0

1
1

文字

分享

0
1
1

推理要在實驗室:為什麼有些細菌會致病、有些不會呢?

研之有物│中央研究院_96
・2017/10/17 ・4507字 ・閱讀時間約 9 分鐘 ・SR值 503 ・六年級

國小高年級科普文,素養閱讀就從今天就開始!!

細菌的身世之謎

為什麼有些細菌會致病、有些不會?為什麼有些細菌需要依賴宿主存活、有些不用?要回答這些問題,需要比較不同的細菌,找出其中基因的異同處,就如同推理劇般一步步推敲細菌們的演化史。

「世界上有很多細菌,我們的工作是研究這些細菌如何變得不一樣!」中研院植物暨微生物所的郭志鴻副研究員說,圖/by 張語辰。

為什麼研究細菌?

細菌的多樣性非常高,因為演化的歷史比動植物長很多,可以生存的環境也很多樣。

目前證據顯示細菌在三十億年前就在地球上出現,而多細胞生物的演化史則不到十億年。另外動植物能生存的範圍蠻窄的,但無論在高溫、低溫、高壓、低壓、低氧……什麼奇怪的環境都能找到細菌,所以能探討的題目就很多。

我從博士後訓練時期開始投入「細菌基因體演化」的研究。一開始先問巨觀的問題,例如說有什麼演化趨勢是在大部份的細菌都會發現。 2010 年起在中研院建立自己的實驗室,興趣也轉向針對微觀的細節深入研究。近年來主要的研究材料是柔膜菌綱中的「植物菌質體」和「螺旋菌質體」。

細菌演化有何奇妙現象?

在演化的歷程中,細菌擁有的基因「種類」和「數量」會有劇烈的變化。

橫軸可以解釋為細菌演化的歷程,也可以解釋為細菌有多需要宿主。資料來源:Winding paths to simplicity: genome evolution in facultative insect symbionts,圖重製/by 林婷嫻、張語辰。

若以基因體大小和宿主依賴度來分,細菌可分為「環境微生物」、「兼性共生菌」、「絕對共生菌」。

在細菌演化的歷程中,一開始的環境微生物基因體較大,帶有各式各樣在自然環境中生存所需的基因。但經過「第一次過渡事件」後,就從完全不依靠宿主,變成兼性共生菌,在有些條件下和宿主一起存活。

當需要依靠特定的動植物時,細菌的族群就不能比宿主大,一但細菌的族群變小,「天擇」的力量就會減弱,由隨機事件掌控的「遺傳漂移 (genetic drift) 」就變得比較重要。許多突變,即使對細菌本身不利,都有機會因為隨機事件遺傳給下一代,甚至到族群中所有個體。

族群大,天擇重要;族群小,遺傳漂移重要。

細菌基因體的突變,最常見的形式是「基因丟失」,這些被丟失的基因不是絕對必要、比較像「備用工具」,若失去這些備用工具平時不會產生大影響,這個結果就容易遺傳給下一代。

到了「第二次過渡事件」,細菌從兼性共生變成絕對共生,不能再離開宿主,例如柔膜菌綱的「植物菌質體」。這時候因為很多營養可以改成從宿主身上取得,許多自行合成氨基酸、脂質等養份的基因就像不再被需要的備用工具,也自然從細菌的基因體中消失。也因此這些細菌可能走入演化的死巷,難以再轉換到其他的生態棲位。

細菌三十億年前出現在地球上,這些基因演化發生地多快多慢,目前並不清楚,因為細菌不像恐龍有化石紀錄,很難定年。

實驗室在研究哪些細菌?

我們實驗室主要研究柔膜菌綱中的細菌。這類細菌最廣為人知的是「黴漿菌」,引起很多人類跟動物的重要疾病,世界上有很多實驗室在研究。而我們則主要研究「植物菌質體」和「螺旋菌質體」,並比較這三群細菌間的異同。

柔膜菌綱包含三種:「黴漿菌」會讓溫體動物生病;「植物菌質體」會讓植物生病;而大部分的「螺旋菌質體」是節肢動物的共生菌,有的會致病、有的不會致病。資料來源:郭志鴻,圖重製/by 林婷嫻、張語辰。

植物菌質體是一群由昆蟲傳播的植物病菌,幾十年來都無法被人工培養。我們透過基因體定序,由受感染的植物中分別解出「植物」和「植物菌質體」的 DNA 序列 ,並將「健康的植物」和「被感染的植物」做比較分析,來了解植物菌質體如何讓植物生病,這對農業非常重要。

左為健康的繡球花,右為受植物菌質體感染、該開花的部位長出葉子。圖/from Genomic and evolutionary aspects of phytoplasmas

植物菌質體進入植物體內後,會分泌小小蛋白質、調控植物細胞裡基因的表現,讓該開花的部位長出很多葉子。

植物菌質體可以將植物「開花」的機制切換成「長更多葉子」的機制,如此一來植物無法傳宗接代,在演化上等於死掉一樣。而且因為植物無法開花結果,對農業生產造成很大的問題。

除此之外,植物菌質體還會降低植物用來防禦昆蟲的化學物質、吸引昆蟲來吃植物,這麼一來植物菌質體又能藉由昆蟲散播到新的宿主。我們正在研究植物菌質體是利用什麼機制來調控這過程。

相對於「植物菌質體」都會讓植物宿主生病,同屬於柔膜菌綱的「螺旋菌質體」,大部分是節肢動物的共生菌,有的會讓宿主生病、有的不會。

這是螺旋菌質體好玩的地方,我們能從「比較基因體學」的角度,去看螺旋菌質體這個屬內的「病菌」和「非病菌」物種的基因哪裡不同,是多了或少了某個基因造成這種差別;也能探討這些演化是如何發生,是藉由「垂直基因遺傳」、或是「水平基因轉移」。

螺旋菌質體在光學顯微鏡下,看起來像被稍微拉長的捲捲電話線。資料來源:Chemotaxis without Conventional Two-Component System, Based on Cell Polarity and Aerobic Conditions in Helicity-Switching Swimming of Spiroplasma eriocheiris,圖重製/by 林婷嫻、張語辰。

為什麼有些細菌會致病、有些不會?

