0

0
2

文字

分享

0
0
2

以南極冰層偵測宇宙訊號:「冰立方」讓高能微中子天文學曙光乍現

科學月刊_96
・2018/11/20 ・3274字 ・閱讀時間約 6 分鐘 ・SR值 569 ・九年級

-----廣告,請繼續往下閱讀-----

  • 金升光/任職於中央研究院天文及天文物理研究所。

微中子在所有已知的基本粒子中,可算是科學家最不了解的一種。

粒子物理標準模型裡的微中子只透過弱交互作用和其他粒子起反應,和光子一樣沒有靜止質量。電子、緲子(muon)、陶子(tauon)和分別對應這不同三代的微中子及它們的反粒子共同組成了輕子(lepton)家族。

喀擦,來個家族照吧。source:wikipedia

近年來,實驗證實微中子振盪的存在〔註一〕,電子微中子、緲子微中子與陶子微中子彼此之間可以相互轉換,顯示微中子靜止質量應該不等於零。然而,沒有人知道微中子的確切質量,也不確定微中子和它們的反粒子是否相同。另一方面,地球的大氣層持續受到高能量宇宙射線轟擊,主要成份包含質子和其他更重的原子核,這些帶電粒子受到銀河系與地球磁場的影響,很難去追蹤它們的來源。

微中子不帶電,不受磁場影響,還能輕易穿透星球的核心,是電磁波、重力波之外,天文物理學家夢寐以求的第三隻眼。然而,此特性卻也是微中子偵測的困難處,必須透過 10 公尺以上甚至公里等級的大型裝置才能捕捉分析少數來自外太空的微中子。多年的研究只確認太陽和超新星1987A發出的微中子,直到去(2017)年9月,位在南極的「冰立方(IceCube)」微中子天文台偵測到一顆高能微中子 IceCube-170922A,才露出一線曙光。

冰立方與高能微中子

基本粒子的質量和能量通常用電子伏特(eV)為單位。電子質量約 0.5 MeV;質子質量約 938 MeV,接近 1 GeV;目前估計微中子的質量約在 eV 數量級以下。太陽微中子的能量大部分處於 100 keV~1 MeV 量級之間;超新星微中子的能量能夠達到 10 MeV 的量級,爆發時的激震波有可能產生 TeV(1012 eV)級的高能微中子。

-----廣告,請繼續往下閱讀-----

當年偵測到超新星的日本神岡偵測器,是個寬、高約16公尺的大水箱;後續建造的超級神岡微中子偵測器(Super-Kamiokande)則寬、高約40公尺。高速的微中子與水中的質子、電子等粒子碰撞產生高速的電子或正子。當帶電粒子運動速度超過水中的光速時,就像超音速戰機產生音爆,會發出契倫科夫輻射(Cherenkov radiation),由密布的光電管接收並偵測分析。

而冰立方則使用南極的冰層代替神岡的純水,86 條垂直的洞穴深入約 2450 公尺的冰層,在每個洞穴最底端的 1 公里處都布置 60 個 10 吋大的光電裝置(digital optical modules),含數位處理電腦,將之串成 1 串。相鄰洞穴間隔 125 公尺,總共 5160 個光電裝置在地底形成 1 個體積立方公里等級的 3 維陣列,是目前世界上最大的微中子偵測器之一。

IceCube的鑽孔設備大到要用全景才有機會完整拍攝。source:wikipedia

神岡測得的信號多半來自電子微中子。高能緲子微中子產生高速的緲子放出契倫科夫輻射,會在光電裝置陣列中留下明顯的軌跡,是冰立方主要的偵測目標之一。回溯分析緲子軌跡,反推微中子的入射方向,可達0.3°的準確度。

宇宙射線在大氣層中碰撞後產生的緲子或微中子數量可能是外太空信號的 10 萬倍或百萬倍,數公里厚的岩層或冰層則有助於降低雜訊。南極的偵測器對於來自北半球天空的信號比較靈敏,而且,大氣層產生的微中子有特定的能量分布,超過 100 TeV或 1 PeV(=1015eV=1000 TeV)多來自外太空,IceCube-170922A即為一例。分析冰立方所窺見的緲子能量(約24 TeV),估計這顆從地平線下入射的緲子微中子能量約 290 TeV。不到 1 分鐘,2016 年 4 月才啟用的即時自動警報系統隨即向全球網路 GCN∕AMON Notice〔註二〕發出通告。

-----廣告,請繼續往下閱讀-----

這並不是系統頭一次發出類似的微中子警報。觀測網上的成員,包含位在地中海海底的微中子偵測器和地面或天上的望遠鏡,通常不是沒看到特定目標,就是無法從眾多目標中辨別出真正的來源。直到 6 天後,NASA 的費米太空望遠鏡團隊 Fermi-LAT 透過《天文電報》(Astronomers Telegram)報告他們的分析,指出 1 顆已知的「耀變體(blazar)」TXS 0506+056 正處於活躍期(亮度增加 6 倍),和冰立方估計的方位相符,接續的多波段觀測進一步支持這個結論。

通過費米太空望遠鏡在伽馬射線(能量大於1 GeV)中觀察到的TXS 0506 + 056的位置。source:wikipedia

包括上千位共同作者的綜合研究報告和相關論文在今(2018)年7月13日正式刊出。冰立方計畫的主要資助者美國國家科學基金會(National Science Foundation, NSF)照例先在華府召開記者會,此間各媒體多有轉述報導。依照 2004 年美國國家科學院報告中的估算,總建造經費含開辦費用應該超過 2億 5000 萬美元。

