0

3
3

文字

分享

0
3
3

量子電腦的計算是怎麼一回事?

賴昭正_96
・2025/07/15 ・6405字 ・閱讀時間約 13 分鐘

  • 作者 / 賴昭正 前清大化學系教授、系主任、所長,IBM 研究顧問化學家;合創科學月刊

因為我們確信量子系統一般無法在傳統電腦上有效模擬,量子運算未來最重要的應用可能是量子系統的電腦模擬。——David Deutsch「量子計算之父」

量子革命啟航,2025 年迎來國際量子年。圖 / unsplash

量子物理學誕生於 1900 年初期,源自普朗克(Max Planck)及愛因斯坦(Albert Einstein)等人為了解釋古典物理學無法解釋的黑體輻射和光電效應,提出能量「量化」的奇怪觀念。1920 年代,玻爾(Niels Bohr)、薛定諤 (Erwin Schrödinger)、海森堡( Werner Heisenberg)、玻恩(Max Born)和狄拉克(Paul Dirac)等物理學家為量子力學建立了更完整的數學框架,從而形成了微觀世界的物理理論。最近由於以它為基礎的計算技術不斷有「突破」性的進展,聯合國便迫不及待宣布 2025 年為國際量子科學技術
年。

筆者在芝加哥大學攻讀的是量子化學,博士班資格考試選的是物理化學、無機化學、及物理系的物理數學,論文用的理論工具是「量子」物理,實驗工具是「計算機」,因此應該是位「量子計算機」專家了,但慚愧的是:儘管市面上已經出現許多有關量子計算機的報導,但筆者除了知道其所用的物理原理(參看「延伸閱讀」)外,卻完全不知所云!

查了一下台灣兩大科普雜誌,發現《科學月刊》與《泛科學》都沒報導過!顯然這不是一篇容易寫的科普文章。但因其重要性,及對科普的喜好,在猛 K 一個月後,筆者謹在此先野人獻曝,報導點心得,望能拋磚引玉將來有專家為我們寫一篇更詳細及深入的介紹。在進入本文之前,得預先警告:筆者深深了解數學公式會嚇跑讀者,但是幾經考慮後,覺得不用點數學顯然不能點出量子計算機的骨髓。對數學不感興趣的讀者事實上不需要深入了解:只要從那些數學中看出量子計算機的運算不是確定性的「加減乘除」、而是操縱或然率的「量子物質狀態」改變(「量子位元」一節)即可。如果真的不想看到數學公式,可以跳過「量子閘」及「量子計算機」二節。

量子計算機的起源

20 世紀 80 年代初,美國阿貢國家實驗室(Argonne National Laboratory)貝尼奧夫(Paul Benioff)發表四篇量子計算基礎的開創性論文,證明計算機可以按照量子力學定律運行;費曼(Richard Feynman)獨立提出了量子計算的想法,認為基於量子原理的計算機可以高效地模擬量子系統,克服對於一般電腦來說難度呈指數級增長的計算任務。1985 年牛津大學物理學家德意志(David Deutsch)以費曼和貝尼奧夫的思想為基礎,提出了通用量子計算的概念,並設計出一個適用於量子計算機的演算法。

-----廣告,請繼續往下閱讀-----

要了解這些量子計算想法之前,我們得先了解一下現行的(傳統)計算機。

傳統計算機

人類因為有 10 個指頭,所以採用十位元的運算方法,即 0,1,…9;9 再加 1 就進位成 10(借用別人的手指)。當初設計計算機的人也許因為只有兩根手指的關係,卻採用「二位元」(bit)的運算方法,即 0 與 1;1 再加 1 就進位成 10(= 十位元的 2)。事實上這樣的計算法在電路設計上是比較容易的:接近 0 伏特的電壓(通常稱為「低」)表示邏輯 0,而較高的電壓(通常稱為「高」)表示邏輯 1。計算機就是靠這樣的線路及所謂「邏輯閘」(logic gate)來達成計算的任務,如圖一:2 個「二位元」數 A2A1 及 B2B1 相加的計算機線路圖。