和三斑家蚊共生的螺旋菌質體 S. diminutum ,可以和蚊科宿主和平共處。但另一種和三斑家蚊共生的螺旋菌質體 S. taiwanense ,會破壞蚊科宿主的組織、增加死亡率。資料來源:Comparison of Metabolic Capacities and Inference of Gene Content Evolution in Mosquito-Associated Spiroplasma diminutum and S. taiwanense,圖重製/by 羅文穗、張天昫、林婷嫻、張語辰、郭志鴻。

我們這幾年研究蚊子身上的螺旋菌質體,結果發現有致病性的 S. taiwanense 能夠消化的「碳水化合物」較少,但因為帶有一組非病菌所沒有的 glpO 基因,能在蚊子體內改吃甘油、並生成「過氧化氫」等「活性氧物種」,造成蚊科宿主的細胞溶掉、釋放出細胞裡的蛋白質和脂質, S. taiwanense 就能吃這些蛋白質和脂質作為養分來源,相當具有侵略性。

S. taiwanense 這樣苦苦相逼宿主有什麼好處?它採取的策略是,只要我傷害宿主可以多複製幾個細胞,提高傳播到下個宿主的機會,就是有利的生存策略。反過來說,若宿主是獨居性的動物,一座山頭只有一隻,共生菌就會傾向與宿主和平共存,因為若傷害宿主、細菌也無法存活。

共生菌要多具有侵略性,受限於宿主的「族群密度」和「傳播機會」。

會做這個題目是因為,我們透過文獻知道 S. taiwanense 和 S. diminutum 這兩種螺旋菌質體都是蚊子的共生菌,但 S. taiwanense 會使蚊子生病, S. diminutum 卻不會。我們選了一些與 S. taiwanense 、 S. diminutum 親緣關係相近的菌種,比較這些菌種的演化史,看看是哪個基因造成這種差別。除了多瞭解台灣本土的昆蟲共生菌之外,也許有機會發展於登革熱的生物防治。

細菌會水平轉移基因?

以前課本教:基因是爸媽遺傳給我們,因此一般會認為生物演化大多是「垂直基因遺傳」,再慢慢累積突變,造成物種間的差異。而「水平基因轉移」的意思是,一個物種可以從其他物種得到自己原本所沒有的新基因,這是細菌演化上很重要的機制。

細菌是體細胞兼生殖細胞,所以很容易「水平轉移」基因。

如下圖,我們分析細菌的親緣關係,發現剛剛提到的 glpO 基因是從別的菌種「水平轉移」拿來的。這些新拿來的基因不只存在於細菌基因體中裡,還會被納入基因調控的分子機制中、產生新的反應。

(A)圖:若基因演化史為「垂直遺傳」,則親緣關係會像此圖。演化關係相近的物種,例如上方五個以紅色標示的螺旋菌質物種,在親緣樹上也會較接近。
(B)圖:來自 S. taiwanense 的基因 (STAIW_v1c07530))跟其他的螺旋菌質體物種的基因(紅色)關係較遠,反而跟黴漿菌的基因(藍色)關係較近,推測可能是因為此基因是 S. taiwanense 自黴漿菌水平轉移而得到。資料來源:Molecular Evolution of the Substrate Utilization Strategies and Putative Virulence Factors in Mosquito-Associated Spiroplasma Species

「超級細菌」是怎麼回事?

目前人類了解的細菌不到整體百分之一,而新科技的發展讓我們開始慢慢了解許多過去沒研究過的細菌。有在實驗室被成功培養出來的細菌中、會讓人類生病的是少數中的少數。

大約一百年前,抗生素剛被發現就像「魔法子彈」,可以治療幾乎所有細菌感染的疾病,但後來抗生素開始失去效果,因為細菌經由基因突變、或藉由水平基因轉移,可以抵抗抗生素。「超級細菌」是因為具備多重抗藥性,已經湊齊能抵抗不同抗生素的基因,除非醫學又開發出新型的抗生素,否則醫生就無藥可用。這過程就像人類和病菌間持續的軍備競賽。

帶有這個抗藥性的基因對細菌有利,這是人類造成的天擇。

天擇造成的生存壓力很大,本來只有某種細菌有某個特定的抗藥性基因,但不同的細菌之間容易互相藉由「水平轉移」傳播抵抗不同抗生素的基因。在疾病管理上,盡量不要讓不同病人帶有的病菌有機會互相接觸。

若要避免產生超級細菌,唯一有效的方法是不要用抗生素。因為在有抗生素的環境中,細菌帶有抗藥性的基因是有利的;但若在沒有抗生素的環境下,細菌帶有抗藥性的基因就變得多餘。

實際上,不要用抗生素真的很難,若非得要用,就要用得徹底,醫生開給你七天的藥就要吃完,讓足夠的藥劑量將病菌在發展出抗藥性前徹底殺死。

如何找到實驗靈感?

沒有公式可以依循,失敗的題目遠比成功的多。

我們從文獻上知道有哪些細菌存在、知道前人做了什麼、有哪些可以做還沒做、有不有趣。做完這些評估,我們再來想想實驗室能不能做到,覺得有希望就試試看。

失敗的話怎麼辦?就偷偷傷心一下下再努力(笑)。例如說賣雞排,倒掉的店也比賺大錢的多,這點可能各行各樣都差不多。

走學術研究這條路,從研究所開始就是不斷面對失敗的訓練。當上老師後不但要分擔學生的挫折,還要為了研究計畫的申請跟成果的發表奮鬥。雖然不斷面對失敗免不了難過,但回頭看過程中學到的經驗,怎麼把困難的問題理出頭緒,找到自己的看法,最後能有幾個有趣的故事可以說出來跟大家分享,這就是做研究迷人的地方。

延伸閱讀

  1. 郭志鴻的個人網頁
  2. 〈蚊科昆蟲共生菌的致病基因演化〉,作者:羅文穗、郭志鴻
  3. Wen-Sui Lo, Ya-Yi Huang, Chih-Horng Kuo* (2016) Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiology Reviews, 40, 855-874.
  4. Lo WS, Gasparich GE, Kuo CH* (2015) Found and lost: the fates of horizontally acquired genes in arthropod-symbiotic Spiroplasma. Genome Biology and Evolution 7: 2458-2472.
  5. Chang TH, Lo WS, Ku C, Chen LL, Kuo CH* (2014) Molecular evolution of the substrate utilization strategies and putative virulence factors in mosquito-associated Spiroplasma species. Genome Biology and Evolution 6: 500-509.
  6. Lo WS, Ku C, Chen LL, Chang TH, Kuo CH* (2013) Comparison of metabolic capacities and inference of gene content evolution in mosquito-associated Spiroplasma diminutum and S. taiwanense. Genome Biology and Evolution 5: 1512-1523.

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
272 篇文章 ・ 2672 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
寵物過敏原有很多種,避免飲食過敏困擾,可選擇單一/特殊肉種寵物飼料
鳥苷三磷酸 (PanSci Promo)_96
・2023/06/06 ・2173字 ・閱讀時間約 4 分鐘

本文由 新萃 Nutri Source 委託,泛科學企劃執行。

你有發現家裡的狗狗經常舔自己四肢,或是身上出現不明紅疹?當心這可能是過敏反應。寵物和人類一樣,也會有過敏反應,過敏可依照「來源」分為三種:吸入性過敏、接觸性過敏和食物性過敏。

寵物的過敏源有哪些?