高能宇宙射線與「耀變體」

人造的加速器還沒有能力產生 PeV 甚至 EeV(1018 eV)的高能粒子束,宇宙射線卻可以。許多可能的天文物理機制和可疑的天體,像是伽瑪射線爆(GRB)、超新星殘骸(SNR)、波霎、黑洞雙星和活躍星系核(AGN)等都是熱門的候選者。

某些理論認為,產生高能粒子的相同機制或相關環境也會伴隨產生能量等級相當的伽瑪射線。2008 年升空的費米太空望遠鏡觀測到的伽瑪射線源已經編成目錄定期追蹤,2015 年發表第三版,通稱「3GFL(the third Fermi Large Area Telescope source catalog)」,包含 3033 個伽瑪射線源和它們逐月的亮度變化,其中超過半數是活躍星系核,以耀變體為主。先前有研究將微中子信號和這些特定天體比對,不過都沒能成功確認微中子的來源。

-----廣告,請繼續往下閱讀-----
耀變體(又稱為活耀星系核)是目前已觀測到的宇宙中最劇烈的天體活動現象之一,圖為模擬圖。source:wikipedia

粒子能量越高,受銀河系內磁場的偏轉影響越小。專門偵測高能宇宙線次級粒子射叢(shower,或稱簇射)的奧格天文台(Pierre Auger Observatory)團隊在去年發表論文指出,能量超過 8 EeV以上的超高能粒子應該是來自銀河系以外。8 EeV 接近 1.3 焦耳,也就是說,單單這一顆粒子的動能就足以抬高 1 公斤的物體離地 13 公分!理論上,宇宙射線(如質子)的能量如果太高,會和遍布的宇宙微波背景輻射光子產生反應,產生 GZK截止點(GZK cutoff),這是以提出此理論的 3 位科學家 Greisen、Zatsepin和Kuzmin 姓氏首字母來命名的宇宙射線能譜截止點。如果宇宙射線粒子是鐵原子核,此截止能量還會再高一點。

TXS 0506+056是3GFL目錄上亮度排名前 50 的耀變體,可見光星等約 15 等,不算是特別突出。耀變體是活躍星系核的一種,可參閱《科學月刊》527期〈類星體 50 年〉一文的介紹。原文 blazar 一詞是在 1979 年所提出,將「蠍虎天體(BL Lac objects)」和部份有亮度劇烈變化的類星體合稱,並寫在1980年天文與天文物理年度評論裡遂成為正式名詞。在TXS 0506+056非熱輻射的連續光譜中幾乎看不出任何譜線,無法確認它的距離,也不能計算真正的光度。透過加納利群島上口徑10.4公尺的望遠鏡(Gran Telescopio Canarias, GTC),最近終於辨認出幾條微弱的譜線,紅移0.3365,約相當於57億光年,這使得TXS 0506+056成為在此方圓之內光度最強的耀變體之一。

高能微中子天文學

活躍星系核、黑洞或中子星系統中的高能噴流,甚至一般吸積盤噴流的組成、構造和起源向來都是理論和觀測研究的焦點之一。高能微中子的存在意味著強子(可能是質子)加速及後續的碰撞與衰變過程,透露噴流的秘密。高能微中子的產生究竟是正比於伽瑪射線強度、伽瑪射線的變化、特高能(very high energy)伽瑪射線強度或另有其他,真正的關連仍有待釐清。

另一方面,縱使耀變體是高能微中子的來源,恐怕也只能解釋一部份偵測到的高能微中子。除持續累積觀測數據,提升多元訊息天文學(multi-messenger astronomy)多波段聯合觀測的效率,新一代的微中子偵測器KM3NeT、Hyper-Kamiokande、IceCube-Gen2可望能將高能微中子天文學,乃至於宇宙線、暗物質與基本粒子研究推展到新的境界。

-----廣告,請繼續往下閱讀-----
  • 〔註一〕此項實驗獲得2015年諾貝爾物理獎。
  • 〔註二〕GCN/AMON Notice

延伸閱讀

  • IceCube Collaboration et al., Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science, Vol. 361: eaat1378, 2018.

 

 

〈本文選自《科學月刊》2018年10月號〉

一個在數位時代中堅持紙本印刷的科普雜誌,

讓你在接收新知之餘,也能感受蘊藏在紙張間的科學能量。

-----廣告,請繼續往下閱讀-----

 

 

文章難易度
科學月刊_96
249 篇文章 ・ 3470 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
0

文字

分享

0
2
0
黑洞甜甜圈之後:宇宙噴火槍 3C 279 黑洞噴流影像現蹤跡!——《科學月刊》
科學月刊_96
・2020/04/27 ・3964字 ・閱讀時間約 8 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/陳明堂,中央研究院天文所及天文物理研究所研究員,兼天文所夏威夷運轉副所長。

去 (2019) 年,臺灣黑洞團隊與事件視界望遠鏡 (Event Horizon Telescope, EHT) 公布第一張黑洞照片。一年後,他們雖然沒有呈現新的黑洞照片,卻推出一張所未見的黑洞噴流影像。黑洞噴流如同兩隻金魚的發光體,起初讓研究團隊摸不著頭緒。所幸 EHT 強大的解析能力逐漸解開噴流的真面目,原來圖片左上的影像是噴流的源頭,右下則是逐步遠離的噴流。此外,這把宇宙等級的噴火槍其實是耀變體,在觀測中展現出許多令人驚奇的特性。

