0

0
0

文字

分享

0
0
0

被音樂感動的生物晶片! Music moves microfluidic drops

Scimage
・2011/06/19 ・521字 ・閱讀時間約 1 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

微流體生物晶片被很多人認為是未來醫療檢測或是生物技術的發展趨勢之一,很多工程上的技術也用來設計不同的生物晶片,譬如用電驅動的 (之前介紹過的DNA液滴晶片)、壓力驅動的、超音波驅動的(流場抓細胞)等等,但是複雜的設計往往限制了實際上的應用;另一方面,很多朋友都知道不同水高度的試管因為共振的關係會對不同的聲音有反應,只要達到共振條件就會把聲音放大,原理跟所有共振腔的樂器一樣。

現在研究人員利用這樣的原理開始讓生物晶片也可以聽得懂音樂來工作。首先研究人員設計不同的共振腔,然在共振腔後面接上單方向的氣流通過結構( rectifier 如下圖),然後每個共振腔再接上不同的微流道。

這樣一來,只要用喇叭發出特定頻率的聲音,特定的共振腔就會把聲音的振幅壓力放大,經過單方向的結構後就會產生單方向的壓力,這樣的壓力就可以用來堆動在不同管道的水滴的運動,所以這樣設計出來的晶片,上頭的液體運動就不再需要外加的幫浦來推動,只要用喇叭放音樂就可以工作了!下面的影片展示出很多可能的液體操作都可以藉由這樣的方式來達成。

本文原發表於科學影像Scimage[2011-06-18]

文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

0
0

文字

分享

0
0
0
Intel® Core™ Ultra AI 處理器:下一代晶片的革命性進展
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/21 ・2364字 ・閱讀時間約 4 分鐘

本文由 Intel 委託,泛科學企劃執行。 

在當今快節奏的數位時代,對於處理器性能的需求已經不再僅僅停留在日常應用上。從遊戲到學術,從設計到內容創作,各行各業都需要更快速、更高效的運算能力,而人工智慧(AI)的蓬勃發展更是推動了這一需求的急劇增長。在這樣的背景下,Intel 推出了一款極具潛力的處理器—— Intel® Core™ Ultra,該處理器不僅滿足了對於高性能的追求,更為使用者提供了運行 AI 模型的全新體驗。

先進製程:效能飛躍提升

現在的晶片已不是單純的 CPU 或是 GPU,而是混合在一起。為了延續摩爾定律,也就是讓相同面積的晶片每過 18 個月,效能就提升一倍的目標,整個半導體產業正朝兩個不同方向努力。

其中之一是追求更先進的技術,發展出更小奈米的製程節點,做出體積更小的電晶體。常見的方法包含:引進極紫外光 ( EUV ) 曝光機,來刻出更小的電晶體。又或是從材料結構下手,發展不同構造的電晶體,例如鰭式場效電晶體 ( FinFET )、環繞式閘極 ( GAAFET ) 電晶體及互補式場效電晶體 ( CFET ),讓電晶體可以更小、更快。這種持續挑戰物理極限的方式稱為深度摩爾定律——More Moore。

-----廣告,請繼續往下閱讀-----

另一種則是將含有數億個電晶體的密集晶片重新排列。就像人口密集的都會區都逐漸轉向「垂直城市」的發展模式。對晶片來說,雖然每個電晶體的大小還是一樣大,但是重新排列以後,不僅單位面積上可以堆疊更多的半導體電路,還能縮短這些區塊間資訊傳遞的時間,提升晶片的效能。這種透過晶片設計提高效能的方法,則稱為超越摩爾定律——More than Moore。

而 Intel® Core™ Ultra 處理器便是具備兩者優點的結晶。

圖/PanSci

Tile 架構:釋放多核心潛能

在超越摩爾定律方面,Intel® Core™ Ultra 處理器以其獨特的 Tile 架構而聞名,將 CPU、GPU、以及 AI 加速器(NPU)等不同單元分開,使得這些單元可以根據需求靈活啟用、停用,從而提高了能源效率。這一設計使得處理器可以更好地應對多任務處理,從日常應用到專業任務,都能夠以更高效的方式運行。

CPU Tile 採用了 Intel 最新的 4 奈米製程和 EUV 曝光技術,將鰭式電晶體 FinFET 中的像是魚鰭般阻擋漏電流的鰭片構造減少至三片,降低延遲與功耗,使效能提升了 20%,讓使用者可以更加流暢地執行各種應用程序,提高工作效率。

