0

0
0

文字

分享

0
0
0

八爪博士前傳?M.I.T.開發背負式機械手臂

陸子鈞
・2014/06/06 ・710字 ・閱讀時間約 1 分鐘 ・SR值 572 ・九年級

-----廣告,請繼續往下閱讀-----

p1

麻省理工學院(M.I.T.)的淺田亨利(Harry Asada)教授設計出一款「外掛機械手臂」(Supernumerary Robotic Limbs, SRLs),能夠輔助人類的工作。雖然機械手臂還在原型階段,不如八爪博士的機械手臂威猛,但這套機械手臂更先進,能夠自動判斷人類動作是否需要協助,因此自然手臂可以保持工作狀態,不用忙於操控。

研究團隊表示:「想像有一天,人類有第三支手、第三支腳在身上,能夠輔助他們抓取物品、支持身體、分攤工作,精簡工作流程;假如『外掛手臂』的動作能夠非常精準地和自然手臂配合,使用者就能夠意識到機械成為身體的延伸。」

2-mitlabdesign

當你左手拎著剛從市場買的菜,右手握著外帶的熱美式咖啡,回到家發現沒手可以開門,那麼外掛的手臂就派上用場了。雖然背著這款機械手臂走在路上可能會被蜘蛛人預防性羈押看起來很怪,但在工業上就很實用,像是需要精準卻又無法自動化的手工製造業,就可以藉這款機械手臂提高工人的產能。

 

使用者手腕上裝有慣性量測儀器(inertial measurement units, IMU),能夠監測自然手臂的行為。電腦將儀器收集到的數據根據先前學習的人類行為模式,推測出人類手臂動作的目的,再指示機械手臂該執行什麼動作,以配合自然手臂。像是當我們把雙手高舉過頭,電腦會預期我們要抬舉物體,所以也會將機械手臂高舉,助你「兩臂之力」。

-----廣告,請繼續往下閱讀-----

 

外掛機械手臂目前有兩種原型,一種架在肩上,能夠輔助高過頭部的工作;另一種背在腰上(如圖一右所示),能作為多出來的雙手或雙腳(裝兩組就成為八爪博士了?)。研究團隊於IEEE國際機器與自動控制大會(IEEE International Conference on Robotics and Automation)展示機械手臂原型。

資料來源:MIT lab designs workload-sharing robotic limbs. Phys.org [Jun 03, 2014]

-----廣告,請繼續往下閱讀-----
文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
1

文字

分享

0
4
1
鑑識故事系列:手錶會「記錄」死亡時間?!
胡中行_96
・2022/08/29 ・2476字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

時年 26 歲[1] 的 Caroline Dela Rose Nilsson 手腳被緊縛,[2] 嘴巴堵塞著,神色極度焦慮,[1]在自家的車道上呻吟。[3, 4] 鄰居見狀快速通報警察。[1]

事情發生在 2016 年 9 月 30 日,[4] 晚間 10 點 10 分,[1] 南澳阿德雷東北市郊的 Valley View 地區。[1, 3] Caroline 的三個孩子當時在家,他們分別為 1、3 和 5 歲;[2] 而她 57 歲的婆婆 Myrna Nilsson 早已被重擊致死,陳屍於洗衣間。[5] 稍後,員警在屋裡的走廊找到眼神渙散,面容哀戚的男孩;他的兩個姊妹則是面部朝下,趴在床上哭泣。員警讓孩子們同自己坐在警車裡,但卻什麼也問不出來。[5]

另一邊,當死者的兒子 Mark ,也就是 Caroline 的丈夫,得知母親死了。 Mark 詢問警方, Caroline 是否受傷,然後平靜地以實事求是的口吻說:「我不懂怎麼會有這種事情,您是說意外嗎?」由於警方不願意透漏細節,在完全不知道來龍去脈的情況下, Mark 又問是不是有人闖入家中。[5][註1]

澳洲國產霍登皮卡車的模型。圖/Andrew Bone on Flickr(CC BY 2.0

根據 Caroline 的說法,當天有 2、3 名開著皮卡車的男性,跟蹤她的婆婆 Myrna 回家。他們與 Myrna 在屋外爭執了約 20 分鐘,但殺害她的時候, Caroline 碰巧在關著門的廚房裡,所以什麼也沒聽到。[1] 這幾個「看起來像粗工」的人,後來也攻擊 Caroline 。[2, 5] 問題是,如果三個孩子徹頭徹尾都在屋裡,為何會安靜到沒被捲進來?