圖/Kim et al. (2020), EHT Collaboration

宇宙級的噴火槍:3C 279

在去年公布的首張黑洞影像後,事件視界望遠鏡團隊今 (2020) 年又再次發表另一張超高解析度的影像(下圖)。這次的目標是一個叫做 3C 279 的星體,影像呈現出一對橢圓狀的發光體。這兩個光體的位置左上右下,似乎處在一種隨遇而安的狀態。與去年發表的黑洞甜甜圈不同,反而像在一潭黝黑的池水中,偶爾浮上水面的兩條金魚。

今年 EHT 公布的 3C 279 影像。圖右是本次拍攝到的黑洞噴流,根據EHT 的分析,左上光影是噴流的源頭,右下光影則是正在遠離源頭的噴流。
圖片來源/J.Y. Kim (MPIfR), Boston University Blazar Program (VLBA and GMVA), and the Event Horizon Telescope Collaboration

3C 279 是一個類星體(quasar,下圖),位在室女座(Virgo Constellation,又稱處女座)附近,靠近春季大三角 (Spring Triangle) 的角宿一 (Spica)。

雖然肉眼看不見 3C 279,但是從過去的觀測,天文學家知道它是銀河系外頭的另一個星系。它發出的訊號,從低能量的無線電波、紅外線到可見光、紫外線延伸至高能量的 X 光,應有盡有;甚至也會發出強烈的超高能量的射線。

藝術家筆下的類星體 (quasar) 想像圖。 圖/ESO/M. Kornmesser

與去年的 M87* 黑洞相比,為什麼這次的影像中沒有看到甜甜圈呢?

-----廣告,請繼續往下閱讀-----

因為 3C 279 距離地球太遠了,相比之下,去年拍到 M87* 離地球「僅僅」5500 萬光年,而 3C 279 則幾乎是 100 倍遠的距離。不僅如此,根據天文學家的估計,3C 279 中心黑洞的大小還不到 M87* 的五分之一。由於又小又遠,因此以目前 EHT 的影像解析能力,還無法完全看到 3C 279的黑洞,所以在此影像中才看不到任何的甜甜圈。

黑洞物理參數的比較

黑洞名稱

天空位置 距離地球 估計質量 天空視角

人馬座 A*
(Sgr A*)

人馬座
(射手座)

26000 光年

4 百萬個太陽

50 微角秒

M87*

室女座
(處女座)

55000 萬光年

65 億個太陽

38 微角秒

3C 279 室女座
(處女座)
53 億光年 10 億個太陽

0.06微角秒

看不見甜甜圈沒關係,EHT 還是有辦法解析!

雖然看不到黑洞,但是天文學家可以利用 EHT 的超級解析能力來研究黑洞外圍的物理現象。

當環繞黑洞的星際物質從吸積盤掉進黑洞時,並非所有物質都會進入黑洞之中。其中一部份的物質會以電漿能量包的形式,以極高的速度從黑洞的兩個極點朝外噴出,物質噴出的速度趨近光速,這就是所謂的噴流。目前科學家還不了解噴流的確切成因,但是一般認為是吸積盤與黑洞周遭的磁力場所造成,這也是 EHT  的科學家研究 3C 279 的主要動機。

-----廣告,請繼續往下閱讀-----

人們對黑洞的了解是建立在愛因斯坦的廣義相對論。黑洞是經由重力塌縮 (gravitational collapse) 後形成的星體,它具有質量、自轉和事件視界 (event horizon)。根據理論,任何發生在事件視界裡面的資訊都無法傳遞到外面,所以對外界的觀察者而言,黑洞的物理性質來自於事件視界之外的空間,因此事件視界代表黑洞的視覺大小。

2017 年 4 月的觀測期間,EHT 除了使用參與團隊的天文台之外,還另外動用其它兩組望遠鏡陣列,總共三組陣列透過不同的電波波長擷取 3C 279 的影像。其中,長波段的影像(超長基線陣列 VLBA 波長 7 mm)擷取到 3C 279 大範圍的相貌,影像明顯顯示左上角黑洞所在的熱點及從熱點衝往右下方向的噴流;中波段的影像(全球毫米波特長基線陣列 GMVA 波長 3 mm)把目光聚焦在靠近黑洞和噴流的起始點,期望從影像中能透露出關於噴流起源的訊息。但結果卻不盡人意,此波段呈現出來的影像幾乎是長波長的翻版,導致很難從結果中分辨出熱點和噴流之間的差別。

要看得更仔細, EHT 使用 8 座次毫米波電波觀測站同時朝熱點觀看,能提供更細微的影像解析能力(波長 1.3 mm),所得到的影像與中、長波段的結果相比,的確有出乎意料的發現。EHT 的影像出現左上與右下兩個獨立的部份,經由影像分析,EHT 團隊科學家認為右下部份訊號的移動方向與速度,和中、長波長影像中的噴流類似,因此他們認為右下部分的光影是大尺度噴流的一部份。此結論比較是可以預期,而沒有太多的爭論。可是該如何解釋位於左上的訊號就不是那麼容易了。

猶如宇宙噴火槍的耀變體

說到這裡,如果讀者對類星體有些認識,可能會猜測左上的光影應該是黑洞吸積盤發出的能量,黑洞就躲在巨大的吸積盤中間;而右下部份的狹長光影就是黑洞的噴流結構。噴流與吸積盤呈現接近 90 度的相對位置,此猜想符合天文學家想像中的類星體(下圖),可是問題卻沒有那麼簡單。