-----廣告,請繼續往下閱讀-----
鰭式電晶體 FinFET。圖/Intel

Foveros 3D 封裝技術:高效數據傳輸

2017 年,Intel 開發出了新的封裝技術 EMIB 嵌入式多晶片互聯橋,這種封裝技術在各個 Tile 的裸晶之間,搭建了一座「矽橋 ( Silicon Bridge ) 」,達成晶片的橫向連接。

圖/Intel

而 Foveros 3D 封裝技術是基於 EMIB 更進一步改良的封裝技術,它能將處理器、記憶體、IO 單元上下堆疊,垂直方向利用導線串聯,橫向則使用 EMIB 連接,提供高頻寬低延遲的數據傳輸。這種創新的封裝技術不僅使得處理器的整體尺寸更小,更提高了散熱效能,使得處理器可以長期高效運行。

運行 AI 模型的專用筆電——MSI Stealth 16 AI Studio

除了傳統的 CPU 和 GPU 之外,Intel® Core™ Ultra 處理器還整合了多種專用單元,專門用於在本機端高效運行 AI 模型。這使得使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時節省了連接雲端算力的成本。

MSI 最新推出的筆電 Stealth 16 AI Studio ,搭載了最新的 Intel Core™ Ultra 9 處理器,是一款極具魅力的產品。不僅適合遊戲娛樂,其外觀設計結合了落質感外型與卓越效能,使得使用者在使用時能感受到高品質的工藝。鎂鋁合金質感的沉穩機身設計,僅重 1.99kg,厚度僅有 19.95mm,輕薄便攜,適合需要每天通勤的上班族,與在咖啡廳尋找靈感的創作者。

-----廣告,請繼續往下閱讀-----

除了外觀設計之外, Stealth 16 AI Studio 也擁有出色的散熱性能。搭載了 Cooler Boost 5 強效散熱技術,能夠有效排除廢熱,保持長時間穩定高效能表現。良好的散熱表現不僅能夠確保處理器的效能得到充分發揮,還能幫助使用者在長時間使用下的保持舒適性和穩定性。

Stealth 16 AI Studio 的 Intel Core™ Ultra 處理器,其性能更是一大亮點。除了傳統的 CPU 和 GPU 之外,Intel Core™ Ultra 處理器還整合了多種專用單元,專門針對在本機端高效運行 AI 模型的需求。內建專為加速AI應用而設計的 NPU,更提供強大的效能表現,有助於提升效率並保持長時間的續航力。讓使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時也節省了連接雲端算力的成本。

軟體方面,Intel 與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化。與 Adobe 等軟體的合作使得使用者在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。獨家微星AI 智慧引擎能針對使用情境並自動調整硬體設定,以實現最佳效能表現。再加上獨家 AI Artist,更進一步提升使用者體驗,直接輕鬆生成豐富圖像,實現了更便捷的內容創作。

此外 Intel 也與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化,讓 Intel® Core™ Ultra處理器將AI加速能力充分發揮。例如,與 Adobe 等軟體使得使用者可以在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。為各行專業人士提供了更加多元、便捷的工具,成為工作中的一大助力。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 305 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
迴盪在耳際的聲音——迴響與聆聽知多少!
雅文兒童聽語文教基金會_96
・2023/06/28 ・2048字 ・閱讀時間約 4 分鐘

  • 文/樊家欣|雅文基金會聽語科學研究中心 助理研究員 

P. LEAGUE 最大咖球星林書豪加盟鋼鐵人隊,帶領鋼鐵人打出新氣象,並獲選為籃球單月最有價值球員「三連霸」,堪稱史上第一人!你,也愛打籃球嗎?當你在體育館時,是否有察覺到周圍的聲音跟平常不太一樣呢? 

迴響,能讓聲音隔空變魔術!

體育館一般有挑高的設計以及較大的室內容積,當其中有聲音產生,傳遞到周圍較硬的介質表面「反射」回來,而產生延遲和失真的現象,稱為「迴響(Reverberation)」。由於空間容積與迴響時間成正比,空間越大,迴響時間隨之延長。沒有進行吸音處理的體育館,運球聲、腳步聲、群眾吆喝聲等人造聲音將迴盪在空間中,聲音必須經過更長的時間才會完全消失,使人在體育館倍感喧騰。