不管是哪一種過敏反應,在人的身上都比較容易發現和排除。但狗狗的過敏卻很難處理,如果是接觸性或吸入性過敏,即使你把家裡打掃得很乾淨,還是無法排除帶狗出去散步時可能接觸到的環境過敏原。因此,對飼主來說,最容易控制的是食物性過敏。

食物性過敏是怎麼發生的呢?其實,「食物過敏」這個詞並不太準確。正確的臨床醫學用詞是「食物不良反應」(Adverse Food Reaction, 簡稱AFR)(Jackson, H. , 2009),指的是吃下食物後身體產生各種不良反應。並進一步分為食物過敏(Food Allergy)和食物不耐受(Food Intolerances)兩種。

如果你看過動漫作品《工作細胞》,你就會知道過敏其實只是免疫系統對特定成分產生的過度反應,因此全名為「過分敏感」;而食物不耐受則並非免疫性反應,而是消化系統無法代謝或對該生物體有毒,例如狗不能吃洋蔥或巧克力,否則會致死等等。

由於寵物沒有選擇權,只能吃飼主提供的食物,如果飼料中恰好有會造成牠 AFR 的成分,就可能產生各種症狀。除了腸胃發炎和拉肚子外,最明顯的外在症狀就是皮膚問題,包括搔癢、脫毛和紅疹等。後者容易被誤判為皮膚性疾病,讓許多飼主狂跑獸醫院的同時,獸醫也難以對症下藥。

雖然曾有研究透過讓醫師用血液或唾液是否檢測出 IgE 抗體來判斷狗是否過敏(Ermel, R et al.,1997),但最新的研究卻發現,無論使用無論血清的 IgE 抗原或是唾液裡的 IgM 或 IgA 抗原都無法有效檢測出狗狗的過敏來源(Udraite Vovk Let al., 2019 & Lam ATH et al., 2019),甚至會造成偽陽性誤判。因此,目前學界公認唯一能識別食物過敏原的方法就是「食物排除法」(Food Elimination Method)。

以食物排除法,找出毛孩的食物過敏原!

食物排除法的原理相當簡單粗暴,類似我們過去在學校做的實驗一樣,抓出「控制組與對照組」。首先,將狗狗的食物換成牠沒吃過、單一來源且易消化的高蛋白質或水解蛋白質;同時嚴格限制牠對其他食物接觸,包括其他人餵食或路上亂吃等可能性都要注意,此為「對照組」,如此持續 8~12 週,觀察皮膚是否有改善。如果確實有改善,那就證明了確實是 AFR 而非皮膚病。

下一步我們可以進行「食物挑戰」,在每餐食物中逐一嘗試可能的過敏原(例如常見的牛肉、雞蛋等),有如「控制組」,等到症狀又出現,就可以確認哪種食物成分是過敏原,未來就可以在飼料中排除,讓狗狗健康快樂地成長。

這個方法需要飼主的大力配合和耐心紀錄,不僅要在漫長的試驗期,更需要在控制期一一排除所有不可能之後,才能找到答案。而其中最困難的部分,也是實驗的基礎可能是第一步:「提供狗狗牠從未吃過,且肉品單一的蛋白質」,這點對多數飼主來說幾乎是不可能的任務,因為大部分的寵物飼料成分都很複雜。不要說狗狗了,搞不好你連自己沒吃過什麼恐怕都不知道。

飼料成分多而雜,可選單一肉種飼料降低過敏。

那該怎麼進行食物排除法呢?別擔心,沒有找不到的肉品,只有勇敢的狗狗。市面上已經有了針對過敏狗狗的低敏飼料,新萃推出了一系列低敏肉,包含單一肉種的袋鼠肉、鹿肉以及野豬等相比牛豬羊等較不容易取得的肉類,是進行食物排除法第一步測試的首選。

此外,新萃牌無論哪種飼料都有美國專利 Good 4 Life® 奧特奇專利保健元素,能促進飼料中的營養都被狗狗完整吸收。不僅過敏的狗狗能吃,有消化不良症的狗狗也適用。

新萃商品選擇的是單一/特殊肉種的成分,低敏感肉品讓寵物吃了更安心。

參考資料

  1. Thus for the purpose of this discussion, although the term food allergy is used throughout, it should be recognized that this term is a presumptive clinical diagnosis and adverse food reaction is a more accurate term for these canine cases. – Consensus
  2. Jackson, H. (2009). Food allergy in dogs – clinical signs and diagnosis.. Companion Animal Practice.
  3. Assessment of the clinical accuracy of serum and saliva assays for identification of adverse food reaction in dogs without clinical signs of disease – PubMed (nih.gov)
  4. Lam ATH, Johnson LN, Heinze CR. Assessment of the clinical accuracy of serum and saliva assays for identification of adverse food reaction in dogs without clinical signs of disease. J Am Vet Med Assoc. 2019 Oct 1;255(7):812-816. doi: 10.2460/javma.255.7.812. PMID: 31517577.
  5. Direct mucosal challenge with food extracts confirmed the clinical and immunologic evidence of food allergy in these immunized dogs and suggests the usefulness of the atopic dog as a model for food allergy. – Consensus
  6. Ermel, R., Kock, M., Griffey, S., Reinhart, G., & Frick, O. (1997). The atopic dog: a model for food allergy.. Laboratory animal science.
  7. https://www.moreson.com.tw/moreson/blog-detail/furkid-knowledge/pet-knowledge/dog-food-allergen-TOP10/
  8. 狗狗因為食物過敏而搔癢不舒服,為什麼做「過敏原檢測」沒什麼用?
  9. 【獸醫診間小教室】狗狗皮膚搔癢難改善?小心食物過敏! – 汪喵星球 (dogcatstar.com)
  10. 寵物知識+/毛孩對什麼食物過敏?獸醫:驗血完全不準!診斷法只有一個 | 動物星球 | 生活 | 聯合新聞網 (udn.com)
  11. Is there a gold-standard test for adverse food reactions? – Veterinary Practice News
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
172 篇文章 ・ 276 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
天選之人!為什麼地球上只有我們是高智慧生命體?——《人類的旅程》
商業周刊
・2022/10/21 ・2959字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

人類最早的足跡

爬著蜿蜒的山路,前往位於現代以色列的迦密山洞穴,不難想像史前時代這一帶的壯麗環境。

地中海型氣候應是四季宜人,氣溫只會小幅變動。附近青翠的山谷裡,穿山越嶺曲折流過的溪流,應是飲用水的來源。山脈旁的森林應適合狩獵鹿、瞪羚、犀牛、野豬。再向外,在毗連狹長海岸平原及撒馬利亞山脈的開闊荒野地帶,應生長著史前品種的穀物及果樹。四周的溫暖氣候、多樣性生態及生食材料,應使迦密山洞穴成為萬千年來,無數狩獵採集族群的理想家園。

這些古代洞穴,如今是聯合國教科文組織(UNESCO)的人類演化世界遺產,從中挖掘出的遺物確實證明,在數十萬年間,這裡曾有一連串史前人類棲息地,同時智人與尼安德塔人(Neanderthals,譯注:遺跡最早在德國尼安德河谷被發現的史前人類)可能曾經相遇,引人遐思。

1920 年查爾斯.R.奈特( Charles R. Knight )所畫的,想像中的史前人類。 圖/wikimedia

在此地和世上其他遺址的考古發現,顯示遠古及早期現代人類,是緩慢但持續學會新技能,善於用火,打造出越來越精細的刀刃、手斧、黑燧石及石灰石工具,也創作藝術作品。這些文化與技術進步,逐漸成為人類特徵,使我們有別於其他物種,而關鍵的推力之一,是人類腦部的進化。

人腦為什麼能發展得如此特別?