-----廣告,請繼續往下閱讀-----
耀變體與類星體的示意圖,上圖的耀星體噴流方向非常靠近從地球的觀測視線。

3C 279 是類星體中的特殊例子,特別的地方在於它的噴流方向非常接近觀測的視線。如果把噴流當作是一把宇宙噴火槍的火焰,那麼在地球上觀看 3C 279 的方向幾乎是往火槍的噴嘴裡頭看進去,高能量的噴流就只對著地球上的觀測者打出來。由於都卜勒效應 (Doppler effect) 的關係,此噴流看起來會特別亮,因此天文學家給這類型的類星體一個特殊的名字:耀變體(blazar,或稱耀星體)。

令人匪夷所思的觀測結果

換句話說,從地球的角度觀測,3C 279 除了具有一個非常強烈的中心訊號源外,天文家認為應該可以看到整個吸積盤才對,並認為從此角度觀測,吸積盤應該是接近圓形。但是在 EHT 的影像中,左上的光體卻是個狹長的橢圓形,該如何解釋異形怪狀的吸積盤,對理論學家是一大挑戰。

有一種解釋說法認為,左上與右下的光影其實是一樣的,都是噴流的高能量聚集的電漿能量包。二者不同之處在於,左上的能量包非常接近黑洞的噴嘴,並以更對準觀測者視線的角度而來,當然此角度並不完美,因此高能噴流的還是會在觀測的視線中投射出一個狹長的橢圓光影。雖然可以合理解釋觀察到的左上光影,但又該如何解釋左上與右下的能包移動的方向似乎不一樣?難道噴流會改變它的方向?

關於這一點,天文學家從其它類星體的觀測經驗,知道由於吸積盤附近的強大磁場作用,噴流的確有可能改變方向。在類星體中心的磁場作用下,噴流的路徑可能比上下 360 度翻滾的雲霄飛車還複雜,因而造成 EHT 觀測到的奇怪影像,所以目前 EHT 的團隊相信這是一個比較合理的解釋。

-----廣告,請繼續往下閱讀-----

觀測「超光速」移動的噴流?

這次 EHT 共花了4 天的時間觀測 3C 279,而每天都會產生一組非常類似的影像,經過仔細檢查,EHT 的團隊發現影像中的兩個光體的距離每天都有些不同。事實上,兩個光體正在分開中。此觀察符合前一段的論證:左上的光影代表噴流的源頭,右下是正在離開的噴流。

有了 EHT 望遠鏡的超級解析度,天文學家可估計噴流的移動速度。EHT 的團隊發現右下的能量正以超過 10 倍光速的速度離開噴流的源頭位置。讀者可能會納悶,超光速運動是有可能的嗎?

其實天文學家在半世紀前就已經知道,類似耀星體所發出來的噴流「看起來」會有超光速現象 (superluminal motion)。如此奇怪的現象是因為高能量的噴流速度接近光速,但是由於觀測角度的關係,從遠方看起來噴流的速度超過光速。此現象其實可以用相對論解釋,所以看起來超光速並不代表真正超越光速。

 

超光速運動真的是有可能的嗎?圖/GIPHY

宇宙的更多故事等著被挖掘

53 億年前,那時太陽系正在慢慢成形,地球根本還沒存在。然而,隨著科學的進展,一個發生在距離地球 53 億光年外的物理現象,竟然被天文學家看到了!

-----廣告,請繼續往下閱讀-----

此次 EHT 發布的影像雖然沒有如同去年 M87* 黑洞的影像引起一陣轟動,然而 3C 279 的影像透露出來的新資訊,似乎讓天文學家產生更多的問題與好奇。這就是科學發展,隨著 EHT 突破性的觀測儀器發展,人們將會看到許多前所未見的現象,並引導好奇的科學家們,更進一步了解所處在的宇宙。

突破性的觀測儀器發展,將會引導好奇的科學家們,更進一步了解所處在的宇宙。圖/GIPHY

2017 年參與 EHT 的八座望遠鏡中,臺灣參與建造或運作的一共有三座,包含夏威夷的次毫米波陣列 (SMA)、詹姆士克拉克麥克斯威爾望遠鏡 (JCMT) 和智利的阿塔卡瑪大型毫米波及次毫米波陣列 (ALMA),再加上貢獻運作經費與觀測人力,讓臺灣團隊占有顯著的地位,這也是總共 13 席的 EHT 董事成員,臺灣中研院就占兩席的原因。

臺灣團隊一手主導的格陵蘭望遠鏡,直到 2018 年才加入 EHT,並參與 3C 279 的觀測。目前的觀測資料正在處理中,EHT 團隊期待格陵蘭望遠鏡的加入,能夠揭露更多噴流結構的細節,能讓天文學破解出黑洞周遭的祕密。如此的結果將會大大的提升臺灣天文學家在黑洞研究的地位,也讓臺灣獨特的貢獻受到世人的重視。

延伸閱讀

-----廣告,請繼續往下閱讀-----
  • Jae-Young Kim et al., Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution, Astronomy & Astrophysics, 2020.