-----廣告,請繼續往下閱讀-----

檢方拿 3 個孩子的頭髮樣本,去做藥物檢測,其中 2 個結果顯示有Tramadol殘留。[2] 在澳洲屬於四級管制藥物的 Tramadol ,需要有處方籤才能取得,是一種會抑制呼吸且具有鎮定作用的止痛劑,一般不得施予 12 歲以下的兒童。[6] 更啟人疑竇的是,屋裡既沒有外人入侵的 DNA 證據,附近的鄰居也沒注意到一輛皮卡車進出。[7] 這令檢警不太採信 Caroline 的說辭。[1]

此外,負債澳幣 4,000 元(時值約新臺幣 10 萬元)的 Caroline ,每半個月還得跟丈夫共同支付婆婆 Myrna 澳幣 1,000 元的房租。[註2]相較之下,Myrna 經濟優渥,不僅擁有汽車,在澳洲和菲律賓置產,曾赴歐洲旅遊,還給年幼的孫子買車買房。Mark 是獨子,若 Myrna 過世,他們夫婦便可順勢繼承財產,謀財害命的動機充足。[8]

檢警因此把 Caroline 列為頭號嫌疑犯,卻始終沒有以謀殺罪名逮捕她。直到 2018 年 3 月,他們取得關鍵證據。[1]

蘋果智慧型手錶示意圖,非當事證物。圖/Adam Kovacs on Unsplash

Myrna Nilsson 慘遭殺害的時候,戴著一只蘋果智慧型手錶。[1]

從智慧型手錶判讀死亡時間

Myrna 的智慧錶記錄到她人生末了的重要數據:她在返抵自家的 47 秒內開始遭受猛烈攻擊,[4]其中有短短 39 秒的長度,出現 65 次倉皇的動作,然後她的心跳就停止了。時間約莫是傍晚 6 點 41、42 分。[2, 4] 15 分鐘後, Caroline 用手機傳訊息給丈夫,還留下在臉書和 eBay 的使用紀錄。[4] 從這個時間點到她的鄰居報案,中間相差三個小時。此情形讓 Caroline 的陳述顯得不合理,因而遭檢察官起訴。[3]

-----廣告,請繼續往下閱讀-----

從傳統手錶推測死亡時間

智慧型手錶進入人類生活已有一段時日,不過有些人仍然會戴其他類型的手錶。它們雖然不會追蹤使用者的生命徵象,但有時也能提供警方估計死亡時間的線索。以下是 2022 年《國際鑑識科學》(Forensic Science International)期刊,介紹的二個例子:

一名八旬老翁俯臥於公寓的地板上,毫無生命跡象。他最後一次被人看見還活著,已經是 5 天前的事情了,對縮小死亡時間範圍的幫助有限。死者左手戴著一只持續運作的自動機械錶,錶面顯示的時間準確無誤。此種手錶仰賴使用者手部的活動帶動發條。老翁戴的這款每次帶動之後,可以撐上 44 至 48 小時,而且它在警方展開調查後 18 小時才停止運轉。所以用 48 減掉 18 ,得知老翁或許在被發現前的 30 小時左右身亡。[9]

期刊介紹的另一起案件,死者右手戴的是太陽能石英錶。某年12月在丹麥的沼澤,有個獵人撞見一具屍骨。當下右手骨頭上的錶還在走,不過時間快了 1 小時,而日期則晚了 3 天。該國的日光節約通常始於 3 月,終於 10 月,也就是說死者的手錶在 10 月之後,沒有被調回標準時間。至於少掉的 3 天,則是因為 6、9 和 11 月都只有 30 天。若未手動跳過 31 日,手錶的日期就會在這段期間,每個月各晚 1 天。由此推估,死者可能是在 5 月 1 日到 6 月 30 日之間身亡。[9]

死亡時間與判決

死者配戴的各種手錶,留給警察辦案的線索。然而是否能破案,並將罪犯繩之以法,仍受到其他因素的影響。2016 年 Myrna Nilsson 被害身亡;2018 年她的媳婦 Caroline ,遭警方以智慧錶的紀錄為證據逮捕。[1] 2020 年在 8 週的審理後,陪審團無法達成共識。 2021 年又經歷 6 週的法律攻防, Caroline 最後被無罪釋放。[3] 而直至 2022 年的今天,警方仍未捕獲她口中,謀殺婆婆的那幾個粗工。

-----廣告,請繼續往下閱讀-----

  