圖 / 作者提供

「邏輯閘」的目的是將輸入(input)依照所設計的邏輯改成單一的輸出(output)。例如將(0,1)輸入「AND 閘」,圖一的邏輯表告訴我們它將輸出 0;(1,1)將輸出 1,…。又如將(0,1)輸入「XOR 閘」,它將輸出 1;(1,1)將輸出 0,…。讀者應該不難用圖一的線路計算出 10+11=101(O3O2O1);10+01=011;11+11=110;…。

如果要增加「二位元」的數目[如 3 個「二位元」、4 個「二位元」…,或 8 個「二位元」的「位元組」(byte)],只要重複複製圖一 a 及 a′ 之間的線路,將它連在最後一個 a′ 上即可。所以(傳統)計算機的設計是透過「邏輯閘」操縱「二位元」來達到計算的目的。

-----廣告,請繼續往下閱讀-----

所以要使用傳統計算機來「解決問題」如微積分方程式或製定更好投資策略時,必須先將它們「改寫成」加減乘除及簡單邏輯(如 x 則 y)的「運算問題」。

量子位元

量子計算機也是採用「二位元」的運作,但其「二位元」非常不同於上面所提到之「二位元」:

(1)它的 0 與 1 不是電壓的不同,而是物質狀態的不同,稱為 |0> 與 |1>;

(2)它可以有同時存在於 |0> 與 |1> 的「量子疊加」狀態(quantum superposition state,註一),例如 |x>=α|0>+β|1>(|α|2+|β|2=1);

-----廣告,請繼續往下閱讀-----

(3)當你去測量時,因「波函數坍縮」(wave function collapse)只能得到或然率分別為 |α|2 及 |β|2 的 |0>或 |1> 狀態而已,不能有中間的混合態!

這樣的「二位元」因為具有量子物理的特性,因此稱之為「量子位元」(qubit)。原子的自旋(spin)就是具有這樣的特性,因此可作為量子計算機的「量子位元」。

等一等,電壓不是也可以模擬(1)及(2)嗎?例如 0 代表 0 伏特電壓,1 代表 5 伏特電壓,那麼 0.8(4伏特電壓)不是代表由 80% 的 5 伏特電壓和 20% 的 0 伏特電壓組成的嗎?原則上不錯,但就出現了一個實際設計上的問題:電壓一定要很穩定(註二)。這事實上正也是量子計算機設計上的最大挑戰之一:如何保持「量子位元」的穩定?設計高品質的「量子位元」極具挑戰性:如果「量子位元」與其環境沒有充分隔離,它就會遭受「量子退相干擾」(quantum decoherence),在計算中引入雜訊、錯誤、或崩潰。當然,電壓是沒辦法模擬(3)的:如果允許「疊加」態,測量電壓只能得到「疊加」電壓 4 伏特,不可能量到 0 伏特或 5 伏特。但事實上更嚴重的問題是:電壓沒辦法模仿兩個「量子位元」的「量子糾纏」(quantum entanglement)態:

χ>=12(00>+11>)

這狀態是由兩個「量子位元」組成的,而每個「量子位元」是由兩個狀態組成,因此理論上應該共有四個狀態(00, 01, 10, 11)才對;但上式中卻缺少了 |01> 及 |10> 兩個狀態!