人類的腦部非比尋常:容量大且經壓縮,比所有其他物種的腦部都複雜。人腦的大小在過去六百萬年裡長大三倍,這種變化大都發生於二十至八十萬年前,以智人出現前為主。

在人類歷史的長河中,人腦的能力為何能擴展到如此強大?答案乍看之下或許不言而喻:頭腦發達顯然使人類可以達到地球上沒有其他生物辦得到的安全與繁榮水準。然而,事實真相要錯綜複雜得多。要是像人腦那樣的腦部,真的如此明確有益於生存,那其他物種經過數十億年演化,為何未發展出類似的腦部?

我們暫且來看看其間的差別。以眼部為例,它是沿幾條演化路徑獨立發展。有脊椎動物(兩棲類、鳥類、魚類、哺乳類、爬蟲類)的眼部,頭足類動物(烏賊、章魚、墨魚)的眼部,還有較簡單形式:單眼,見於蜜蜂、蜘蛛、水母、海星等無脊椎動物。這種現象稱為趨同演化(convergent evolution),就是不同物種各自演化出相似的特徵,而非來自共同祖先的既有特徵。眼部之外的例子不勝枚舉,像是昆蟲、鳥類、蝙蝠都有翅膀,魚類(鯊魚)與海生哺乳類(海豚)為適應水下生活而體形類似。

顯然不同物種是各自發展而獲得近似的有利特徵,但是能夠創作文學、哲學、藝術傑作,或發明耕犁、輪子、指南針、印刷機、蒸汽引擎、電報、飛機、網際網路的頭腦,卻是例外。這種頭腦只演化過一次,在人體上。

人腦隨著演化發展與進化。圖/pixabay

這麼強大的腦部,具有明顯的優勢,為何在自然界絕無僅有?

這個謎題的解答,有部分要歸咎於腦部的兩大缺點。一來人腦需消耗龐大能量。它只占人體二%的重量,卻要消耗二○%的能量。其次人腦很大,使新生兒頭部很難通過產道。因此比其他動物的腦部,人腦更壓縮或更「褶皺」,並且人類嬰兒出生時,腦子只有「半熟」,需要好多年的微調才能成熟。

所以人類嬰兒無生活能力:許多動物的幼兒出生後不久就會走路,也很快就能自己覓食,人類卻需要兩年時間才能穩穩地走路,至於物質上自給自足,還要很多年。既然有這些缺點,那當初是什麼因素導致人腦的發展?

研究者曾認為,或許有數種力量共同促成這一過程。

生態假說(ecological hypothesis)主張,人腦是出於人類暴露在環境挑戰下而進化。當氣候起伏不定,附近動物的數量隨之增減,腦部較發達的史前人類更能夠找到新的食物來源,設計捕獵採集策略,發展烹煮及儲存技術,使他們在棲息地生態條件不斷變動下依舊能夠生存並興旺。

反之,社會假說(social hypothesis)主張,在複雜的社會結構中日益需要合作、競爭、交易,這促成更精進的腦部,才更有能力去理解他人的動機,預期他人的反應,於是成為演化優勢。同理,能夠說服、操弄、恭維、敘述、娛人,這些都有利於個人社會地位,也有它本身的好處:刺激大腦發展及說話、論述能力。

文化假說(cultural hypothesis)則強調人類吸收及儲存資訊的能力,使資訊能夠代代相傳。依此觀點,人腦的獨特優勢之一是能夠有效率地學習他人經驗,養成有利的習慣與偏好,不必仰賴緩慢許多的生物適應過程,即可促進在各種環境下存活。換言之,人類嬰兒雖然身體上無能為力,但是頭腦裡備有獨特的學習能力,包括能夠領會及保留,曾幫助祖先存活、也將協助後代興盛的行為規範,那就是文化。

另一種可能進一步推動腦部發展的機制,是性選擇(sexual selection)。即使對腦部本身沒有明顯的演化優勢,但人類也許形成了對頭腦較發達的配偶的偏好。這些先進的頭腦或許具有對保護及養育子女很重要的隱形特質,有意找這種配偶的人,從可辨認的特徵像是智慧、口才、思慮敏捷或幽默感,能夠推斷出這些特質。

科技進步下越來越聰明的大腦!

人類獨有的進步以人腦進化為主要推力,尤其在於它有助於帶來技術進步:以日益精進的方式,把周遭自然物質及資源轉為我們所用。技術進步又塑造繼起的演化過程,使人類得以更成功的適應不斷變動的環境,從而進一步推動新科技及加以利用。這種重複且具強化作用的機制引導著科技加速向前邁進。

隨著技術進步大腦也更快速發展。圖/pixabay

尤其有人主張,越來越熟諳用火的早期人類開始烹煮食物,因而減少咀嚼和消化所需的能量,以致熱量充裕,並空出原本由顎骨和肌肉占據的頭顱空間,更加刺激腦部成長。這種良性循環或許促進烹飪技術更多創新,繼而又使腦部進一步成長。

不過腦部並非人類與其他哺乳類唯一有別的器官。人的手也是其一。與腦合作的雙手,也在一定程度上為回應技術而演化,尤其受益於製作及使用狩獵工具、針、烹飪器皿。

特別當人類長於雕刻石頭、製作木矛等技術時,能夠強力使用並正確加以改良的人,存活的可能性就增加。擅長狩獵的人能夠更可靠地養家活口,扶養更多子女長大成人。相關技能的世代傳承,使人口中能幹的獵人比例增加。再來,進一步創新的好處,如更堅硬的矛和後來更強的弓、更尖的箭等,又提高狩獵技藝的演進優勢。

類似性質的正面回饋循環,見於整個人類歷史:環境變遷與技術創新,促進人口成長,引發人類去適應變化中的棲息地和新工具,這些適應增強人類操縱環境、創造新技術的能力。在後面會看到,這種循環是理解人類歷程,解開成長謎團的關鍵。

———本書摘自《人類的旅程》,2022 年 10 月,商業周刊,未經同意請勿轉載

商業周刊
12 篇文章 ・ 3 位粉絲

0

1
1

文字

分享

0
1
1
推理要在實驗室:為什麼有些細菌會致病、有些不會呢?
研之有物│中央研究院_96
・2017/10/17 ・4507字 ・閱讀時間約 9 分鐘 ・SR值 503 ・六年級

國小高年級科普文,素養閱讀就從今天就開始!!

細菌的身世之謎

為什麼有些細菌會致病、有些不會?為什麼有些細菌需要依賴宿主存活、有些不用?要回答這些問題,需要比較不同的細菌,找出其中基因的異同處,就如同推理劇般一步步推敲細菌們的演化史。

「世界上有很多細菌,我們的工作是研究這些細菌如何變得不一樣!」中研院植物暨微生物所的郭志鴻副研究員說,圖/by 張語辰。

為什麼研究細菌?