本文轉載自《科學月刊》 宇宙中的噴火槍—黑洞噴流影像現蹤跡

在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

 

科學月刊_96
249 篇文章 ・ 3470 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
0

文字

分享

0
2
0
利用宇宙射線找到金字塔內的神秘空間,《刺客教條:起源》真是神預測啊
Peggy Sha
・2017/11/08 ・3800字 ・閱讀時間約 7 分鐘 ・SR值 550 ・八年級

古埃及的金字塔舉世聞名,數千年來,關於這些神秘建築的研究和傳說從沒停過,而最近在一項掃描金字塔的計畫(ScanPyramids)中,科學家更發現了一個神秘的魔術大空間(?),在解密的同時又為金字塔添上了不少想像空間。

古夫金字塔:被洗劫一空的世界奇蹟

透過筆者不專業不正統調查顯示,但凡提到「金字塔」三個字,大概有 87% 的人類會在大腦中浮現這張圖片:

別騙我了,你一定想到了這張圖片對吧!圖/By soupysquirrel @Pixabay

為什麼吉薩三大金字塔的形象會如此深植人心呢?除了它們本身宏偉的外觀之外,其中最大的古夫金字塔(又稱吉薩大金字塔,Great Pyramid of Giza)更是古代世界七大奇蹟中,年代最為古老且目前唯一尚存的建物。這座金字塔約建於西元前 25802560 年間,高度達 140 公尺,曾經盤踞「世界最高建築」榜上第一名長達數千年時間。

然而,也正是因為它們如此顯眼,從古至今,盜墓者始終絡繹不絕,因此,古夫金字塔中原先已知的兩個墓室──國王墓室、皇后墓室內早已被洗劫一空,讓不少研究者只能扼腕。

-----廣告,請繼續往下閱讀-----

想探索金字塔,就來掃描一下吧!

不過,如果要科學家們就此罷手,那可就太小看他們了。正所謂人外有人、天外有天,墓室外可能也有墓室(?)秉持著不放棄的研究精神,「掃描金字塔計畫」於焉誕生。

裝個掃描機看看金字塔吧!圖/By ScanPyramids

此計畫顧名思義,旨在「掃描」埃及金字塔的內部,期望在不傷害古文物的狀態下,採用 μ 子透視圖(muography)的成像技術,對金字塔進行更深度的研究。這種技術在過去 50 年間日臻成熟,曾被用來研究冰川、火山以及福島的核子反應爐。

透視了這麼多東西,這種透視到底是怎麼個透法?

說到這透視,就不得不談談「宇宙射線」,也就是來自宇宙的高能粒子衝擊。地球無時無刻都會受到這些高能粒子的衝擊,而當這些粒子與大氣層頂部的空氣原子互相碰撞後,便會產生 μ 子(亦稱:緲子muon)。這些 μ 子會以接近光速的速度,如一場雨般衝向地面,平均每分鐘約有 1 μ 子落在每平方公尺內。(老師請幫我下 F4 的《流星雨》謝謝~)

-----廣告,請繼續往下閱讀-----
在地球上,大部分天然產生的緲子來源於宇宙射線。圖/By Crwx – Own work, CC BY-SA 3.0, wikimedia commons

μ 子具有很強的穿透力,可以深入岩層,不過,部分粒子會在經過石頭時被吸收、偏移。科學家利用這個原理,將 μ 子探測儀放置在金字塔中,以探測自空中射入金字塔的 μ 子,而如果在行進過程中有任何較大的空洞,探測儀就會偵測到為數較多的 μ 子。藉由這種方式,科學家得以更精確區別中空結構以及實體結構。

神秘大空間,多謎題未解

這麼厲害的掃描方法,果然讓研究團隊在金字塔中掃出了一個神祕的大空間。為了確認這項結果,分別有三個來自日本、法國等地的研究團隊,利用不同類型的 μ 子探測儀進行反覆確認,最後三個團隊都得出了同樣的結果。

這個空間位於古夫金字塔內「大走廊」(the Grand Gallery)的上方,推估至少有 30 公尺長、數公尺高,大小接近於一架兩百人座的客機。在過去的研究和相關文獻中,全都沒有出現過有關這個神秘空間的敘述,換言之,過去 4500 多年來,從沒有人知道這個獨立空間的存在。

這次經由掃描發現的新空間位於大走廊的上方,大小接近於一架兩百人座的客機。圖/nature

然而,這個發現雖然證實了科學家們對於金字塔的想像,卻也帶來了更多謎題。

-----廣告,請繼續往下閱讀-----

由於目前研究者無法確定空間的作用為何,所以盡可能的不稱其為墓室(chamber),而是叫它「大空間」(Big void)。根據目前的資料,科學家尚不確定這個空間是水平或是傾斜,也不清楚它是一個單一結構或是由多個連續的結構所組成。

  • 說明影片參見:

空間功能猜猜看,你會選擇哪一邊?

針對這個空間,目前有許多不同的猜測。雖然許多人都期待著這個神秘空間中藏著金銀財寶(電影看太多!)不過,根據埃及學者 Aidan Dodson 的觀點,這其實不太可能,因為金字塔內已經另有一處置有石棺的墓室,所以新的空間中可能沒有什麼文物。

想要在新發現的空間裡找到寶藏?想太多啦!圖/《刺客教條:起源》遊戲截圖

他認為,這個空間可能是一個「減壓室」(Relieving Chamber),目的是為了減少「大走廊」上方石頭的重量。在國王的墓室上方,以及古夫他老爹的金字塔中,都可以看到類似的設計。

但是,也有人持不同看法。一位來自英國的獨立地質學家、工程師 Colin Reader 覺得這個新的空間距離「大走廊」太遠,因此不太可能是它的減壓室。另一方面,他猜想這個空間可能跟大走廊的作用相似,大走廊通往國王墓室,那新的空間也可能通往一個更高的墓室。

-----廣告,請繼續往下閱讀-----

而長島大學的埃及學者 Bob Brier 則提出了第三種可能性。根據他和 Jean-Pierre Houdin 2007 年所提出的假設,大走廊其實是金字塔中一個巨大配重系統的一部份,他認為,藉由這個起重系統,工人可將重物滑下大走廊,並將國王墓室所使用的花崗岩向上搬運。Brier 推測這次發現的新空間可能是第二個位置更高的配重系統。

