝擊。地球無時無刻都會受到這些高能粒子的衝擊,而當這些粒子與大氣層頂部的空氣原子互相碰撞後,便會產生 μ 子(亦稱:緲子muon)。這些 μ 子會以接近光速的速度,如一場雨般衝向地面,平均每分鐘約有 1 μ 子落在每平方公尺內。(老師請幫我下 F4 的《流星雨》謝謝~)

在地球上,大部分天然產生的緲子來源於宇宙射線。圖/By Crwx – Own work, CC BY-SA 3.0, wikimedia commons

μ 子具有很強的穿透力,可以深入岩層,不過,部分粒子會在經過石頭時被吸收、偏移。科學家利用這個原理,將 μ 子探測儀放置在金字塔中,以探測自空中射入金字塔的 μ 子,而如果在行進過程中有任何較大的空洞,探測儀就會偵測到為數較多的 μ 子。藉由這種方式,科學家得以更精確區別中空結構以及實體結構。

神秘大空間,多謎題未解

這麼厲害的掃描方法,果然讓研究團隊在金字塔中掃出了一個神祕的大空間。為了確認這項結果,分別有三個來自日本、法國等地的研究團隊,利用不同類型的 μ 子探測儀進行反覆確認,最後三個團隊都得出了同樣的結果。

這個空間位於古夫金字塔內「大走廊」(the Grand Gallery)的上方,推估至少有 30 公尺長、數公尺高,大小接近於一架兩百人座的客機。在過去的研究和相關文獻中,全都沒有出現過有關這個神秘空間的敘述,換言之,過去 4500 多年來,從沒有人知道這個獨立空間的存在。

這次經由掃描發現的新空間位於大走廊的上方,大小接近於一架兩百人座的客機。圖/nature

然而,這個發現雖然證實了科學家們對於金字塔的想像,卻也帶來了更多謎題。

由於目前研究者無法確定空間的作用為何,所以盡可能的不稱其為墓室(chamber),而是叫它「大空間」(Big void)。根據目前的資料,科學家尚不確定這個空間是水平或是傾斜,也不清楚它是一個單一結構或是由多個連續的結構所組成。

  • 說明影片參見:

空間功能猜猜看,你會選擇哪一邊?

針對這個空間,目前有許多不同的猜測。雖然許多人都期待著這個神秘空間中藏著金銀財寶(電影看太多!)不過,根據埃及學者 Aidan Dodson 的觀點,這其實不太可能,因為金字塔內已經另有一處置有石棺的墓室,所以新的空間中可能沒有什麼文物。

想要在新發現的空間裡找到寶藏?想太多啦!圖/《刺客教條:起源》遊戲截圖

他認為,這個空間可能是一個「減壓室」(Relieving Chamber),目的是為了減少「大走廊」上方石頭的重量。在國王的墓室上方,以及古夫他老爹的金字塔中,都可以看到類似的設計。

但是,也有人持不同看法。一位來自英國的獨立地質學家、工程師 Colin Reader 覺得這個新的空間距離「大走廊」太遠,因此不太可能是它的減壓室。另一方面,他猜想這個空間可能跟大走廊的作用相似,大走廊通往國王墓室,那新的空間也可能通往一個更高的墓室。

而長島大學的埃及學者 Bob Brier 則提出了第三種可能性。根據他和 Jean-Pierre Houdin 2007 年所提出的假設,大走廊其實是金字塔中一個巨大配重系統的一部份,他認為,藉由這個起重系統,工人可將重物滑下大走廊,並將國王墓室所使用的花崗岩向上搬運。Brier 推測這次發現的新空間可能是第二個位置更高的配重系統。

Brier 和 Jean-Pierre Houdin 認為大走廊其實是可作為起重系統,將重物滑下大走廊便能把笨重的花崗岩向上搬運。圖/影片截圖

然而,另一方面,這次的掃描計畫卻也推翻了兩人過去的部分理論;他們曾認為,金字塔的工人在建造時使用了一個內部的斜坡將石頭搬運到高處,但是,依據目前的掃描結果,似乎並沒有發現這樣的斜坡存在。(關於此理論的詳細說明,參見本影片

謎題解不完,探索正要展開

來自法國國家資訊暨自動化研究院(INRIA)的 Jean-Baptiste Mouret 表示,研究團隊對於如何進一步探索這個空間已經有了想法,然而這些計畫都需先經過埃及當局的核可。

「概念是鑿一個非常小的洞來探索這樣的建築,我們希望可以有個能夠鑽進 3 公分洞裡的機器人。」根據他的說法,研究團隊正在考慮飛行機器人的可能性。有了飛行機器人的技術,不知道是否可以解開更多的金字塔謎團呢?看到這裡,你對於這次發現的神祕空間,又有什麼猜想呢?

說了這麼多,這個空間究竟跟《刺客教條》有什麼關係呀~

原來,在這個驚人的新發現被公布後,便有眼尖的網友發現:這個密室居然已經藏在《刺客教條:起源》裡了!這厲害的神預測究竟是怎麼回事?

其實,遊戲的神預測可不是空穴來風;為了細膩呈現這個以埃及為背景的遊戲,遊戲開發團隊做了不少相關的研究功課,在眾多建造金字塔的理論中,設計團隊是 Houdin 和 Brier 派的忠實擁護者,所以早早就在遊戲的金字塔中設置了密室!(玩遊戲也要走在時代尖端 XD)團隊中負責歷史研究的 Maxime Durand 更直言:「我們打賭在不久的將來,考古學家也會找到這間秘密房間,所以我們就先把它放到了遊戲中」。

這樣的自信是不是讓這款遊戲感覺更吸引人了呢?如果你也對埃及文化有興趣,就來跟我一起探索金字塔吧!(大力推坑)(本篇文章絕對沒有刺客教條的贊助)

快來陪我一起爬金字塔、探索神秘大空間!(招手)圖/《刺客教條:起源》遊戲截圖

參考資料:

原始論文:


數感宇宙探索課程,現正募資中!

文章難易度

0

28
6

文字

分享

0
28
6

極目遠眺的意義:天文學家為何追尋第一代星系

Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘
  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)


數感宇宙探索課程,現正募資中!

Tiger Hsiao_96
8 篇文章 ・ 15 位粉絲
現為清大天文所碩二學生,即將赴美於約翰霍普金斯大學攻讀天文博士。