細菌的多樣性非常高,因為演化的歷史比動植物長很多,可以生存的環境也很多樣。

目前證據顯示細菌在三十億年前就在地球上出現,而多細胞生物的演化史則不到十億年。另外動植物能生存的範圍蠻窄的,但無論在高溫、低溫、高壓、低壓、低氧……什麼奇怪的環境都能找到細菌,所以能探討的題目就很多。

我從博士後訓練時期開始投入「細菌基因體演化」的研究。一開始先問巨觀的問題,例如說有什麼演化趨勢是在大部份的細菌都會發現。 2010 年起在中研院建立自己的實驗室,興趣也轉向針對微觀的細節深入研究。近年來主要的研究材料是柔膜菌綱中的「植物菌質體」和「螺旋菌質體」。

細菌演化有何奇妙現象?

在演化的歷程中,細菌擁有的基因「種類」和「數量」會有劇烈的變化。

橫軸可以解釋為細菌演化的歷程,也可以解釋為細菌有多需要宿主。資料來源:Winding paths to simplicity: genome evolution in facultative insect symbionts,圖重製/by 林婷嫻、張語辰。

若以基因體大小和宿主依賴度來分,細菌可分為「環境微生物」、「兼性共生菌」、「絕對共生菌」。

在細菌演化的歷程中,一開始的環境微生物基因體較大,帶有各式各樣在自然環境中生存所需的基因。但經過「第一次過渡事件」後,就從完全不依靠宿主,變成兼性共生菌,在有些條件下和宿主一起存活。

當需要依靠特定的動植物時,細菌的族群就不能比宿主大,一但細菌的族群變小,「天擇」的力量就會減弱,由隨機事件掌控的「遺傳漂移 (genetic drift) 」就變得比較重要。許多突變,即使對細菌本身不利,都有機會因為隨機事件遺傳給下一代,甚至到族群中所有個體。

族群大,天擇重要;族群小,遺傳漂移重要。

細菌基因體的突變,最常見的形式是「基因丟失」,這些被丟失的基因不是絕對必要、比較像「備用工具」,若失去這些備用工具平時不會產生大影響,這個結果就容易遺傳給下一代。

到了「第二次過渡事件」,細菌從兼性共生變成絕對共生,不能再離開宿主,例如柔膜菌綱的「植物菌質體」。這時候因為很多營養可以改成從宿主身上取得,許多自行合成氨基酸、脂質等養份的基因就像不再被需要的備用工具,也自然從細菌的基因體中消失。也因此這些細菌可能走入演化的死巷,難以再轉換到其他的生態棲位。

細菌三十億年前出現在地球上,這些基因演化發生地多快多慢,目前並不清楚,因為細菌不像恐龍有化石紀錄,很難定年。

實驗室在研究哪些細菌?

我們實驗室主要研究柔膜菌綱中的細菌。這類細菌最廣為人知的是「黴漿菌」,引起很多人類跟動物的重要疾病,世界上有很多實驗室在研究。而我們則主要研究「植物菌質體」和「螺旋菌質體」,並比較這三群細菌間的異同。

柔膜菌綱包含三種:「黴漿菌」會讓溫體動物生病;「植物菌質體」會讓植物生病;而大部分的「螺旋菌質體」是節肢動物的共生菌,有的會致病、有的不會致病。資料來源:郭志鴻,圖重製/by 林婷嫻、張語辰。

植物菌質體是一群由昆蟲傳播的植物病菌,幾十年來都無法被人工培養。我們透過基因體定序,由受感染的植物中分別解出「植物」和「植物菌質體」的 DNA 序列 ,並將「健康的植物」和「被感染的植物」做比較分析,來了解植物菌質體如何讓植物生病,這對農業非常重要。

左為健康的繡球花,右為受植物菌質體感染、該開花的部位長出葉子。圖/from Genomic and evolutionary aspects of phytoplasmas

植物菌質體進入植物體內後,會分泌小小蛋白質、調控植物細胞裡基因的表現,讓該開花的部位長出很多葉子。

植物菌質體可以將植物「開花」的機制切換成「長更多葉子」的機制,如此一來植物無法傳宗接代,在演化上等於死掉一樣。而且因為植物無法開花結果,對農業生產造成很大的問題。

除此之外,植物菌質體還會降低植物用來防禦昆蟲的化學物質、吸引昆蟲來吃植物,這麼一來植物菌質體又能藉由昆蟲散播到新的宿主。我們正在研究植物菌質體是利用什麼機制來調控這過程。

相對於「植物菌質體」都會讓植物宿主生病,同屬於柔膜菌綱的「螺旋菌質體」,大部分是節肢動物的共生菌,有的會讓宿主生病、有的不會。

這是螺旋菌質體好玩的地方,我們能從「比較基因體學」的角度,去看螺旋菌質體這個屬內的「病菌」和「非病菌」物種的基因哪裡不同,是多了或少了某個基因造成這種差別;也能探討這些演化是如何發生,是藉由「垂直基因遺傳」、或是「水平基因轉移」。

螺旋菌質體在光學顯微鏡下,看起來像被稍微拉長的捲捲電話線。資料來源:Chemotaxis without Conventional Two-Component System, Based on Cell Polarity and Aerobic Conditions in Helicity-Switching Swimming of Spiroplasma eriocheiris,圖重製/by 林婷嫻、張語辰。

為什麼有些細菌會致病、有些不會?

和三斑家蚊共生的螺旋菌質體 S. diminutum ,可以和蚊科宿主和平共處。但另一種和三斑家蚊共生的螺旋菌質體 S. taiwanense ,會破壞蚊科宿主的組織、增加死亡率。資料來源:Comparison of Metabolic Capacities and Inference of Gene Content Evolution in Mosquito-Associated Spiroplasma diminutum and S. taiwanense,圖重製/by 羅文穗、張天昫、林婷嫻、張語辰、郭志鴻。

我們這幾年研究蚊子身上的螺旋菌質體,結果發現有致病性的 S. taiwanense 能夠消化的「碳水化合物」較少,但因為帶有一組非病菌所沒有的 glpO 基因,能在蚊子體內改吃甘油、並生成「過氧化氫」等「活性氧物種」,造成蚊科宿主的細胞溶掉、釋放出細胞裡的蛋白質和脂質, S. taiwanense 就能吃這些蛋白質和脂質作為養分來源,相當具有侵略性。

S. taiwanense 這樣苦苦相逼宿主有什麼好處?它採取的策略是,只要我傷害宿主可以多複製幾個細胞,提高傳播到下個宿主的機會,就是有利的生存策略。反過來說,若宿主是獨居性的動物,一座山頭只有一隻,共生菌就會傾向與宿主和平共存,因為若傷害宿主、細菌也無法存活。

共生菌要多具有侵略性,受限於宿主的「族群密度」和「傳播機會」。

會做這個題目是因為,我們透過文獻知道 S. taiwanense 和 S. diminutum 這兩種螺旋菌質體都是蚊子的共生菌,但 S. taiwanense 會使蚊子生病, S. diminutum 卻不會。我們選了一些與 S. taiwanense 、 S. diminutum 親緣關係相近的菌種,比較這些菌種的演化史,看看是哪個基因造成這種差別。除了多瞭解台灣本土的昆蟲共生菌之外,也許有機會發展於登革熱的生物防治。

細菌會水平轉移基因?