Brier 和 Jean-Pierre Houdin 認為大走廊其實是可作為起重系統,將重物滑下大走廊便能把笨重的花崗岩向上搬運。圖/影片截圖

然而,另一方面,這次的掃描計畫卻也推翻了兩人過去的部分理論;他們曾認為,金字塔的工人在建造時使用了一個內部的斜坡將石頭搬運到高處,但是,依據目前的掃描結果,似乎並沒有發現這樣的斜坡存在。(關於此理論的詳細說明,參見本影片

謎題解不完,探索正要展開

來自法國國家資訊暨自動化研究院(INRIA)的 Jean-Baptiste Mouret 表示,研究團隊對於如何進一步探索這個空間已經有了想法,然而這些計畫都需先經過埃及當局的核可。

「概念是鑿一個非常小的洞來探索這樣的建築,我們希望可以有個能夠鑽進 3 公分洞裡的機器人。」根據他的說法,研究團隊正在考慮飛行機器人的可能性。有了飛行機器人的技術,不知道是否可以解開更多的金字塔謎團呢?看到這裡,你對於這次發現的神祕空間,又有什麼猜想呢?

-----廣告,請繼續往下閱讀-----

說了這麼多,這個空間究竟跟《刺客教條》有什麼關係呀~

原來,在這個驚人的新發現被公布後,便有眼尖的網友發現:這個密室居然已經藏在《刺客教條:起源》裡了!這厲害的神預測究竟是怎麼回事?

其實,遊戲的神預測可不是空穴來風;為了細膩呈現這個以埃及為背景的遊戲,遊戲開發團隊做了不少相關的研究功課,在眾多建造金字塔的理論中,設計團隊是 Houdin 和 Brier 派的忠實擁護者,所以早早就在遊戲的金字塔中設置了密室!(玩遊戲也要走在時代尖端 XD)團隊中負責歷史研究的 Maxime Durand 更直言:「我們打賭在不久的將來,考古學家也會找到這間秘密房間,所以我們就先把它放到了遊戲中」。

這樣的自信是不是讓這款遊戲感覺更吸引人了呢?如果你也對埃及文化有興趣,就來跟我一起探索金字塔吧!(大力推坑)(本篇文章絕對沒有刺客教條的贊助)

-----廣告,請繼續往下閱讀-----
快來陪我一起爬金字塔、探索神秘大空間!(招手)圖/《刺客教條:起源》遊戲截圖

參考資料:

原始論文:

Peggy Sha
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

0

0
2

文字

分享

0
0
2
以南極冰層偵測宇宙訊號:「冰立方」讓高能微中子天文學曙光乍現
科學月刊_96
・2018/11/20 ・3274字 ・閱讀時間約 6 分鐘 ・SR值 569 ・九年級

-----廣告,請繼續往下閱讀-----

  • 金升光/任職於中央研究院天文及天文物理研究所。

微中子在所有已知的基本粒子中,可算是科學家最不了解的一種。

粒子物理標準模型裡的微中子只透過弱交互作用和其他粒子起反應,和光子一樣沒有靜止質量。電子、緲子(muon)、陶子(tauon)和分別對應這不同三代的微中子及它們的反粒子共同組成了輕子(lepton)家族。

喀擦,來個家族照吧。source:wikipedia

近年來,實驗證實微中子振盪的存在〔註一〕,電子微中子、緲子微中子與陶子微中子彼此之間可以相互轉換,顯示微中子靜止質量應該不等於零。然而,沒有人知道微中子的確切質量,也不確定微中子和它們的反粒子是否相同。另一方面,地球的大氣層持續受到高能量宇宙射線轟擊,主要成份包含質子和其他更重的原子核,這些帶電粒子受到銀河系與地球磁場的影響,很難去追蹤它們的來源。

微中子不帶電,不受磁場影響,還能輕易穿透星球的核心,是電磁波、重力波之外,天文物理學家夢寐以求的第三隻眼。然而,此特性卻也是微中子偵測的困難處,必須透過 10 公尺以上甚至公里等級的大型裝置才能捕捉分析少數來自外太空的微中子。多年的研究只確認太陽和超新星1987A發出的微中子,直到去(2017)年9月,位在南極的「冰立方(IceCube)」微中子天文台偵測到一顆高能微中子 IceCube-170922A,才露出一線曙光。

冰立方與高能微中子

基本粒子的質量和能量通常用電子伏特(eV)為單位。電子質量約 0.5 MeV;質子質量約 938 MeV,接近 1 GeV;目前估計微中子的質量約在 eV 數量級以下。太陽微中子的能量大部分處於 100 keV~1 MeV 量級之間;超新星微中子的能量能夠達到 10 MeV 的量級,爆發時的激震波有可能產生 TeV(1012 eV)級的高能微中子。

-----廣告,請繼續往下閱讀-----

當年偵測到超新星的日本神岡偵測器,是個寬、高約16公尺的大水箱;後續建造的超級神岡微中子偵測器(Super-Kamiokande)則寬、高約40公尺。高速的微中子與水中的質子、電子等粒子碰撞產生高速的電子或正子。當帶電粒子運動速度超過水中的光速時,就像超音速戰機產生音爆,會發出契倫科夫輻射(Cherenkov radiation),由密布的光電管接收並偵測分析。

