網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

讓生物學家可以小偷懶的Uno Life生物晶片

劉珈均
・2016/03/26 ・2175字 ・閱讀時間約 4 分鐘 ・SR值 596 ・九年級
DSC_3724 crop
晶片上下兩層微孔陣列各有470個微孔,下層的篩選微孔尺寸接近單細胞大小,可有效抓取單細胞;抓取後翻轉,上層較大的培養微孔可進行長時間單株培養。圖/張浩禎提供

對科學家而言,實驗室基本配備如同書桌上的文具,這些簡單物品算不上劃時代發明,但舉足輕重,幫助科學家思考與創造,國家衛生研究院實驗室的「Uno Life」生物晶片就是一款給科學家的實用工具。

生技醫藥領域約有六成以上的研究需要提取單細胞,如細胞異質性研究、癌症抗藥性、藥物篩選等。然而,傳統抓取方式繁瑣且效率差,國家衛生研究院生醫工程與奈米醫學研究所許佳賢博士帶領團隊研發一款生物晶片(註1),操作簡單、低成本,且抓取單細胞的效率從兩三成提升至近八成。

研發成員林璟輝博士笑著說:「一開始是想要偷懶地做事情。」Uno Life生物晶片設計相當簡單,點狀微孔分成上下雙層,中間為流道。注入細胞懸浮液之後,靜置一兩分鐘,細胞會平均沉降至下層的篩選微孔,接著將晶片翻面,讓單細胞移轉至相對應的大孔洞中就成了。整個過程只約十分鐘,且成功抓取單細胞的效率將近80%,後續就讓單細胞留在大孔洞中進行單株培養。

相較於此款生物晶片,傳統提取單細胞的方式相當繁複:將細胞懸浮液分注在96孔培養盤,靜置待細胞沉澱,再用顯微鏡確認盤上96個微孔中有多少個成功抓取到「一個」細胞。顯微鏡的視野塞不下單個孔洞,所以研究人員得反覆挪移盤子,如此重覆確認近百次。

這傳統的「序列稀釋法」耗時、累人且效率不佳,實務上「一個」孔洞成功獲得「一個」細胞的機率通常只有10%~20%,換句話說,96孔盤最終可能只成功提取510顆細胞。若要蒐集一千個單細胞,就得重複製作上百盤才能提取所需的量;一般實驗也要製作二三十盤才足夠。

「細胞生長時會分泌一些生長因子,單顆細胞若感受不到旁邊有細胞同伴,其實比較容易死掉。」晶片上培養單細胞的微孔雖然比傳統培養空間小,但其抓取率高,單細胞彼此像是住在同宿舍的鄰居,生長情況反而較好。

IMG_4911
Uno Life生物晶片的研發團隊,左起為指導教授許佳賢、林璟暉、張浩禎。圖/劉珈均攝

林璟暉解釋單細胞研究的用途,即便來自相同組織或器官,每一顆細胞其實不太一樣,必須把細胞分開看,個別研究特性。「像罹患癌症,吃藥後有的癌細胞會死、有的不會,就是因為存在異質性。」另一大用途是製作專一性佳的「單株抗體藥物」,主要用於抗發炎與癌症治療,根據統計,去年全球銷售前十大藥物中有六項即為單抗藥物(註2)

團隊的實驗室長期研究微流體晶片,許佳賢說:「希望這塊晶片可以成為醫學基礎研究重要的一部分!」研發成員張浩禎則分享,起初有人覺得這不像一般印象中的生物晶片,因為功能太樸實了,沒有電流或電磁等華麗功能,但正因為它的樸實,適合做成產品量產。

「他不需要繁複的操作技術,很容易上手!」林璟暉說。這款生物晶片能與既有的針筒幫浦、組織培養箱、顯微鏡等常用器材配合,與大部分生物實驗室的配備「相容」,也大幅節省成本與耗材。

已有不少人看到這塊生物晶片的潛力,此晶片研發成果登上英國皇家化學學會發行的期刊《實驗室晶片》(Lab on a Chip),正在申請相關專利。團隊已與清大、國衛院等簽署合作備忘錄,也有美國知名大學前來探問,2015年參加科技部新創業競賽更進入前20強,天使創投也表達投資意願,可望成立新創公司

晶片規格小檔案
晶片大小:12.75 x 20.25mm²
下層篩選微孔:直徑25微米、深度26及30微米
上層培養微孔:直徑285及485微米、深度300微米

 

註:

  1. 生物晶片可分為「DNA 核酸探針晶片」及「實驗室晶片」兩類。前者是在小面積上安置核酸探針,檢測以獲得基因序列的豐富資訊;實驗室晶片又稱微流體晶片,為近代生物科技一大革命,傳統實驗室的複雜流程就濃縮在一塊數公分大小的晶片上。它利用微機電系統技術,將傳統生化分析中所需的微閥門、微過濾器、微管道、微感測器等元件集中在晶片上,只要一塊晶片以及微小液量,便能進行樣品前處理、樣品分離、試劑傳送、偵測等工作。微流體生物晶片用處廣泛,新藥開發、血液篩檢、感染病原檢測、基因表現分析、法醫辨識鑑定、環境及食品檢測等皆可見其應用。
  2. 2014年全球銷售前十名藥品中,六項單株抗體藥物為:RemicadeEnbrelHumira(此三者治療類風濕性關節炎)Rituxan AvastinHerceptin(此三者適應症分別為淋巴癌、大腸直腸癌、乳癌)

參考資料:

  • 林璟暉、莊堵安、張浩禎、葉鵑鳳、邱英明、許佳賢。2015。高通量單細胞篩選與細胞單株化培養之雙微孔微流晶片。科儀新知,204,35-47
  • Lin, Ching-Hui, et al. “A Microfluidic Dual-well Device for High-throughput Single-Cell Capture and Culture.” Lab on a Chip (2015).
  • 李國賓。2005。下一波生物晶片:微流體生醫晶片。科學發展,385,72-77

文章難易度
劉珈均
35 篇文章 ・ 0 位粉絲
PanSci 特約記者。大學時期主修新聞,嚮往能上山下海跑採訪,因緣際會接觸科學新聞後就不想離開了。生活總是在熬夜,不是趕稿就是在屋頂看星星,一邊想像是否有外星人也朝著地球方向看過來。


0

12
5

文字

分享

0
12
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》