-----廣告,請繼續往下閱讀-----

量子(邏輯)

量子計算機的設計與傳統計算機類似,不同的是它用「量子邏輯閘」(quantum logic gate)來操縱「量子位元」。在量子電路模型中,「量子邏輯閘」(或簡稱「量子閘」)是在某些量子位元上運行的基本量子電路,它們是量子電路的組成部分,就像傳統邏輯閘是傳統數位電路的組成部分一樣。在介紹「量子閘」之前,因為「量子位元」可以同時存在於 |0> 與 |1> 之間的狀態,因此用向量(vector)及矩陣(matrix)來表示將比較方便。例如以 |0> 及 |1> 為基底向量(basis vector,可以想成傳統上的 XY 座標軸),「量子位元」|0>、|1>、|x>=α|0>+β|1>將分別為:

如果用向量來表示量子位元,那麼「量子閘」將是一矩陣。

傳統計算機中的「NOT 閘」將 1 改成 0 輸出、0 改成 1 輸出,量子計算機中也有類似的「NOT 量子閘」能將 |0> 改成 |1> 輸出、|1> 改成 |0> 輸出、上面的 |x> 改成:

1α2+β2[βα]

輸出。

-----廣告,請繼續往下閱讀-----

「阿達瑪閘」(Hadamard gate) 是一基本量子閘,它能將量子位元從單一的確定狀態(|0⟩ 或 |1⟩)轉換為測量任一結果均為 50% 機率的量子疊加態(參見圖二)。「CNOT 閘」是一雙量子位元操作閘:

[1000010000010010]

作用於 H|0> 及另一 |0> 結合的雙量子位元可以得到一量子糾纏態,其電路圖為

圖 / 作者提供

量子計算機

在結論前讓我們在此以一實際的例子來說明量子計算機可能提供的優勢。為了避免難懂的數學,我們在這裡只能用一最簡單的、不實用、但在開發量子演算法技術上佔有很重要歷史地位的例子:1985 年「量子計算之父」所提出的德意志演算法。德意志演算法用量子計算機解決了一個簡單的問題:給一只能輸入 0 或 1、只能傳回 0 或 1 的函數 f(x),我們如何知道 f(0) 是否等於 f(1)?

圖 / 作者提供

圖三告訴我們如果用傳統的計算機,我們必須用 0 及 1 分別詢問這個函數兩次才可能得到答案:0 表示 f(0)=f(1);1 表示 f(0)≠f(1)。但因為量子位元可以有疊加狀態,我們可以先透過「阿達瑪閘」將 |0> 轉變成 |0> 及 |1> 疊加態後再詢問

-----廣告,請繼續往下閱讀-----
Q f : [ ( 1 ) f ( 0 ) 0 0 ( 1 ) f ( 1 ) ]

得到答案後再透過一次「阿達瑪閘」,我們就可以測量結果:如果測得 |0> 則表示 f(0)=f(1); 測得 |1> 則表示 f(0)≠f(1)。有興趣的讀者不妨親自演算一下,驗證筆者沒有算錯(註三)。

德意志演算法利用了量子力學的疊加性及波函數的干涉性,成功地只詢問一次就得到了答案,所以我們可以在這裡吹噓:量子計算機只要用傳統計算機一半的時間就可以解決問題。事實上 Lov Grover 1996 年提出一個搜尋(註四)演算法證明了:當傳統計算機需要使用 ~N 次詢問才能得到答案,量子計算卻只要使用 次求值,就能以高機率找到產生特定輸出值之黑盒函數的唯一輸入(註五):也就是說如果傳統計算機需要 100 年,量子計算機只需要 10 年!所以量子計算機將全面改變我們的…(請讀者填空)。但這不是好像看到一隻黑烏鴉,就說全世界烏鴉都是黑的一樣嗎?