備註

  1. 筆者找到的新聞資料,好像都沒有明確解釋,事發當下 Mark Nilsson 身在何處。
  2. 有一篇報導說 Caroline 跟 Mark 給婆婆房租,一家三代同堂,她卻連自己的房間也沒有。Caroline 得跟兩個女兒睡;兒子則是和婆婆同寢。該文沒提到 Mark 睡哪。[8]
  1. Rebecca Opie. (29 MAR 2018) ‘Smartwatch data helped police make arrest in Adelaide murder case, court hears’. ABC News.
  2. Dillon M, Carter M. (13 DEC 2021) ‘Caroline Nilsson murder trial returns hung jury over death of mother-in-law captured on an Apple Watch’. ABC News.
  3. Mahalia Carter. (26 OCT 2021) ‘Caroline Nilsson found not guilty of murdering mother-in-law after smart watch case retrial’. ABC News.
  4. Kathryn Bermingham. (15 OCT 2020) ‘Prosecutors close case against woman charged with murdering her mother-in-law in 2016’. The Weekend Australian.
  5. Mahalia Carter. (13 DEC 2021) ‘Alleged murder victim’s son was ‘matter-of-fact’ when told of death, court hears.’ ABC News.
  6. APO-Tramadol’. (01 March 2022) NPS MedicineWise
  7. Rebecca Opie. (3 MAY 2018) ‘Son of alleged murder victim Myrna Nilsson urges court to release wife on bail’. ABC News.
  8. Meagan Dillon. (13 DEC 2021) ‘Alleged killer Caroline Dela Rose Nilsson had ‘no motive’ to kill, despite financial pressures, court hears.’ ABC News.
  9. Busch JR, Hansen SH. (2022) ‘The wristwatch – A supplemental tool for determining time of death’. Forensic Science International, 335, 111283.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

5

2
3

文字

分享

5
2
3
八爪博士 4ni!?《蜘蛛人》裡的人造太陽或將問世?(下)
科學大抖宅_96
・2022/04/14 ・3339字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

說明:此篇文章原本乃為泛科學 Youtube 影片所寫,經簡化之後,拍攝成〈缺電、輻射、核廢料有解嗎?「核融合發電」有可能嗎?〉和〈最受期待的核融合發電在哪裡?能源數據誰在膨風?〉兩部作品。又,本文並不針對核融合的技術性問題多做解釋,而是想用最少的字數,讓讀者瞭解核融合發展的全貌與大致進程。同時,此文主題也跟「世界是否應該採用核能發電」、「臺灣是否該使用核能發電」、「台灣是否該重啟核四」無關;這是三個完全不同的問題,核融合發電跟現有的核能發電技術也有所不同,無法一概而論。

核融合發電的最低要求

現實中,不管使用什麼方法進行核融合,都需要消耗大量的能量。如果產生的能量比消耗的能量還少、或者只大一點,那麼就沒有商業發電的價值。在討論核融合發電時,我們需要知道「融合能量增益因子」(Fusion energy gain factor)這個詞彙;它常用符號 Q 來表示,代表的是核融合反應爐產出的能量,和為讓反應爐運作所輸入能量的比值:

Q=Pfus/Pheat= 核融合反應爐產出的能量/為讓反應爐運作所輸入的能量

換句話說,如果 Q=1,表示核融合反應產出的能量,和輸入反應爐的能量相等,稱為損益平衡(breakeven)——當然,在這種狀況下,沒有多餘的能量能夠拿來發電。而且,再考慮到核融合反應產出的能量,並不可能全部都被收集並拿來維持反應爐的運作,一般認為,Q 的最低限度也要大於 5,才有機會收入與支出平衡。對核融合發電來說,Q 是越高越好,代表有更多比例的產出能量可作為發電之用,也是所有研究單位努力的目標。

核融合發電的現實

就 2022 年的現在來說,實際上還未有 Q 大於 1 的核融合反應爐出現。但我們確實會在科技新聞中,看到一些聲稱做出重大突破、輸出能量大於輸入能量的研究出現,這是怎麼回事呢?

-----廣告,請繼續往下閱讀-----
2014年權威期刊Nature上的新聞提及,有研究團隊成功在核融合過程中產生多於輸入的能量。圖/截圖自 Nature

原因之一是,有些單位在設計實驗的時候,因為許多考量,僅使用氘做燃料,而非目前主流核融合發電使用的氘氚混合燃料;而根據僅使用氘的實驗結果,就可以在理論上推估,若使用氘氚混合燃料可以達到的 Q 值。這樣子推估出來的數字,目前最高記錄是日本的 JT-60 實驗,得到 Q=1.25。

另外一種情形,則是對輸入能量的定義有所不同。舉例來說,2013 年,BBC 刊載報導,表示位於美國加州的國家點火設施,達到「核融合反應的里程碑」,「透過核融合反應所釋出的總能量超過由燃料所吸收的總能量——這是在世上所有的核融合設施中,第一次辦到。」然而,在該實驗中,雷射對裝有核融合燃料膠囊的金屬空腔標靶(稱為「環空器」,hohlraum),輸入了 1 百 80 萬焦耳的能量,最後僅產出約 1 萬 4 千焦耳的核融合能量;換算起來,Q 值為 0.0077。但是,根據計算,雷射輸入的能量當中,只有1萬焦耳真正在燃料膠囊的核心起作用,促成了核融合發生——從這個角度來說,也是一種「核融合反應所釋出的總能量超過由燃料所吸收的總能量」,但總有作弊之嫌。