 聲音傳遞出去遇到牆面,反射回來形成迴響。圖/shutterstock

善用設計,打造餘音繞樑的迴響聲學空間 

迴響在不同的空間,會因周圍反射的材質,展現不同的聲景樣貌,例如:音樂廳就是利用各種不同的「形狀」「材質」來平衡聲音,再將之導向聽眾。

早期音樂廳的「形狀」只有鞋盒式,台北國家音樂廳就是歐洲數百年經典傳統鞋盒式音樂廳,平面觀眾席的聲響很好,但是後面的眺望台座位,由於天花板空間被擋住,與前面造成相異聲場,聲音就顯得不夠飽滿;而高雄衛武營音樂廳,其內部設計柏林愛樂廳一樣,採用的是葡萄園式音響設計,所有觀眾皆處在同一個屋簷下,觀眾席如同葡萄園般由舞台四周錯落展開,享受相同的音場,因此聲響均等優美。

-----廣告,請繼續往下閱讀-----

從細部來看,「材質」平坦而堅硬的表面能反彈聲音、柔軟的表面可吸收聲音,粗糙的表面則會將入射的聲波散射。在牆壁和天花板上裝設經特別設計的嵌板,就能使聲音在抵達你的耳朵之前,先被調整並優化[3]。藉由空間整體的設計,能讓迴響成為小精靈,締造優美的聲學空間。

打造餘音繞樑的音樂廳。圖/shutterstock

迴響時間過長,對聆聽語音是個壞消息⋯⋯

美國國家標準協會(American National Standards Institutes, ANSI)於 2002 年建議迴響時間(Reverberation Time)少於 600 毫秒(= 0.6 秒)有最佳的語音理解和學習。在安靜的情境中,如果反射回來的語音較早抵達聽者的耳朵,則原聲和迴響會在聽覺系統裡整合,可能提升語音辨識度(Speech Recognition);而較晚抵達的迴響,則不會與原聲有加成的作用,反而會遮蔽或模糊原本的聲音,而使語音辨識表現下降。除了語音辨識度之外,也可能因聲音的失真,而使聆聽變得費力。

聆聽費力度(Listening Effort)為一更敏感的指標,在一些迴響時間過長的情境中,即使語音辨識度沒有下降,但聆聽者可能因著迴響,而使聆聽造成負擔,或進一步使記憶或理解力下降[5],相關文章可以參考連結。因此,迴響時間過長,會提高語音辨識的難度和增加聆聽費力度。

善用科技,讓聽損者輕鬆聽清楚

一般人在有迴響的地方聽講可能會覺得比較不清楚或費力,而對於有聽力損失的人來說,會更容易受到迴響的不利影響[4] [6]。因此,許多配戴助聽器或人工電子耳的聽損者,在聽講或聲音環境較為複雜的地方會搭配使用輔助聆聽裝置(Assistive Listening Device),如T線圈(Telecoil,又稱 T-coil)、藍芽及數位遠端麥克風等。此類裝置可將聲音訊號轉換,以無線的方式傳輸至助聽器/人工電子耳,來克服環境中迴響的干擾或距離因素,幫助聽損者聽得更清楚也更輕鬆[1] [2],相關文章也可參考連結

-----廣告,請繼續往下閱讀-----

綜言之,迴響在不同的聲學空間會產生不同的效應:在設計不良的空間會產生聽覺上的干擾,而在好的聲學空間則能使聆聽成為一種享受;另外,藉著輔助聆聽裝置也能幫助我們克服迴響等外部因素而有好的聆聽

參考文獻

  1. 吳彥玢(2019)。助聽器使用者使用數位遠端無線麥克風系統與動態調頻系統之比較〔未出版之碩士論文〕。國立台北護理健康大學語言治療與聽力研究所。
  2. 林郡儀、張秀雯(2016)。校園聽覺環境及聽覺輔具之應用發展。輔具之友,39,29-34。
  3. 凌美雪(2018年08月14日)。鞋盒式或葡萄園式、柏林愛樂黃金之音怎麼聽?自由時報。ltn.com.tw
  4. Brennan, M. A., McCreery, R. W., Massey, J. (2021). Influence of Audibility and Distortion on Recognition of Reverberant Speech for Children and Adults with Hearing Aid Amplification. Journal of the American Academy of Audiology, 33, 170-180. Doi: 10.1055/a-1678-3381.
  5. Picou, E. M., Gordon, J., Ricketts, T. A. (2016). The Effects of Noise and Reverberation on Listening Effort in Adults With Normal Hearing. Ear and Hearing,37(1), 1-13. Doi: 10.1097/AUD.0000000000000222.
  6. Xu, L., Luo, J., Xie, D., Chao, X., Wang, R., Zahorik, P., Luo, X. (2022). Reverberation Degrades Pitch Perception but Not Mandarin Tone and Vowel Recognition of Cochlear Implant Users. Ear and Hearing, 43(4), 1139-1150. Doi: 10.1097/AUD.0000000000001173.
雅文兒童聽語文教基金會_96
56 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

