1

7
1

文字

分享

1
7
1

史前人類能靠划船橫渡黑潮嗎?臺日合作航海實驗證明「可以」——東京大學綜合研究博物館教授海部陽介專訪

科技大觀園_96
・2021/10/21 ・5595字 ・閱讀時間約 11 分鐘

2019 年 7 月 9 日,一艘從臺灣出發的獨木舟,在經歷了45小時的航程後,划入「與那國島」。圖/海部陽介 提供

2019 年 7 月 9 日,一艘獨木舟划入「與那國島」,它從臺灣出發,經歷了 45 小時的航程。同樣的旅程也曾在 3 萬多年前發生嗎?這是海部陽介主導的研究計劃「跨越黑潮——復現 3 萬年前的航海」希望回答的問題。

琉球考古的疑問: 琉球人更早以前從何而來?

海部陽介任職於日本國立科學博物館(目前轉往東京大學),是非常有經驗的古人類學專家,除了日本國內的舊石器時代遺址外,他也研究亞洲各地的古人類化石,如印尼爪哇島的爪哇人(是一種直立人,Homo erectus ),印尼佛洛勒斯島的佛洛勒斯人( Homo floresiensis ),以及臺灣澎湖水道的澎湖原人。

乍看之下,海部陽介之前的研究主題和史前航海沒有太大關係,是什麼原因讓他投入這項最終耗時 6 年的大型跨國合作計畫呢?

海部陽介表示,契機來自他在琉球群島的考古。琉球群島中某些島嶼上,存在距今數萬年的人類遺址,而當時琉球群島皆為海島,距離最近的大陸有相當距離,非得跨越大海才能抵達。這激發了海部陽介的好奇心:古代琉球島民是怎麼抵達的?

琉球群島包含一連串島嶼,一共延綿 1,200 公里。這些島上,6 個島存在距今約 3 萬年的舊石器時代遺址,最早的距今約 35,000 年。

-----廣告,請繼續往下閱讀-----
琉球群島包含一連串島嶼,一共延綿 1,200 公里。圖/海部陽介 提供

2016 年,海部陽介共同發表的論文,報告了沖繩島上 Sakitari Cave 的調查,這兒發現 35,000 年前人類存在的證據,還有 23,000 年前以貝殼製成的魚鉤,是已知全世界最早的魚鉤,此外,該遺址的活動跡象,一直延續到大約一萬年前;種種跡象顯示,島上的古代人懂得利用海洋與陸地資源,適應地非常不錯。

地理上,琉球群島介於臺灣與日本的九州之間,這兩地最可能是古代人移民琉球的前一站,由考古學與其他證據推論:琉球群島最早的居民來自臺灣與九州。

超過 3 萬年前的琉球人,來自臺灣?

我們所屬的物種——智人,在舊石器時代就有渡海能力。約 5 萬年前便有智人從東南亞大陸出發,通過東南亞海域的眾多島嶼,最後抵達新幾內亞與澳洲。然而,如果要從臺灣航向琉球群島,面臨的難度很可能比前往澳洲更大,這是因為臺灣與琉球之間存在非常強大的海流:黑潮,而且從臺灣岸邊無法看見某些目標島嶼。

黑潮的流向雖然也算是由南向北,卻不會把人從臺灣帶到琉球群島,只會繼續北漂。倘若不穿越黑潮,就無法登陸琉球。這也是計畫叫作「跨越黑潮——復現 3 萬年前的航海」的原因。

-----廣告,請繼續往下閱讀-----

不過,琉球群島上,年代最早的遺址超過 3 萬年,而臺灣島上已知年代最早的遺址,卻是距今 3 萬年的長濱文化,帳面上比琉球群島還晚一點。關於這個問題,海部陽介認為,比 3 萬年更早之前,臺灣應該就已經有人居住,只是目前尚未得知他們的蹤跡。這部分仍有待臺灣考古學家的努力。

跨越黑潮,屬於大家的實驗!

憑藉舊石器時代的技術,有可能從臺灣航向琉球嗎?既然有疑問,那就來試試看吧!