結論

希望在瞰完本文後,讀者對量子計算機有初步的了解,不再只是個空洞的名詞而已。像其它新興科技一樣,我們將時常看到充滿著樂觀、承諾、與「突破」的報導,如去年底谷歌(Google)宣稱「(新的量子晶片)在不到五分鐘的時間內完成了一個「標準基準計算」(standard benchmark computation),而當今最快的超級電腦則需要 1025 年―這個數字遠遠超過了宇宙的年齡」,及最近微軟(Microsoft)發布了全球首款採用拓撲核心架構的量子晶片,謂創建了更穩定、可擴展的量子位元,「有望」讓量子計算機「更接近」解決複雜問題。

但我們都知道量子物理已經有百年的歷史,這知識為我們創造了空前的社會繁榮,因此我們不免要問:以它為基礎的量子計算機科技,為什麼經過了 40 年還是只停留在完成「標準基準計算」、「有望」、更接近」、…等等「空談」的階段,交不出一張實用的成績單(註六)?…什麼時候它才能真正為我們解決一有「突破」就被提到的複雜問題,如增強網路安全,徹底改變材料科學、新藥、和醫學的研發,優化財務模型、製定更好的投資策略等等承諾?

-----廣告,請繼續往下閱讀-----

量子計算之父德意志說:「因為我們確信量子系統一般無法在傳統電腦上有效模擬,量子運算未來最重要的應用可能是量子系統的電腦模擬。」諾貝爾物理獎得主費曼也持相同的看法。現在報章雜誌的報導都是渉及量子計算機所面臨的硬件設計挑戰;但翻閱證明其可行性的演算法後,筆者覺得如何將上面所提到之巨觀世界的實用問題,「改寫成」能利用量子運算獨特功能來解決之微觀世界的量子系統,可能才是一項更重大千萬倍的挑戰!

圖 / US National Weather Service

這使筆者想起了核融發電的問題。第一顆使用核子分裂的原子彈於 1945 年 8 月在日本廣島爆炸,6 年後年美國愛達荷州的實驗增殖反應器用核分裂產生可用電力,又三年後蘇聯的奧布寧斯克核電廠將核能所產生的電連結到電網。1952 年 11 月 1 日美國在馬紹爾群島引爆了第一顆氫彈。氫同位素核融反應除了比核分裂釋放更多的能量外,不會產生有害的長期放射性廢物;加上氫或氘在自然界中既便宜又豐富,為一種長期、可持續、經濟和安全的發電能源燃料,因此核融發電成為 1950 年代後期全世界先進國家追求的目標;報張雜誌三不五時便有「突破」的報導;但 1960 年到現在,65 年過去了,我們還是「祇聞樓梯響,不見人下來」,甭說看不到一座實用的核融發電廠,能勉強收支平衡的實驗就算是「突破」了。筆者認為量子計算機很可能將步其後塵:雷聲大雨點小、或根本不下雨(註七)!

註解:

  • (註一)許多科普文章多用「丟擲硬幣來比喻」,謂在空中旋轉之硬幣就是同時存在於正、反兩面的狀態。這顯然完全不懂量子物理:在空中旋轉之硬幣從來沒有同時存在於兩種狀態,它只是很快地在兩種狀態中轉來轉去而已!
  • (註二)正是因為要避免這一問題,所以傳統計算機設計採用「有」與「沒有」的二元電壓。不只如此,早期的計算機為了偵測錯誤,8 位元的位元組還多加了一位冗餘位元(詳閱「錯誤訊息的偵測與修正」,科學月刊 2009 年 3 月號或《我愛科學》)。
  • (註三)先謝了。但請注意:筆者忽略了要求或然率等於 1 的常數如 1/2。
  • (註四)在未以任何特定方式排序或組織的N項資料庫中尋找特定項目。
  • (註五)因為傳統計算機每次只能問一項,所以大約要問 N 次才能得到答案;量子計算機可以「疊加」態一次詢問所有的項目,但因天下沒有白吃的飯,所以每次詢問只能得到或然率的答案,需要重複詢問 ~N 才能將或然率提高到相當肯定的地步。
  • (註六)寫到這裡筆者突然了解為什麼一直對量子計算機「突破」的報導不感興趣:一則沒有新理論,再則好像全是空談,沒有解決實際問題的內容。
  • (註七)2023 年 5 月,領導微軟量子運算工作的副總裁、「技術院士」 Matthias Troyer 在《ACM 通訊》上撰寫了一篇題為「擺脫炒作與實用性:切實實現量子優勢」(Disentangling Hype from Practicality: On Realistically Achieving Quantum Advantage)的論文,指出量子電腦能夠提供有意義優勢的應用數量比某些人認為的要有限;謂量子電腦只有在解決小數據問題時才能真正發揮其指數級加速的作用。他補充說:「其餘的都是美麗的理論,但不會付諸實踐」。