以前課本教:基因是爸媽遺傳給我們,因此一般會認為生物演化大多是「垂直基因遺傳」,再慢慢累積突變,造成物種間的差異。而「水平基因轉移」的意思是,一個物種可以從其他物種得到自己原本所沒有的新基因,這是細菌演化上很重要的機制。

細菌是體細胞兼生殖細胞,所以很容易「水平轉移」基因。

如下圖,我們分析細菌的親緣關係,發現剛剛提到的 glpO 基因是從別的菌種「水平轉移」拿來的。這些新拿來的基因不只存在於細菌基因體中裡,還會被納入基因調控的分子機制中、產生新的反應。

(A)圖:若基因演化史為「垂直遺傳」,則親緣關係會像此圖。演化關係相近的物種,例如上方五個以紅色標示的螺旋菌質物種,在親緣樹上也會較接近。
(B)圖:來自 S. taiwanense 的基因 (STAIW_v1c07530))跟其他的螺旋菌質體物種的基因(紅色)關係較遠,反而跟黴漿菌的基因(藍色)關係較近,推測可能是因為此基因是 S. taiwanense 自黴漿菌水平轉移而得到。資料來源:Molecular Evolution of the Substrate Utilization Strategies and Putative Virulence Factors in Mosquito-Associated Spiroplasma Species

「超級細菌」是怎麼回事?

目前人類了解的細菌不到整體百分之一,而新科技的發展讓我們開始慢慢了解許多過去沒研究過的細菌。有在實驗室被成功培養出來的細菌中、會讓人類生病的是少數中的少數。

大約一百年前,抗生素剛被發現就像「魔法子彈」,可以治療幾乎所有細菌感染的疾病,但後來抗生素開始失去效果,因為細菌經由基因突變、或藉由水平基因轉移,可以抵抗抗生素。「超級細菌」是因為具備多重抗藥性,已經湊齊能抵抗不同抗生素的基因,除非醫學又開發出新型的抗生素,否則醫生就無藥可用。這過程就像人類和病菌間持續的軍備競賽。

帶有這個抗藥性的基因對細菌有利,這是人類造成的天擇。

天擇造成的生存壓力很大,本來只有某種細菌有某個特定的抗藥性基因,但不同的細菌之間容易互相藉由「水平轉移」傳播抵抗不同抗生素的基因。在疾病管理上,盡量不要讓不同病人帶有的病菌有機會互相接觸。

若要避免產生超級細菌,唯一有效的方法是不要用抗生素。因為在有抗生素的環境中,細菌帶有抗藥性的基因是有利的;但若在沒有抗生素的環境下,細菌帶有抗藥性的基因就變得多餘。

實際上,不要用抗生素真的很難,若非得要用,就要用得徹底,醫生開給你七天的藥就要吃完,讓足夠的藥劑量將病菌在發展出抗藥性前徹底殺死。

如何找到實驗靈感?

沒有公式可以依循,失敗的題目遠比成功的多。

我們從文獻上知道有哪些細菌存在、知道前人做了什麼、有哪些可以做還沒做、有不有趣。做完這些評估,我們再來想想實驗室能不能做到,覺得有希望就試試看。

失敗的話怎麼辦?就偷偷傷心一下下再努力(笑)。例如說賣雞排,倒掉的店也比賺大錢的多,這點可能各行各樣都差不多。

走學術研究這條路,從研究所開始就是不斷面對失敗的訓練。當上老師後不但要分擔學生的挫折,還要為了研究計畫的申請跟成果的發表奮鬥。雖然不斷面對失敗免不了難過,但回頭看過程中學到的經驗,怎麼把困難的問題理出頭緒,找到自己的看法,最後能有幾個有趣的故事可以說出來跟大家分享,這就是做研究迷人的地方。

延伸閱讀

  1. 郭志鴻的個人網頁
  2. 〈蚊科昆蟲共生菌的致病基因演化〉,作者:羅文穗、郭志鴻
  3. Wen-Sui Lo, Ya-Yi Huang, Chih-Horng Kuo* (2016) Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiology Reviews, 40, 855-874.
  4. Lo WS, Gasparich GE, Kuo CH* (2015) Found and lost: the fates of horizontally acquired genes in arthropod-symbiotic Spiroplasma. Genome Biology and Evolution 7: 2458-2472.
  5. Chang TH, Lo WS, Ku C, Chen LL, Kuo CH* (2014) Molecular evolution of the substrate utilization strategies and putative virulence factors in mosquito-associated Spiroplasma species. Genome Biology and Evolution 6: 500-509.
  6. Lo WS, Ku C, Chen LL, Chang TH, Kuo CH* (2013) Comparison of metabolic capacities and inference of gene content evolution in mosquito-associated Spiroplasma diminutum and S. taiwanense. Genome Biology and Evolution 5: 1512-1523.

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
272 篇文章 ・ 2672 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

28
3

文字

分享

1
28
3
【2022 年諾貝爾生理或醫學奬】復現尼安德塔人消逝的 DNA,也映襯我們何以為人
寒波_96
・2022/10/06 ・8169字 ・閱讀時間約 17 分鐘

人對自身歷史的好奇歷久彌新。最近十年古代 DNA 研究大行其道,光是發表於 Cell、Nature、Science 的論文就多到要辛苦讀完,加上其他期刊更是眼花撩亂。「古代遺傳學」的衝擊毋庸置疑,開創者帕波(Svante Pääbo)足以名列歷史偉人;然而,得知 2022 年諾貝爾生理或醫學獎由他一人獨得 ,還是令人吃驚——諾貝爾獎竟然會頒給人類演化學家?

諾貝爾獎有物理獎、有化學獎,但是沒有生物學獎,而是「生理或醫學獎」。帕波獲獎的理由是:「發現滅絕人類的基因組以及研究人類演化」。乍看和生理或醫學沒有關係,深入思考……好像還真的沒有什麼關係。

偷用強者我朋友的感想:「應該就是選厲害的。第一個和生理或醫學無關的生理或醫學獎得主,聽起來滿屌的」。

帕波直接的貢獻非常明確,在他的努力下,重現消失數萬年的尼安德塔人(Neanderthal)基因組。他為什麼想要這樣做,過程中經歷什麼困難,發現又有什麼意義呢?