目前,融合能量增益因子的最高紀錄,是由美國國家點火設施所創下,於 2021 年達到的 0.7,由 1 百 90 萬焦耳的雷射能量,獲得1百35萬焦耳的核融合能量。只是,這樣的計算方式仍然有個問題:若要產生具有 1 百 90 萬焦耳能量的雷射,我們事實上必須使用到遠超其上的能量——如果要拿來發電,這個能量消耗也是必須考慮進去的。

目前最受期待的核融合設施

在近未來之內,最接近商業發電的核融合設施,應屬位在法國南部的國際熱核融合實驗反應爐(International Thermonuclear Experimental Reactor,ITER)。它是跨國出資、合作的核融合設施,成員包括歐盟、印度、日本、中華人民共和國、俄羅斯、韓國和美國,目前仍在建造中,預計於 2025 年開始進行初步電漿測試,並於 2035 年進行氘和氚的核融合實驗。

-----廣告,請繼續往下閱讀-----
2020年ITER空照。圖/wikipedia

根據一般說法,ITER 產出能量的功率會達到 5 億瓦特,但只需要五千萬瓦特的能量輸入功率,亦即,融合能量增益因子 Q 會高達 10。這聽起來很不錯,似乎可以作為商業發電之用,或者至少很接近商業發電的目標了。是這樣嗎?

But,人生最重要就是這個 But,5 億瓦特的能量輸出功率,是指核融合反應釋出的能量,而非實際上能夠獲得的電力;有很大一部份比例的能量,都會在轉換成電力時漏失。同時,五千萬瓦特的能量輸入功率,也只是整間電廠營運需求的一部份——根據 ITER 的報告,運作整間電廠約需要 4 億 4 千萬瓦特的能量功率。換言之,儘管 ITER 應該會是近未來 Q 值最高、最成功的核融合設施,但距離商業發電,仍然有一段差距。這也是目前全球的科學家在努力克服的問題。

自己在家做出核融合反應爐?

儘管核融合發電於現實中仍存在許多問題。但是,我們卻也偶爾會看到,媒體大肆渲染,某某青少年在自家做出小型核融合反應爐的新聞,難道全球科學家都被不世出的天才青少年打臉了嗎?

媒體上對青少年自製核融合反應爐的報導。圖/截圖自ETtoday

這類所謂自製的核融合反應爐,大體來說,就是將氘氣引入真空容器內,再利用高電壓使其互撞,並在過程中藉由測得中子,推論核融合反應存在。然而,雖然核融合反應會產生中子,但測到中子並不表示就一定是核融合反應。高速的氘原子互撞,就算沒有成功融合,仍然可能經由其他作用產生中子

-----廣告,請繼續往下閱讀-----

另一方面,就算真的有零星的核融合反應出現,其能量產出效率必定極低,輸入的能量遠大於輸出的能量。我們可以說,要人工地讓核融合反應發生,在現代並不是問題;如何讓輸出大於輸入,且持續穩定運作,才是主要的問題。

科學的進步與成功,事實上仰賴許多前人的鋪路,後人才能在前人的基礎上順利抵達終點。如果沒有知識的累積,就期待一蹴可及、出現某個天才打臉所有人,完成前無古人的成果,雖然很有戲劇性,但幾乎是不可能的事情,現代科學研究尤其更是如此。

我們是否將見證歷史性的一刻?

核融合作為未來可能的能源選項之一,無疑是值得研究的課題。過程中花費的金錢與人力縱然可觀,但天下沒有不勞而獲的事,總是要嘗試了,才會知道結果怎麼樣。人類的科學文明,就是這樣不斷地在諸多失敗和成功下,累積成現在的成果。

核融合研究,多年下來有著長足的進步,距離商業發電的目標越來越近。儘管目前看起來,核融合發電距離實用化,還有一段距離,而還要多久才能克服這最後一哩路,也很難說。但搞不好,或許數十年之內,我們就有機會目睹人類能源的歷史性突破。

-----廣告,請繼續往下閱讀-----
美國能源部科學家最近發表的統計。橫軸為年代,縱軸則是核融合裝置的效率指標。最上面的黑色和棕色水平線條,則是商業發電需要達到的目標。在數十年來,由不同顏色實線代表的核融合裝置,已有了長足的進步。圖/Progress toward fusion energy breakeven and gain as measured against the Lawson criterion
-----廣告,請繼續往下閱讀-----
所有討論 5
科學大抖宅_96
36 篇文章 ・ 1867 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/