航海實驗的計畫從 2013 年開始,雖然一開始缺乏資源,但之後逐漸獲得足夠的贊助,包括來自日本民間的支持。以及臺灣的合作對象,主要是台東的國立臺灣史前文化博物館,林志興副館長等人,另外還有其他的合作者,像是中研院的臧振華、黃智慧等人,國立臺灣大學海洋研究所等單位和個人。

支持計畫的贊助者除了政府預算和大企業,也有民眾捐款。海部陽介一開始就希望大眾參與,因此重視向公眾宣傳;他強調,這不是單純的科學研究計畫,而是屬於大家的實驗。

-----廣告,請繼續往下閱讀-----

一個航海實驗,需要許多領域的專家參與,考古學家、古生物學家、海洋學家、民族學家、植物學家等專業自是不可或缺,此外更重要的還有製作船隻的工匠,以及上陣划船的專業人員,畢竟研究人員不懂製作船隻,也不擅於划船。所幸願意幫忙的人不少,透過人脈介紹,海部陽介一位一位找到合適的成員。

大海茫茫:模擬舊石器時代航海

從 2013 到 2019 年,「跨越黑潮」計畫在漫長六年中,進行了哪些研究呢?主要有三批不同材料的航海實驗,還有數學模擬、浮標漂流分析等相關研究。這些都有助於我們了解史前航海的各種面向。

船員方面,由於預設目標是成功移民,在新天地建立族群,那麼船員中不只男生,也應該有女生。因此每次航海實驗,船員組成都是男女混合。

既然研究對象是舊石器時代的航海,最基本的原則是,只能用舊石器時代有的材料和科技造船與航行。材料只能選擇當地有可能存在的植物,主要以石製工具造船,不可以用金屬工具或金屬材料,也不能用 3 萬年前應該不存在的釘子,更不用說更先進的舵、帆科技。

-----廣告,請繼續往下閱讀-----

三批航行實驗中,團隊第一次使用「草船」,第二次改用「竹筏」,第三次則換成「獨木舟」。這三者中,草船最容易製作,但是結構最脆弱;竹筏難度增加,船體較為堅強;獨木舟生產難度最高,也最堅固。先後三部分實驗,竹筏部分於 2019 年最先發表論文,草船部分今年(2021 年)發表,獨木舟部分則仍在醞釀。

三批航行實驗中,團隊第一次使用「草船」是容易製作的,但是結構最脆弱。圖/海部陽介 提供

漸漸與海溶為一體:草船的失敗經驗

大海是活的!計畫永遠趕不上變化,事前做再多準備,出海後進入瞬息萬變的自然環境,也只能靠船員自己探索出路。局外人看地圖,就是這樣划過去;可是當事人划著小船,面對茫茫大海,主觀感受肯定不是這麼回事。如今的實驗即使不成,船員還有後援;3 萬年前一旦失敗,幾乎是死路一條。

事後證實穿越黑潮的任務,只有獨木舟成功達到目標,但是了解草船、竹筏為什麼會失敗,也是非常寶貴的知識。

琉球群島南端的與那國島離臺灣最近,距離只有 100 多公里,所以被選為關鍵的實驗地點。於 2016 年進行的草船實驗,以蘆葦編成束(reed-bundle)造船,預計由與那國島航向西表島。與那國島到西表島的距離是 80 多公里,而且只限於琉球群島內部,不需要穿越黑潮;然而,兩艘草船都失敗了。

-----廣告,請繼續往下閱讀-----
琉球群島南端的與那國島,距離台灣僅 100 多公里,所以被選為關鍵的實驗地點。圖/海部陽介 提供

海部陽介表示,蘆葦草船浮在水上沒有問題,而且算是平穩,但是在海流中要讓草船前進不太容易;更嚴重的問題是,草船出海後會逐漸吸水,愈划愈費勁,這使得草船無法勝任跨海遠洋航行的載具。

另外團隊也觀察到,耗費物力與人力製作的草船,只要一次遠航,船體就會崩解到無法再次使用。也就是說只能單程使用,不只無法回程、也無法繼續航向下一地點。而如果連與那國島到西表島都無法航行,臺灣到與那國島距離更遠,黑潮海流更強許多,靠著草船,想必是毫無機會。