喜愛古埃及的演化遺傳學家

帕波公元 1955 年在瑞典出生,獲獎時 67 歲。他從小對古埃及有興趣,大學時選擇醫學仍不忘古埃及,但是一生都在追求新奇的帕波,嫌埃及研究的步調太慢,後來走上科學研究之路。1980 年代初博士班時期,他使用當時最高端的分子生物學手段探討免疫學,成果發表於 Cell 等頂尖期刊,可謂免疫學界的頂級新秀。

然而,他始終無法忘情逝去的世界。1984 年美國的科學家獲得斑驢的 DNA 片段,轟動一時。斑驢已經滅絕一百年,能夠由其遺骸取得古代 DNA,令博士生帕波大為震撼。他很快決定結合自己的專業與興趣,嘗試由古埃及木乃伊取得 DNA,並且獨立將結果發表於 Nature 期刊。

古代 DNA。圖/取自 參考資料 1

博士畢業後,帕波義無反顧地轉換領域,遠渡美國追隨加州柏克萊大學的威爾森(Allan Wilson)。威爾森在 1970 年代便開始探討分子演化,後來又根據不同人類族群間粒線體 DNA 的差異,估計非洲以外的人群,分家只有幾萬年,支持智人出非洲說。

帕波正式投入相關研究後意識到,從古代樣本取樣 DNA 的汙染問題相當嚴重。這邊「汙染」的意思是,並非抓到樣本內真正的古代 DNA 目標,而是周圍環境、實驗操作者等來源的 DNA;包括他自己之前的木乃伊 DNA,很可能也不是真正的古代 DNA。另一大問題是,生物去世後 DNA 便會開始崩潰,經歷成千上萬年後,樣本中即使仍有少量遺傳物質殘存,含量也相當有限。

帕波投入不少心血改善問題。例如那時新發明的 PCR 能精確並大量複製 DNA,他馬上用於自己的題目(更早前是利用細菌,細菌繁殖時順便生產 DNA)。多年嘗試後,他決定放棄埃及木乃伊(埃及木乃伊的基因組在 2017 年成功),改以遺傳與智人差異較大的尼安德塔人為研究對象。

取得數萬年前尼安德塔人的 DNA

根據現有的證據,尼安德塔人是距今約 4 萬到 40 多萬年前的古人類。確認為尼安德塔人的第一件化石,於 1856 年在德國的尼安德谷發現,並以此得名(之前 2 次更早出土化石卻都沒有意識到)。這是我們所知第一種,不是智人的古代人類(hominin)。

對於古人類化石,一百多年來都是由考古與型態分析。帕波帶著遺傳學工具投入,不但增進考古和古人類學的知識,也拓展了遺傳學的領域。他後來前往德國的慕尼黑大學,幾年後又被挖角到馬克斯普朗克研究所,領導萊比錫新成立的人類演化部門,多年來培養出整個世代的科學家,也改變我們對人類演化的認知。

不同個體的粒線體 DNA 之間差異,智人與黑猩猩最多,智人與智人最少,智人與尼安德塔人介於期間。圖/取自 參考資料 2

帕波在 1996 年首度取得尼安德塔人的 DNA 片段,來自粒線體。他為了確認結果,邀請一位美國小女生重複實驗,驗證無誤,她就是後來也成為一方之霸的史東(Anne Stone)。比較這段長度 105 個核苷酸的片段,尼安德塔人與智人間的差異,明顯超過智人與智人。

然而,粒線體只有 16500 個核苷酸,絕大部分遺傳訊息其實藏在細胞核的染色體中。想認識尼安德塔人的遺傳全貌,非得重現細胞核的基因組。

可是一個細胞內有數百套粒線體,只有 2 套基因組,因此粒線體 DNA 的含量為細胞核數百倍;而且染色體合計超過 30 億個核苷酸,數量無比龐大。可以說,細胞核基因組可供取材的 DNA 量少,需要復原的訊息又多,比粒線體更難好幾個次元。

方法學與時俱進:從 PCR 到次世代定序

一開始,帕波與合作者使用 PCR,但是帕波知道這是死路一條。取樣 DNA 會破壞材料,尼安德塔人的化石有限;PCR 一次又只能復原幾百核苷酸,要完成 30 億的目標遙遙無期。

帕波持續努力克服難關。2000 年人類基因組首度問世,採取「霰彈槍」定序法,大幅提升效率;也就是將 DNA 序列都打碎,一次定序一大堆片段,再由電腦程式拼湊。帕波因此和 454 生命科學公司合作,改用新的次世代定序法,偵測化石中的古代 DNA。2006 年發表的論文可謂里程碑,報告次世代定序得知的 100 萬個尼安德塔人核苷酸,足以進行一些基因體學的分析。

帕波當時在美國的合作者魯賓(Edward Rubin)持續使用 PCR,雙方分歧愈來愈大,終於分道揚鑣。所以很可惜地,2010 年尼安德塔人基因組論文發表時,魯賓沒有參與到最後。這是人類史上第一次,取得滅絕生物大致完整的基因組,也是帕波獲頒諾貝爾獎的直接理由。

帕波戰隊。圖/取自 The Neandertal Genome Project

鐵證:尼安德塔人與智人有過遺傳交流

這份拼湊多位尼安德塔人的基因組,儘管品質不佳,卻足以解答一個問題:尼安德塔人與智人有過混血嗎?答案是有,卻和本來想的不一樣。尼安德塔人沒有長居非洲,主要住在歐洲、西南亞、中亞,也就是歐亞大陸的西部。假如與智人有過混血,歐洲人應該最明顯。結果並非如此。

帕波的組隊能力無與倫比,他廣邀各領域的菁英參與計畫,不只取得 DNA 資料,也陸續研發許多分析資料的手法,其中以哈佛大學的瑞克(David Reich)最出名。

分析得知,非洲以外,歐洲、東亞、大洋洲的人,基因組都有 1% 到 4% 能追溯到尼安德塔人(後來修正為 2% 左右)。所以雙方傳承至今的混血,發生在智人離開非洲以後,又向各地分家以前;並非尼安德塔人主要活動的歐洲。

首度由 DNA 定義古代新人類:丹尼索瓦人

復原古代基因組的工作相當困難,不過引進次世代定序後,從不可能的任務降級為難題,尼安德塔人重出江湖變成時間問題。出乎意料,同樣在 2010 年,帕波戰隊又發表另外 2 篇論文,描述一種前所未知的古人類:丹尼索瓦人(Denisovan)。不是藉由化石,而是首度由 DNA 得知新的古代人種。

根據細胞核基因組,尼安德塔人、丹尼索瓦人的親戚關係最近,智人比較遠,三群人類間有過多次遺傳交流。圖/取自 參考資料 1

丹尼索瓦人得名於出土化石的遺址(地名來自古時候當地隱士的名字),位於西伯利亞南部的阿爾泰地區,算是中亞。帕波對這兒並不陌生,之前俄羅斯科學家在這裡發現過尼安德塔人化石,而且由於乾燥與寒冷,預計化石中的古代 DNA 保存狀況應該不錯。

帕波戰隊對丹尼索瓦洞穴中的一件小指碎骨定序,首先拼裝出粒線體,驚訝地察覺到這不是智人,卻也不是尼安德塔人,接下來的細胞核基因組重複證實此事。它們變成前後 2 篇論文,帕波出名的不喜歡物種爭論,不使用學名,所以直稱其為「丹尼索瓦人」。

還有幾顆丹尼索瓦洞穴出土的牙齒也尋獲粒線體,而且這些臼齒特別大,型態前所未見。奇妙的是,丹尼索瓦人粒線體、基因組的遺傳史不一樣;和智人、尼安德塔人相比,尼安德塔人的粒線體比較接近智人,細胞核基因組卻比較接近丹尼索瓦人。

這反映古代人類群體間的遺傳交流相當複雜,不只是智人、尼安德塔人,也不只有過一次。後來又在丹尼索瓦洞穴發現一位爸爸是丹尼索瓦人、媽媽是尼安德塔人的混血少女,更是支持不同人群遺傳交流的直接證據。