延伸閱讀:

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

賴昭正_96
47 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
4

文字

分享

1
3
4
「量子狀態」聽起來好難?其實就是機率與疊加——《阿宅聯盟:量子危機》
未來親子學習平台
・2023/01/19 ・1256字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

想像我們往水池內丟兩顆石頭,以石頭的落點為中心,會個別產生漣漪,在水面上擴散開來。

而當兩個漣漪互相接觸時,交會之處的水面其實同時反應了兩個漣漪的影響;可以說,兩個漣漪疊加在一起了。漣漪是靠水傳遞的一種波,稱為水波;而「疊加」的現象,就是屬於波的一種特性

當兩個漣漪相互接觸時,會疊加在一起。圖/Envato Elements

物質的波,也就是物質波,同樣存在疊加的特性。只不過,物質波跟水波不同的地方在於,它不需要依賴「水」這種實際的東西來傳遞,而是一種「機率波」。機率波的數學形式長得像波,而它代表的,是量子系統處於不同狀態的機率分布

量子系統的狀態:機率波

當我們在描述量子系統的狀態時,就會用到「機率波」的概念。舉例來說,在電玩遊戲中要是打怪成功,死掉的怪物會留下寶物。怪物可能有 50% 的機率掉落寶物 A,也有 50% 的機率掉落寶物 B,但我們不會在事前就知道怪物會留下哪種寶物。

-----廣告,請繼續往下閱讀-----

所以,怪物可以說是同時擁有「掉落寶物 A」和「掉落寶物 B」這兩種狀況,直到我們成功打完怪,才能確定牠究竟帶哪一種寶物。類似地,機率波告訴我們的,就是量子系統「有多少機率處於狀態 A、又有多少機率處於狀態 B」的資訊;如同兩個水波在水面上疊加,A 和 B 這兩個狀態同時存在這個量子系統上。所以,我們把量子系統「同時處於不同狀態疊加」的狀況,稱為「疊加態」

直到我們打怪成功,才能確定究竟掉哪一種寶物。圖/GIPHY

另一方面,也跟打完怪物才知道掉什麼寶物類似,在我們實際觀測量子系統前,並無法知道會看到狀態 A 還是狀態 B,要觀測完才會知道。因為量子疊加的特殊性質,科學家想到,或許可以拿來做一些實際的運用。

例如,在現代的電腦運算中,「位元」是資訊的最小單位,可以用 0 或 1 這兩個數值來表示。那麼,我們也許能夠把「同時存在兩種不同狀態的量子系統」當作位元使用,讓它的兩種狀態分別代表 0 跟 1 來儲存資訊,而這就被稱為量子位元

由於物理性質的不同,量子位元在某些狀況下,可以運算得比傳統位元更有效率;利用量子位元建構的電腦,就稱為量子電腦。雖然目前已經有少數量子電腦問世,能以最多一百多個量子位元進行運算,但要能大規模運用在日常生活中,除了要再想辦法增加量子位元之外,還有許多難題要克服,所以,現在就先讓漫畫的想像來代替很可能成真的未來吧。

-----廣告,請繼續往下閱讀-----

——本文摘自《阿宅聯盟:量子危機》,2022 年 11 月,未來出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----
所有討論 1

4

9
5

文字

分享

4
9
5
超乎想像的運算力:量子電腦時代來臨,幾件你需要知道的事
科技大觀園_96
・2021/08/14 ・4039字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