耗費物力與人力製作的草船,只要一次遠航,船體就會崩解到無法再次使用。圖/海部陽介 提供

就是上不了岸:竹筏的失敗經驗

了解草船的缺陷以後,海部陽介將目標轉向竹筏,並與臺灣方大量合作。阿美族的造船師 Laway 以臺灣的竹子為材料,用古法製作竹筏。竹筏實驗預計由台東航向綠島,距離只有 33 公里,不過兩地之間有黑潮通過。

阿美族的造船師 Laway (左)以臺灣的竹子為材料,用古法製作竹筏。圖/海部陽介 提供

地圖上直線距離 33 公里,實際划起來當然不是。2017 年完成竹筏出海後,船員們賣力划了 14 小時,累積 80 公里航程,可是仍在距離綠島 10 公里遠處轉圈,一直無法上岸,最終只好宣告放棄。2018 年第二次竹筏實驗,同樣以失敗告終。

-----廣告,請繼續往下閱讀-----

連 30 多公里遠的綠島都過不去,超過 100 公里的與那國島恐怕希望更渺茫。另外也發現問題:製造竹筏時產生的裂縫,會減弱船體強度,光憑舊石器時代的技術很難解決。

竹筏實驗告訴我們:穿越黑潮的難度,或許不是竹製船體能夠克服。

2018 年第二次竹筏實驗,同樣以失敗告終。圖/海部陽介 提供

航向琉球,獨木舟成功!

累積草船與竹筏的失敗經驗後,海部陽介繼續測試獨木舟。舊石器時代的獨木舟應該是由大樹一體成型製成,但是由於森林保育,臺灣和日本都很難取得木頭。所幸一番折騰後,還是從日本獲得一棵樹,順利製成一艘獨木舟。

第三批實驗的船體獨木舟,由日本當地製作後再運回台灣進行實驗。圖/海部陽介 提供

2019 年的獨木舟實驗,預計由台東航向與那國島,距離 200 多公里,而且需要跨越黑潮,難度超越之前的實驗 。不過獨木舟也是更加優秀的遠航載具,它的船體更堅固,速度更快,但是在海上比較不穩,需要更高超的操縱技術。

-----廣告,請繼續往下閱讀-----

經驗老道的 5 位划船員,經歷 45 小時,220 多公里的航程後,最終成功在與那國島登陸。除了日本、臺灣一般媒體大幅報導外,科學媒體《科學》(Science)也有新聞專門介紹。這項實驗證實:只靠舊石器時代的技術與材料,航行 200 公里又跨越黑潮是可行的!

經驗老道的 5 位划船員,經歷220 多公里的航程後,最終成功在與那國島登陸。圖/海部陽介 提供

獨木舟這部分研究,海部陽介預計將結合古代海流模擬,寫成架構更全面的論文。海部陽介表示,這些實驗讓他體驗到,跨海航行除了科技以外,「人」更是關鍵!面對一望無際的大海,船員們勢必需要高強的技術、知識、深刻的經驗,以及團隊合作的精神,否則無法克服難關,成功上岸。

和舊石器時代相比,我們的日常科技進步太多,但是這就表示現代人比較聰明嗎?恐怕未必如此。絕大部份人只是出生在自己的時代,接受此前累積的知識,按照那個時代的方式生活。不同時空的人,各自面對不一樣的問題,說到解決問題的能力,古代人肯定不會遜於現代人。

總之海部陽介覺得:舊石器時代的人真的很厲害!

是有意識主動渡海,還是意外北漂?

有些人會有這樣的困惑:現代的環境、氣候和 3 萬年前明顯有別, 現在進行的航海實驗,能反映古代的狀況嗎?事實上,即使是數萬年前非常寒冷的冰河時期,從臺灣到琉球群島的距離也差不多;而黑潮等附近的海流,也僅有不多差異。所以海部陽介的一系列實驗,的確可以推論古代的情形。

三種船體的渡海實驗指出,若要從臺灣前往琉球群島,草船毫無機會,竹筏的機率非常低,獨木舟最有可能成功。人類若想主動渡海,有辦法辦到。但是有沒有可能,移民琉球並非自願,而是意外的漂流呢?