遠觀丹尼索瓦洞穴。圖/取自論文〈Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave〉的 Supplementary information

回溯分歧又交織的人類演化史

重現第一個尼安德塔人基因組後,帕波戰隊持續改進定序與分析的技術,也獲得更多樣本,深入不同族群的分家年代、彼此間的混血比例等問題,新知識不斷推陳出新。

丹尼索瓦人方面,如今仍無法確認他們的活動範圍,不過很可能是歐亞大陸偏東部的廣大地區。一如尼安德塔人,丹尼索瓦人也與智人有過遺傳交流。

最初估計某些大洋洲人配備 4% 到 6% 的丹尼索瓦人血緣,後來修正為 2% 左右(不同方法估計的結果不一樣,總之和尼安德塔血緣差不多)。不同智人具備丹尼索瓦 DNA 的比例差異頗大,某些大洋洲人之外,東亞族群也具備些許,歐亞大陸西部的人卻幾乎沒有。

到帕波獲得諾貝爾獎為止,古代 DNA 最早的紀錄是超過一百萬年的西伯利亞古代象。圖/最早古代 DNA,超過一百萬年的西伯利亞象

至今年代最古早的人類 DNA,來自西班牙的胡瑟裂谷(Sima de los Huesos),距今 43 萬年左右(最早的是超過一百萬年的古代象,由受到帕波啟發的其餘團隊發表)。根據 DNA 特徵,胡瑟裂谷人的細胞核基因組更接近尼安德塔人,可以視作初期的尼安德塔人族群。然而,他們的粒線體卻更像丹尼索瓦人。

帕波開發的研究方法,不只針對消逝的智人近親,也能用於古代智人與其他生物,累積一批數萬年前智人的基因組。釐清近期的混血事件外,還能探討不同人群當初分家的時期。估計尼安德塔人、丹尼索瓦人約在 40 多萬年前分家,他們和智人的共同祖先,又能追溯到距今 50 到 80 萬年的範圍。

智人何以為智人?遠古血脈的傳承,磨合,新適應

消逝幾萬年的尼安德塔人、丹尼索瓦人,皆為智人的極近親。由於數萬年前的遺傳交流,仍有一部分近親血脈流傳於智人的體內。這些血脈經過數萬年,早已融入成為我們的一部分。

人,人,人,人呀。圖/取自 參考資料 2

智人的某些基因與基因調控,受到遠古混血影響。最出名的案例,莫過於青藏高原族群(圖博人或藏人)的 EPAS1 基因繼承自丹尼索瓦人,比智人版本的基因更有利於適應缺氧。另外也觀察到許多案例,與免疫、代謝等功能有關。

近年 COVID-19(武漢肺炎、新冠肺炎)席捲世界,觀察到感染者的症狀輕重受到遺傳差異影響;其中至少兩處 DNA 片段,一處會增加、另一處降低住院的機率,都可以追溯到尼安德塔人的遠古混血。

非洲外每個人都有 1% 到 2% 血緣來自尼安德塔人,不同人遺傳到的片段不一樣。將不同智人個體的片段拼起來,大概能湊出 40% 尼安德塔人基因組(不同算法有不同結果),也就是說,當初進入智人族群的尼安德塔 DNA 變異,不少已經失傳。

失傳可能是機率問題,某一段 DNA 剛好沒有智人繼承。但是也可能是由於尼安德塔 DNA 變異,對智人有害或是遺傳不相容,而被天擇淘汰。遺傳重組之故,智人基因組上每個位置,繼承到尼安德塔變異的機率應該差不多;可是相比於體染色體,X 染色體的比例卻明顯偏低;這意謂智人的 X 染色體,不適合換上尼安德塔版本。

例如 2022 年發表的論文,比較 TKTL1 基因上的差異對智人、尼安德塔人神經發育的影響。圖/取自〈Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals

智人之所以異於非人者幾希?藉由比較智人的極近親尼安德塔人,能深入思考這個大哉問。是哪些遺傳改變讓智人誕生,後來又衍生出什麼不可取代的遺傳特色?另一方面也能反思,某些我們以為專屬智人的特色,其實並非智人的專利。

分析遺傳序列,畢竟只是鍵盤辦案,一向雄心壯志的帕波,當然想要更進一步解答疑惑。比方說,尼安德塔人、智人間某處 DNA 差異對神經發育有什麼影響?體外培養細胞、模擬器官發育的新穎技術,如今也被帕波引進人類演化學的領域。

瑞典與愛沙尼亞之子,德國製造,替人類做出卓越貢獻的人

回顧完帕波到得獎時的精彩成就,他的工作與生理或醫學有哪些關係,各位讀者可以自行判斷。我還是覺得沒什麼直接關係,如遠古混血影響病毒感染的重症機率這種事,那些 DNA 變異最初是否源自尼安德塔人,其實無關緊要。不過多少還是有些影響,像是為了研究古代基因組而研發出的基因體學分析方法,應該也能用於生醫領域。

《尋找失落的基因組》台灣翻譯本。

帕波 2014 年時發表回憶錄《尋找失落的基因組》,自爆許多內幕。台灣的翻譯出過兩版,可惜目前絕版了。我在 2015 年、2019 年各寫過一篇介紹。書中有許多值得玩味之處,不同讀者會看到不同重點,有興趣可以找來閱讀,看看有什麼啟發。

主題是諾貝爾獎就不能不提,帕波得獎也讓諾貝爾新添一組父子檔,他的爸爸伯格斯特龍(Sune Karl Bergström)是 1982 年生理或醫學獎得主。為什麼父子不同姓?因為他是隨母姓的私生子,父子間非常不熟。

他的媽媽卡琳.帕波(Karin Pääbo)是愛沙尼亞移民瑞典的化學家,2007 年去世前曾在訪問提及,她兒子在 13、14 歲時從埃及旅遊回來,對科學產生興趣。帕波獲頒諾貝爾獎後受訪提到,可惜媽媽已經去世,無法與她分享榮耀。移民異國討生活的單親媽媽,能夠養育出得到諾貝爾獎的兒子,也可謂偉大成就。

人類演化的議題弘大淵博,但是究其根本,依然要回歸到一代一代的傳承。每個人都無比渺小,卻也是全人類中的一份子,親身參與其中。諾貝爾生理或醫學獎 2022 年的頒獎選擇,乍看突兀,仔細思索卻頗有深意。帕波的研究也許很不生理或醫學,卻再度強化諾貝爾奬設立的精神:「獎勵替人類做出卓越貢獻的人」。

  • 帕波得獎後接受電話訪問:

延伸閱讀

參考資料

  1. Press release: The Nobel Prize in Physiology or Medicine 2022. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  2. Advanced information. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  3. Geneticist who unmasked lives of ancient humans wins medicine Nobel
  4. Ancient DNA pioneer Svante Pääbo wins Nobel Prize in Physiology or Medicine
  5. Nature 論文蒐集「Nobel Prize in Physiology or Medicine 2022
  6. Estonian descendant Svante Pääbo awarded Nobel prize

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
185 篇文章 ・ 801 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。