而冰立方則使用南極的冰層代替神岡的純水,86 條垂直的洞穴深入約 2450 公尺的冰層,在每個洞穴最底端的 1 公里處都布置 60 個 10 吋大的光電裝置(digital optical modules),含數位處理電腦,將之串成 1 串。相鄰洞穴間隔 125 公尺,總共 5160 個光電裝置在地底形成 1 個體積立方公里等級的 3 維陣列,是目前世界上最大的微中子偵測器之一。

IceCube的鑽孔設備大到要用全景才有機會完整拍攝。source:wikipedia

神岡測得的信號多半來自電子微中子。高能緲子微中子產生高速的緲子放出契倫科夫輻射,會在光電裝置陣列中留下明顯的軌跡,是冰立方主要的偵測目標之一。回溯分析緲子軌跡,反推微中子的入射方向,可達0.3°的準確度。

宇宙射線在大氣層中碰撞後產生的緲子或微中子數量可能是外太空信號的 10 萬倍或百萬倍,數公里厚的岩層或冰層則有助於降低雜訊。南極的偵測器對於來自北半球天空的信號比較靈敏,而且,大氣層產生的微中子有特定的能量分布,超過 100 TeV或 1 PeV(=1015eV=1000 TeV)多來自外太空,IceCube-170922A即為一例。分析冰立方所窺見的緲子能量(約24 TeV),估計這顆從地平線下入射的緲子微中子能量約 290 TeV。不到 1 分鐘,2016 年 4 月才啟用的即時自動警報系統隨即向全球網路 GCN∕AMON Notice〔註二〕發出通告。

-----廣告,請繼續往下閱讀-----

這並不是系統頭一次發出類似的微中子警報。觀測網上的成員,包含位在地中海海底的微中子偵測器和地面或天上的望遠鏡,通常不是沒看到特定目標,就是無法從眾多目標中辨別出真正的來源。直到 6 天後,NASA 的費米太空望遠鏡團隊 Fermi-LAT 透過《天文電報》(Astronomers Telegram)報告他們的分析,指出 1 顆已知的「耀變體(blazar)」TXS 0506+056 正處於活躍期(亮度增加 6 倍),和冰立方估計的方位相符,接續的多波段觀測進一步支持這個結論。

通過費米太空望遠鏡在伽馬射線(能量大於1 GeV)中觀察到的TXS 0506 + 056的位置。source:wikipedia

包括上千位共同作者的綜合研究報告和相關論文在今(2018)年7月13日正式刊出。冰立方計畫的主要資助者美國國家科學基金會(National Science Foundation, NSF)照例先在華府召開記者會,此間各媒體多有轉述報導。依照 2004 年美國國家科學院報告中的估算,總建造經費含開辦費用應該超過 2億 5000 萬美元。

高能宇宙射線與「耀變體」

人造的加速器還沒有能力產生 PeV 甚至 EeV(1018 eV)的高能粒子束,宇宙射線卻可以。許多可能的天文物理機制和可疑的天體,像是伽瑪射線爆(GRB)、超新星殘骸(SNR)、波霎、黑洞雙星和活躍星系核(AGN)等都是熱門的候選者。

某些理論認為,產生高能粒子的相同機制或相關環境也會伴隨產生能量等級相當的伽瑪射線。2008 年升空的費米太空望遠鏡觀測到的伽瑪射線源已經編成目錄定期追蹤,2015 年發表第三版,通稱「3GFL(the third Fermi Large Area Telescope source catalog)」,包含 3033 個伽瑪射線源和它們逐月的亮度變化,其中超過半數是活躍星系核,以耀變體為主。先前有研究將微中子信號和這些特定天體比對,不過都沒能成功確認微中子的來源。

-----廣告,請繼續往下閱讀-----
耀變體(又稱為活耀星系核)是目前已觀測到的宇宙中最劇烈的天體活動現象之一,圖為模擬圖。source:wikipedia

粒子能量越高,受銀河系內磁場的偏轉影響越小。專門偵測高能宇宙線次級粒子射叢(shower,或稱簇射)的奧格天文台(Pierre Auger Observatory)團隊在去年發表論文指出,能量超過 8 EeV以上的超高能粒子應該是來自銀河系以外。8 EeV 接近 1.3 焦耳,也就是說,單單這一顆粒子的動能就足以抬高 1 公斤的物體離地 13 公分!理論上,宇宙射線(如質子)的能量如果太高,會和遍布的宇宙微波背景輻射光子產生反應,產生 GZK截止點(GZK cutoff),這是以提出此理論的 3 位科學家 Greisen、Zatsepin和Kuzmin 姓氏首字母來命名的宇宙射線能譜截止點。如果宇宙射線粒子是鐵原子核,此截止能量還會再高一點。

TXS 0506+056是3GFL目錄上亮度排名前 50 的耀變體,可見光星等約 15 等,不算是特別突出。耀變體是活躍星系核的一種,可參閱《科學月刊》527期〈類星體 50 年〉一文的介紹。原文 blazar 一詞是在 1979 年所提出,將「蠍虎天體(BL Lac objects)」和部份有亮度劇烈變化的類星體合稱,並寫在1980年天文與天文物理年度評論裡遂成為正式名詞。在TXS 0506+056非熱輻射的連續光譜中幾乎看不出任何譜線,無法確認它的距離,也不能計算真正的光度。透過加納利群島上口徑10.4公尺的望遠鏡(Gran Telescopio Canarias, GTC),最近終於辨認出幾條微弱的譜線,紅移0.3365,約相當於57億光年,這使得TXS 0506+056成為在此方圓之內光度最強的耀變體之一。