此一問題可以考慮兩個因素:人數與機率。

  1. 需要多少人移民,才能形成足以繁衍延續的族群?海部陽介和一隊日本學者合作,數學模擬得到的結論是:最少需要 5 女 5 男,否則就會滅團。這只是估計的最低人數,不同的出生率、死亡率都會影響;實際上所需的人數,應該比 10 人更多。
  2. 人類被自然力量成功送往琉球群島的機率多少?海部陽介和一隊臺灣學者合作,分析一批難得的浮標紀錄。從 1989 年到 2017  年,在臺灣釋放的 122 個浮標,以及從呂宋釋放的 16 個,最終只有 4 個,在洶湧波濤或是颱風影響下,於十多天後抵達琉球群島某島的 20 公里內。

由此可見,隨波逐流之下,浮標通過黑潮,從臺灣抵達琉球島嶼的機率很小。而人類又比浮標更脆弱,沒辦法生存太多天。因此人類要從臺灣漂流到琉球,成功率非常低。在這種狀況下,還要累積到移民足夠延續的人數,可謂非常非常不可能。

重現史前人與人之間的連結,也反思 3 萬年後的現在

海部陽介投入史前航海研究這麼多年來,得到的主要結論為:琉球群島的史前居民假如源自臺灣,幾乎不可能是隨機漂流,而是有意識的渡海遠航,獨木舟則是最可能成功的載具。

「跨越黑潮——復現 3 萬年前的航海」是一項很有雄心的計畫,在日本、臺灣,與其他國家,都有許多不同領域的參與者,海部陽介對他們非常感謝,也特別表示,這些合作大幅增進他對臺灣的認識。

海部陽介語重心長地指出,現代人群分成不同國家,常有人與人間的衝突,不過各地仍也有不少交流,史前時代便是如此。考古學家的工作,讓我們認識過往人與人之間的連結,讓我們面對當下局面、思考議題時,可以拓展想法 。

「跨越黑潮」計畫有許多不同領域的參與者,海部陽介(右1)對他們非常感謝。圖/海部陽介 提供

參考文獻

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

4
2

文字

分享

1
4
2
人口有限的古代社會,依然盡量避免近親配對?
寒波_96
・2023/03/28 ・4848字 ・閱讀時間約 10 分鐘

現代台灣社會中,像是堂兄弟姊妹之間的近親結婚,直接受到法律禁止。不過台灣法律的標準並非舉世通用,當今世上許多人的父母,可謂血緣上的親上加親。

近親結婚與近親繁殖,是人類的「常態」嗎?近年蓬勃發展的古代 DNA 研究,讓我們有機會深入探索這些問題。

公元 2010 年時,世界各地近親婚姻的分布狀況。「大中東地區」的比例非常高。圖/Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report

每個人的遺傳組成都大同小異,兩個人的血緣關係愈近,彼此 DNA 的差異愈小。例如街上隨便找兩位台灣人,即使非親非故,台灣人彼此間的血緣差異,要比台灣人與非洲人更小。

一個人的基因組,源自父母各一半。例如第十一號染色體,各有一條來自父母。父母間的血緣關係愈近,小孩的一對染色體之間也愈相似;因此,要判斷一個人的父母是否為近親,不用知道兩人各自的遺傳訊息,只需要小孩的基因組。

-----廣告,請繼續往下閱讀-----

也就是說,假如有幸獲得一位三萬年前古人的基因組,只要這個古代基因組殘留的 DNA 訊息夠多,即使完全缺乏其餘的考古脈絡,我們也能判斷他父母的血緣親疏。

最近十年來,各路科學家獲得愈來愈多古代基因組。儘管數量有限,不過目前應該足以做出初步推論:近親繁殖不是智人的天性。

尼安德塔人的父親母親,親上加親?