臺灣大學 IBM 量子電腦中心主任張慶瑞表示,IBM 希望 15 年內讓量子位元數突破千萬,屆時傳統電腦耗費「萬年」才能計算的線性代數難題,量子電腦在數分鐘就可迎刃而解,因此現在密碼學的系統必須調整,立即進入「抗量子」時代。

為什麼「量子電腦」像隻巨獸般無所不能呢?難道它是「超級電腦」的加強版,由更多的位元組成嗎?不是的,傳統電腦和量子電腦是兩種截然不同的資料處理形式。

IBM量子電腦的內部構造,上面的一根根的都是同軸電線。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/32390815144/in/album-72157663611181258/)
IBM量子電腦的內部構造,上面的一根根的都是同軸電線。(圖/flickr IBM Q,) 

神秘的量子行為,連愛因斯坦都無法接受 

傳統電腦以位元(bit)的形式處理資料,每一個位元會在兩種狀態中切換, 這兩種狀態被標為 0 和 1;量子電腦則用量子位元(qubit)來做, 它可以 0、1 的線性組合的疊加態。 

量子位元在疊加態(superposition)時,張慶瑞主任表示,假如把位元的位置以球體標示,南、北極位置分別代表 0 和 1,傳統電腦的位元只能在兩極之間切換,但若是量子位元疊加時,它能在二維球面上任何位置,不限於南北極。 

-----廣告,請繼續往下閱讀-----
傳統電腦與量子電腦的位元差別。(圖/沈佩泠繪)
傳統電腦與量子電腦的位元差別。(圖/沈佩泠繪) 

量子電腦的具體表現,可以用「翻硬幣」的量子博弈遊戲來想像,一個黑盒子中有一枚硬幣,你跟電腦輪流去黑盒子裡翻硬幣,你可以選擇翻或不翻,你和電腦都不會知道彼此對硬幣做了什麼,數輪下來,打開盒子如果是人頭朝上就是你勝,反之就是電腦勝。

張慶瑞表示,如果是古典博弈,你跟古典電腦的勝率各是一半一半,因為古典行為只有翻或是不翻,位元只能以 0、1 兩種方式呈現;但量子電腦不一樣,它在黑盒子裡可能不直接翻成正或反面,而可能是將硬幣「轉動」起來,而這個量子轉動,不懂量子策略的人無法察覺。最後,只要你一開蓋觀測,硬幣就會變成反面朝上,量子電腦勝率達百分之百。

這聽起來非常不可思議,對吧!連愛因斯坦也難以接受量子力學,他曾說:「是不是只有當你在看它的時候,月亮才在那裡呢?」這個奇怪問題點出「量子行為過程無法被觀測」的神秘性質。沒有人知道在黑盒子裡,量子電腦到底對硬幣做了什麼事情,量子具體處在什麼位置,只要我們一觀測,量子疊加和糾纏等行為便會消失,量子就恢復古典粒子行為。

「要了解這個現象,恐怕要讀個十幾年物理學了。但現在量子電腦都被製造出來,你不如就接受它、用它吧!」張慶瑞笑著說。 

-----廣告,請繼續往下閱讀-----
臺大IBM量子電腦中心主任張慶瑞曾至IBM參訪與量子電腦合照。(圖/張慶瑞提供)
臺大 IBM 量子電腦中心主任張慶瑞曾至 IBM 參訪與量子電腦合照。(圖/張慶瑞提供) 

量子糾纏 帶來雙指數成長的計算能力

量子的神秘力量不只如此,當粒子處於量子狀態時會有糾纏的特性,又稱為「量子糾纏」(quantum entanglement)。如同字面上的意思,「糾纏」指的是數個量子綁在一起成為命運共同體,張慶瑞提到,這就是「你泥中有我,我泥中有你」,彼此的狀態會連動,力量還能夠加乘,同時處理不同於古典電腦的計算。