高能微中子天文學

活躍星系核、黑洞或中子星系統中的高能噴流,甚至一般吸積盤噴流的組成、構造和起源向來都是理論和觀測研究的焦點之一。高能微中子的存在意味著強子(可能是質子)加速及後續的碰撞與衰變過程,透露噴流的秘密。高能微中子的產生究竟是正比於伽瑪射線強度、伽瑪射線的變化、特高能(very high energy)伽瑪射線強度或另有其他,真正的關連仍有待釐清。

另一方面,縱使耀變體是高能微中子的來源,恐怕也只能解釋一部份偵測到的高能微中子。除持續累積觀測數據,提升多元訊息天文學(multi-messenger astronomy)多波段聯合觀測的效率,新一代的微中子偵測器KM3NeT、Hyper-Kamiokande、IceCube-Gen2可望能將高能微中子天文學,乃至於宇宙線、暗物質與基本粒子研究推展到新的境界。

-----廣告,請繼續往下閱讀-----
  • 〔註一〕此項實驗獲得2015年諾貝爾物理獎。
  • 〔註二〕GCN/AMON Notice

延伸閱讀

  • IceCube Collaboration et al., Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science, Vol. 361: eaat1378, 2018.

 

 

〈本文選自《科學月刊》2018年10月號〉

一個在數位時代中堅持紙本印刷的科普雜誌,

讓你在接收新知之餘,也能感受蘊藏在紙張間的科學能量。

-----廣告,請繼續往下閱讀-----

 

 

文章難易度
科學月刊_96
249 篇文章 ・ 3470 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
超新星是古生物滅絕的兇手嗎?—《物理雙月刊》
物理雙月刊_96
・2016/11/01 ・1368字 ・閱讀時間約 2 分鐘 ・SR值 526 ・七年級

-----廣告,請繼續往下閱讀-----

文/陳勁豪|臺大梁次震宇宙學與粒子天文物理學中心 專案計畫助理研究員

根據一項新的研究結果,超新星爆炸可能會對地球上的生物造成影響,甚至可能是過去生物大滅絕的原因之一。

哈伯太空望遠鏡觀測到位於大麥哲倫雲中N63A 超新星爆炸的遺跡
哈伯太空望遠鏡觀測到位於大麥哲倫雲中N63A 超新星爆炸的遺跡。

最近有幾項實驗結果發現,在太平洋、大西洋、以及印度洋的海床中,於 650 到 800 萬年前和 170 到 320 萬年前這兩個時期的沉積物中,都含有比背景更多的鐵 60 同位素,這個現象甚至可以在月球岩石的樣本中觀察到。一般認為這些同位素並不是來自地球本身,而是由距離地球約 300 光年左右的超新星爆炸。當超新星爆炸的時候,這些鐵同位素就跟著飛散到宇宙的各個角落,例如地球與月球表面。如果這個假設成立,那麼我們可以認為,儘管距離遙遠,超新星爆炸還是會對地球造成影響。

除了同位素之外,超新星爆炸會產生相當多的高能量宇宙射線。這些宇宙射線也會像鐵 60 一樣進入地球。那麼這些宇宙射線對地球的影響到底有多大?美國 Washburn University 的 Brian Thomas 跟他的研究團隊利用電腦模擬來研究這些宇宙射線對地球的影響。他們的模擬結果顯示,如果能量在藍光與紫外光範圍的話,這些宇宙射線對地球的影響基本上相當微小,不太可能對地球上的生命造成傷害。

-----廣告,請繼續往下閱讀-----

但是如果把考慮的範圍延伸到更高能量,例如能量在 1 TeV 以上的宇宙射線,這時這些宇宙射線因為能量夠高,所以可以穿過太陽風與地球磁場,直接進入地球的大氣層。事實上,這些高能量的宇宙射線還不是真正的問題,因為畢竟數量還是不太多。真正的關鍵在這些宇宙射線進入大氣層後會與空氣中的分子碰撞而產生大量的其他粒子,例如質子、中子、渺子、以及電子等等。

如果宇宙射線的能量稍低,那他們通常會在平流層(地表以上 10 到 50 公里的位置)與大氣層發生反應,這些產生出來的大量粒子可能會破壞臭氧層;而這些 TeV 能量等級的粒子因為能量更高,所以可以穿透到更內部的對流層,甚至進入 1 公里深的海裡。

這些穿透進大氣層的高能粒子相當於給地表的生物增加了輻射曝曬量。一般而言,我們所接受到的背景輻射中,有六分之一是來自於這些來自宇宙的高能量渺子。根據他們的計算,超新星爆炸大概會讓這些高能量渺子的數量增加至二十倍,大約相當於正常輻射量的三倍左右。以目前一般評估的標準,大約相當於地球上所有的生物每年多接受了做一次電腦斷層掃描的輻射量。

這些輻射劑量說多不多,但畢竟總是比一般的正常劑量更多一些。所以還是有可能還是對地球上的大量生命造成影響。這些較高的背景輻射會對那些比較不耐輻射的生命受到更多的影響,甚至因此滅絕。在 293 萬年前,地球上的生物曾經發生過一次較小型的滅絕,或許超新星爆炸也是造成這些滅絕的原因之一。

-----廣告,請繼續往下閱讀-----

 

參考資料:

相關報導:


38卷10月號封面

 

本文轉載自《物理雙月刊》 38 卷 2016 年 10 月號,更多文章請見物理雙月刊網站

物理雙月刊_96
54 篇文章 ・ 13 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。