討論智人以前,先來看看我們的近親尼安德塔人。兩群人的祖先超過 50 萬年前分家後,各自在非洲與歐洲發展,總人口應該都不多。

這兒要先澄清一個概念:「族群人口少」和「近親繁殖」是兩回事。即使全體族群只有兩千人,整群人的遺傳變異加起來很有限,只要每一次配對時刻意選擇,依然能完全避免近親繁殖。相對地,就算總共有 20 萬人,還是有機會大量近親生寶寶。

-----廣告,請繼續往下閱讀-----

重現尼安德塔人 DNA 是智人的重大成就,可惜目前為止累積的基因組樣本很少,只有 30 人左右,分散在不同時間點,廣大的地理範圍。

尼安德塔人的古代基因組,地點與數量。圖/參考資料3

如今了解最透徹的尼安德塔人,位於中亞的 Chagyrskaya 洞穴(現今的俄羅斯南部,知名的丹尼索瓦洞穴在附近),估計年代為 5 萬多年。這群人中有 8 位的遺傳訊息比較齊全,比對得知,所有人的父母都是近親!

尼安德塔人主要住在歐洲,中亞的人口極少。近親生寶寶如此普遍,或許是由於能選擇的對象有限。然而也有可能,這就是尼安德塔人一般的習慣。也許尼安德塔人不會刻意避免近親繁殖,不過程度如何並不清楚。

流動的人,流動的DNA

智人約一萬年前開始定居種田以前,生活方式和尼安德塔人一樣,也習慣分為一小群一小群人活動,不長期定居在一個地點。有意思的是,舊石器時代已知少少的智人基因組,都不存在近親繁殖。

-----廣告,請繼續往下閱讀-----

依賴採集、狩獵的生產方式下,每一群的人數都不多,近親配對好像很難避免。不過移動性高的人群,應該也常有機會互相交換人口,增加配對選項。從古代 DNA 看來,這是古早智人的普遍行為。

現有證據似乎告訴我們,遠比文明誕生更早以前,智人已經習慣刻意和血親以外的對象配對,或許可稱之為智人的「天性」,但是不清楚能追溯到多早。

智人如今僅有尼安德塔人一種比較對象,而尼安德塔人好像不排斥近親繁殖。有可能兩者的共同祖先已經會避免近親配對,尼安德塔人卻不再在意;也有可能這是智人較新的性擇模式,與尼安德塔人分家以後的某個時候才形成。

捷克的 Moravia 的 Dolní Věstonice 遺址,2.6 萬年前想像畫面。當時智人人口有限,卻會避免近親配對。圖/Dolní Věstonice in Central Europe

這也可以澄清一個疑惑。有個說法是,原始人只知道媽媽,不知道爸爸,因為小孩明確由媽媽生出,爸爸的功能卻不直接。根據古代 DNA 的證據判斷,此說很顯然錯誤。

-----廣告,請繼續往下閱讀-----

如果隨機配對,一群人中勢必會有一定比例的人,父母為血緣近親。由結果反推,倘若都沒有的話,表示這群人都會刻意避免近親配對。

假如多數人都不知道爸爸是誰,實在難以想像要怎麼如此徹底的避免近親繁殖。反過來則合理得多:每個人都知道自己的爸爸媽媽是誰,擇偶時才能避開。

定居的人,設法讓 DNA 流動

一萬多年前開始,世界許多地方陸續有人定居下來,改為依靠種田營生。從流動性高的採集狩獵小群體,變成長期住在一處的小農村,人類的生活方式改變很大,這會影響配對習慣嗎?

人人採集狩獵的時期,每一群的人數都不多,但是習慣跑來跑去,有不少機會交換人口。新石器時代定居下來以後,初期的人口還是不多,卻失去流動性,只能從住在附近的有限對象中擇偶。如此一來,近親配對的機率應該會提高?