大家都聽過「摩爾定律」(Moore’s law),指的是積體電路上容納的電晶體數量,每隔兩年便會增長一倍,大致說明電腦運算能力會呈指數型的成長,即 2¹ 、2²、2³ 。不過,張慶瑞表示,纏繞特性會讓量子電腦的計算能力以「雙指數成長」,即 2、2、2,這是今年Google量子人工智慧實驗室主任 Hartmut Neven 所提出的,又稱為 “Neven Law” [註1]

去年世界最快超級電腦 Summit 每秒能夠執行 20 億億次(2*1018)的浮點運算,它的非揮發性記憶體(NVRAM)達 800GB(gigabyte,10億位元組) [註2]。但張慶瑞提到,如果能控制量子彼此糾纏,並經過運算的除錯程序,量子電腦就能以 40 個左右邏輯量子位元,達成「兆」位元(1012)才有的運算能力,目前一般認為一個有除錯功能的邏輯量子位元,可能需要一千到一萬左右的物理量子位元組成。

「這很難做到!」張慶端表示,目前 IBM 開放 5 個量子位元供大眾使用,只有兩位元糾纏而已,臺大與 IBM 合作可使用 20 個量子位元,也沒有全部位元糾纏。今年十月 IBM 53 個量子位元的新機器即將上線,預計有 16 個量子位元可以直接糾纏 [註3] 。 

-----廣告,請繼續往下閱讀-----
圖左上是IBM 20qbits系統,圖下是50qbits系統示意圖,可以發現量子位元沒有全部彼此互聯,圖右上則是量子處理器的封裝照。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/38270974841/in/album-72157663611181258/)
圖左上是 IBM 20qbits系統,圖下是 50qbits 系統示意圖,可以發現量子位元沒有全部彼此互聯,圖右上則是量子處理器的封裝照。(圖/flickr IBM Q

 張慶端進一步解釋,量子難以糾纏是因為粒子是很難達到量子狀態,即便達到量子狀態,要長時間控制它也不容易,像 IBM 就採超導體材料製造量子位元,並以微波控制位元,但超導體必須在接近絕對零度(-273.15℃)的嚴苛環境下運作,亦有相干狀態壽命短等許多問題待克服,目前各國科學家還在尋求不同方式突破,主要當然政府也砸錢支持才會有突破。

為了維持超導體的低溫,量子電腦下方會裝設稀釋冷凍器。(圖/flickr IBM Q Credit: Graham Carlow,https://www.flickr.com/photos/ibm_research_zurich/26774588908/in/album-72157663611181258/)
為了維持超導體的低溫,量子電腦下方會裝設稀釋冷凍器。(圖/flickr IBM Q Credit: Graham Carlow) 

量子電腦的應用:量子通訊、量子金融  

目前世界上量子電腦商業運轉的進程是 IBM 量子電腦 53 位元,去年(2018)Google 發表 72 位元的量子處理器,但並未提供大眾使用。張慶瑞表示,量子電腦至少要 500 位元以上才能逐漸顯現威力,並進入量子優勢的階段。儘管量子電腦離商用還有段距離,不過現階段量子科技已在量子通訊及軟體應用上百花齊放呢! 

IBM量子電腦實驗室,電腦裝在白色的罩子中受保護。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/38296273694/in/album-72157663611181258/)
IBM 量子電腦實驗室,電腦裝在白色的罩子中受保護。(圖/flickr IBM Q

張慶瑞提到,糾纏的量子之間,當一方狀態改變,另一方也會跟著變,所以開發量子網路系統就能增加訊息傳遞效率,因為知道一方的內容,就能得知另外一方的訊息。再者因為量子不可測量的性質,如果以量子作為秘密鑰匙,任何嘗試取得密碼的行為,都會造成量子狀態改變,因此可確保通訊無法被竊聽。