-----廣告,請繼續往下閱讀-----

目前對此問題的探討不多。資訊比較多的案例,來自安那托利亞(現今的土耳其)一萬多年前,人口頂多數百的小農村遺址 Boncuklu、Pınarbaşı。這兒新石器時代初期的居民,多數在本地長大;可是遺傳上看來,都會避免近親繁殖。

新石器時代小型農村,概念圖。圖/Paint The Past

具體狀況不明,本地與否是透過「鍶」的穩定同位素判斷,涵蓋的地理範圍不算太小。幾十公里遠的隔壁村,只要鍶同位素仍屬同一範圍,仍然會辨識為本地人。

不過我想這些線索應該足以支持,安那托利亞的人們邁入定居時代後,依然保持舊日的擇偶習慣,在有限的選項中盡量避免血親。但是近親繁殖也出現了。肥沃月灣西側的 Ba’ja 遺址(現今的約旦),至少有 1 位居民的父母為近親。

要提醒各位讀者,不同地方邁入定居的年代與狀況都不一樣,有時候差異很大,不可一概而論。

-----廣告,請繼續往下閱讀-----

從城市到文明

隨著人口增長加上工作分化,漸漸有大型聚落誕生,有些或許可稱之為城市。人類發展可謂來到另一階段。

例如前述 Boncuklu、Pınarbaşı 遺址附近,就形成知名的加泰土丘(Çatalhöyük),數千年來都有數千人口居住。由鍶穩定同位素判斷,這兒多數人是土生土長,也有少量外來移民。

加泰土丘和我們習慣的「城市」有不少差異,卻昭示人類進入大量人口群聚的階段,各地一座又一座城市興起又衰落。長期保持數千人口的城市生活圈中,即使一輩子不出遠門,似乎也不難找到近親以外的異性配對。

大城市人口多,即使一輩子留在一個地方,也有不少機會找到血親以外的結婚對象。圖/IMDB

當然在現代以前,世界各地的大部分人類並不住在人擠人的城市,而是人口密度更低的郊區與鄉村。不過倘若有心避免近親配對,應該不難達成。

-----廣告,請繼續往下閱讀-----

目前為止重現於世的古代基因組,不論何時何地,大部分不是近親繁殖的產物。某文化的眾多樣本中,有時候能見到零星幾位,甚至是兄弟姊妹或親子間的極近親,但是都不普遍。

人口有限的海島,近親繁殖好像更容易發生。義大利南方的馬爾他島,在新石器時代確實如此;但是不列顛北部的奧克尼島,青銅時代僅管人口很少,依然能幾乎避免。

是人性的扭曲,還是財富的累積?

至今所知近親繁殖最常見的古代社會,是青銅時代的愛琴世界,也就是希臘及其外島,距今 3000 到 5000 多年前,愛琴海一帶的米諾斯等文化。薩拉米斯島(Salamis)等小島的比例較高,希臘大陸相對低,整體比例約 30% 之高。

取樣一定有偏差,真正的近親比例不好說,但是大概足以判斷青銅時代的愛琴世界,堂表兄弟姊妹等級的近親婚配習以為常,不只少量統治家族,而是全民普及的現象。

愛琴在青銅時代的橄欖種植。圖/Marriage rules in Minoan Crete revealed by ancient DNA analysis

有史以來智人都會避免近親繁殖,為什麼愛琴人改變婚配方式?目前沒有答案。考古學家提出一個可能,種植橄欖之類的經濟作物,最好不要分割土地,而近親配對有助於保留土地,讓產業留在大家族內傳承。這聽起來合理,可惜缺乏更直接的證據。

社會中有人累積土地等資產,是人類發展的趨勢之一,而不論王公貴族或小地主,時常都有集中資產的需求。目前缺乏古代基因組的其他文化,是否也會見到類似愛琴世界的現象?我猜頗有可能,應該是有趣的探索方向。