軟體開發以及應用部分正是「臺大 IBM 量子電腦中心」主攻的部分,張慶瑞提到今年在科技部支持下與 IBM 合作成立量子電腦中心,提供臺灣學界連接進入 IBM Q 系統的服務平臺。

-----廣告,請繼續往下閱讀-----

目前 IBM 提供 20 個量子位元供臺灣的學術界成員使用,主要著墨的部分有兩類,一是處理基礎物理和化學的計算問題;二則是解決特定問題,尋找最佳解,例如:貨車要跑 100 個地點配送貨品,如何配送最有效率;工廠進出貨如何管理最有效率,金融最佳投資與風險控管等。

「現今 70% 量子電腦相關的新創公司,都只針對一個特定問題來研究與發展量子電腦解決方案。」張慶瑞表示,量子電腦最適合解複雜和大數據的難題,量子人工智慧、量子金融與區塊鏈都是很熱門的題目,

根據 IBM 報告估計,他們期待在 15 年後能進入千萬量子位元時代,也就是有超過 1000 個除錯的邏輯量子位元。屆時不用量子電腦就會喪失競爭力,因此即便現在硬體還不到位,新創公司也要搶奪先機、申請專利。

「我現在常跟大學生開玩笑說,你們及你們的下一代,應該無法脫離量子電腦了!五十歲以上可以不學,但是 20 歲以下必須要立刻開始。」張慶瑞坦言,這兩年大家才驚覺量子電腦的時代即將來臨,但大多並不重視,就如同 1968 年個人電腦剛出現一樣,當時並不知道現在會有人手多機的世界。

-----廣告,請繼續往下閱讀-----
IBM 5位元的量子晶片(圖/flickr IBMQ,https://www.flickr.com/photos/ibm_research_zurich/26093923343/in/album-72157663611181258/  )。
IBM 5 位元的量子晶片(圖/flickr IBMQ )。 

在家就能用量子電腦了!跟上前沿科技的第一步 ,從學寫量子電腦程式開始

IBM 在 2016 年就推出 IBM Q5 五位元量子電腦,供大眾在線上體驗量子電腦,在家就可以在 IBM Q Experience上註冊帳號,雲端連線使用它了!

至今全球約有 18 萬名用戶在 IBM 量子電腦上做超過1千萬量子電腦模擬計算,並發表超過 150 篇量子電腦相關文章,台灣目前則有約 50 名用戶 [註4] 。不過目前它沒有辦法像現在電腦一樣友善,有各種軟體直接幫你解答,你必須要自己寫程式告訴它:問題是什麼及如何解決問題。

不過,學習量子電腦的程式語言並不會太難,所以全球目前有許多聰明的高中生也在使用。張慶瑞表示,只是你要懂一點物理與數學,又有 Python 的程式語言基礎,把一些量子概念像是 Hadamard gate(H gate)等概念加入程式中,努力就可以學會。

臺大 IBM 量子電腦中心不定期開設量子電腦的入門課程,臺大校內也有選修課,每個月巡迴到臺灣各大學舉辦量子電腦課程。目前正預備辦理高中老師的培訓,希望也能在高中推廣量子計算的應用,培育未來的人才。九月底科技部也與量子電腦中心合辦「 量子電腦導航」,內容包括:量子電腦與其計算原理、量子程式教學、量子邏輯閘初用,大家可以至臺大 IBM 量子電腦中心查詢相關活動。

-----廣告,請繼續往下閱讀-----

如果覺得學寫程式太可怕,不妨就下載 IBM 推出的 “Hello Quantum” 的手機遊戲吧!用破關解題的方式,逐步認識量子電腦的運算規則。破關征服它後,說不定你會愛上它。 

臺大IBM量子電腦中心(圖/臺大IBM量子電腦中心提供)
臺大 IBM 量子電腦中心(圖/臺大 IBM 量子電腦中心提供) 
-----廣告,請繼續往下閱讀-----
所有討論 4
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。