隨著不同時空的樣本累積,加上容易操作的父母親緣分析軟體,未來「父母是否為近親」也許能成為古代基因組的標準化分析步驟,讓我們更方便認識人類的性擇。

延伸閱讀

參考資料

  1. Scott, E. M., Halees, A., Itan, Y., Spencer, E. G., He, Y., Azab, M. A., … & Gleeson, J. G. (2016). Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nature genetics, 48(9), 1071-1076.
  2. Genomic landscape of the Greater Middle East
  3. Skov, L., Peyrégne, S., Popli, D., Iasi, L. N., Devièse, T., Slon, V., … & Peter, B. M. (2022). Genetic insights into the social organization of Neanderthals. Nature, 610(7932), 519-525.
  4. Sikora, M., Seguin-Orlando, A., Sousa, V. C., Albrechtsen, A., Korneliussen, T., Ko, A., … & Willerslev, E. (2017). Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science, 358(6363), 659-662.
  5. Svensson, E., Günther, T., Hoischen, A., Hervella, M., Munters, A. R., Ioana, M., … & Jakobsson, M. (2021). Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Current Biology, 31(14), 2973-2983.
  6. Pearson, J., Evans, J., Lamb, A., Baird, D., Hodder, I., Marciniak, A., … & Fernández-Domínguez, E. (2023). Mobility and kinship in the world’s first village societies. Proceedings of the National Academy of Sciences, 120(4), e2209480119.
  7. Yaka, R., Mapelli, I., Kaptan, D., Doğu, A., Chyleński, M., Erdal, Ö. D., … & Somel, M. (2021). Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Current Biology, 31(11), 2455-2468.
  8. Wang, X., Skourtanioti, E., Benz, M., Gresky, J., Ilgner, J., Lucas, M., … & Stockhammer, P. W. (2023). Isotopic and DNA analyses reveal multiscale PPNB mobility and migration across Southeastern Anatolia and the Southern Levant. Proceedings of the National Academy of Sciences, 120(4), e2210611120.
  9. Cassidy, L. M., Maoldúin, R. Ó., Kador, T., Lynch, A., Jones, C., Woodman, P. C., … & Bradley, D. G. (2020). A dynastic elite in monumental Neolithic society. Nature, 582(7812), 384-388.
  10. Fowler, C., Olalde, I., Cummings, V., Armit, I., Büster, L., Cuthbert, S., … & Reich, D. (2022). A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature, 601(7894), 584-587.
  11. Rivollat, M., Thomas, A., Ghesquière, E., Rohrlach, A. B., Späth, E., Pemonge, M. H., … & Deguilloux, M. F. (2022). Ancient DNA gives new insights into a Norman Neolithic monumental cemetery dedicated to male elites. Proceedings of the National Academy of Sciences, 119(18), e2120786119.
  12. Dulias, K., Foody, M. G. B., Justeau, P., Silva, M., Martiniano, R., Oteo-García, G., … & Richards, M. B. (2022). Ancient DNA at the edge of the world: Continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proceedings of the National Academy of Sciences, 119(8), e2108001119.
  13. Ariano, B., Mattiangeli, V., Breslin, E. M., Parkinson, E. W., McLaughlin, T. R., Thompson, J. E., … & Bradley, D. G. (2022). Ancient Maltese genomes and the genetic geography of Neolithic Europe. Current Biology, 32(12), 2668-2680.
  14. Freilich, S., Ringbauer, H., Los, D., Novak, M., Pavičić, D. T., Schiffels, S., & Pinhasi, R. (2021). Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Scientific Reports, 11(1), 16729.
  15. Gnecchi-Ruscone, G. A., Szecsenyi-Nagy, A., Koncz, I., Csiky, G., Racz, Z., Rohrlach, A. B., … & Krause, J. (2022). Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell, 185(8), 1402-1413.
  16. Fernandes, D. M., Sirak, K. A., Ringbauer, H., Sedig, J., Rohland, N., Cheronet, O., … & Reich, D. (2021). A genetic history of the pre-contact Caribbean. Nature, 590(7844), 103-110.
  17. Zhang, F., Ning, C., Scott, A., Fu, Q., Bjørn, R., Li, W., … & Cui, Y. (2021). The genomic origins of the Bronze Age Tarim Basin mummies. Nature, 599(7884), 256-261.
  18. Skourtanioti, E., Ringbauer, H., Gnecchi Ruscone, G. A., Bianco, R. A., Burri, M., Freund, C., … & Stockhammer, P. W. (2023). Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. Nature Ecology & Evolution, 1-14.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1141 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。