0
0

文字

分享

0
0
0
被音樂感動的生物晶片! Music moves microfluidic drops
Scimage
・2011/06/19 ・521字 ・閱讀時間約 1 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

微流體生物晶片被很多人認為是未來醫療檢測或是生物技術的發展趨勢之一,很多工程上的技術也用來設計不同的生物晶片,譬如用電驅動的 (之前介紹過的DNA液滴晶片)、壓力驅動的、超音波驅動的(流場抓細胞)等等,但是複雜的設計往往限制了實際上的應用;另一方面,很多朋友都知道不同水高度的試管因為共振的關係會對不同的聲音有反應,只要達到共振條件就會把聲音放大,原理跟所有共振腔的樂器一樣。

現在研究人員利用這樣的原理開始讓生物晶片也可以聽得懂音樂來工作。首先研究人員設計不同的共振腔,然在共振腔後面接上單方向的氣流通過結構( rectifier 如下圖),然後每個共振腔再接上不同的微流道。

這樣一來,只要用喇叭發出特定頻率的聲音,特定的共振腔就會把聲音的振幅壓力放大,經過單方向的結構後就會產生單方向的壓力,這樣的壓力就可以用來堆動在不同管道的水滴的運動,所以這樣設計出來的晶片,上頭的液體運動就不再需要外加的幫浦來推動,只要用喇叭放音樂就可以工作了!下面的影片展示出很多可能的液體操作都可以藉由這樣的方式來達成。

本文原發表於科學影像Scimage[2011-06-18]

文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

2
0

文字

分享

0
2
0
沒有樂器,也可以有音樂!人類與音樂的悠久故事——《傾聽地球的聲音》
商周出版_96
・2022/12/14 ・3239字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

人類的音樂比任何樂器都古老

早在我們雕刻象牙或骨頭之前許久,肯定已經使用聲音戲耍出旋律、和聲與節奏。現代人類所有族群都會唱歌、演奏樂器和舞蹈。

這種普遍性意味著我們的祖先早在發明樂器以前,已經是音樂的愛好者。如今所有已知的人類文化之中,音樂都出現在類似情境裡,比如愛情、搖籃曲、治療和舞蹈。這麼說來,人類的社會行為通常少不了音樂。

如今所有已知的人類文化之中,音樂都出現在類似情境裡,例如搖籃曲。圖/pixabay

化石證據同樣顯示,五十萬年前的人類已經擁有能發出現代口語和歌聲的舌骨。因此,在我們製造樂器之前幾十萬年,人類的喉嚨就已經能夠說或唱出語句或歌詞。

口語和音樂何者先出現,目前還無從確定。其他物種也具有感知語言和音樂所需的神經組織,顯示我們的語言和音樂能力只是原有能力的精緻化。

-----廣告,請繼續往下閱讀-----

左右腦的劃分

人類以左腦處理口說語言(其他哺乳類或許也是在同樣的部位處理同類的聲音),其他聲音則是傳送到負責處理音樂的右腦。或許左右腦共同處理,左腦利用聲音在不同時間呈現的細微差異理解語義和語法,右腦則用音頻的差異來捕捉旋律和音色等細節。

但這個劃分並非絕對,顯示語言和音樂之間沒有明確的分隔線。語言的抑揚頓挫和音韻會啟動右腦,歌曲的語義內容卻是點亮左腦,那麼,歌曲和詩文讓我們左右腦的運作相互交織。

所有的人類文化都有這種現象,都將文字融入歌曲裡,而口說語言的意義有一部分來自語言本身的音樂性。在嬰兒時期,我們根據母親聲音的速度和音頻辨識她。成年以後,我們用音頻、拍子、力度、音質和音調傳情表意。

在文化的層面,我們結合音樂和語言,將最珍貴的知識傳遞下去:澳洲的歌行(song line);中東與歐洲的禱文吟誦、聖歌和詩篇;桑族(San)入神舞的「呼喊敘事」;以及全世界不同族群各異其趣的詠唱方式。

-----廣告,請繼續往下閱讀-----
在文化的層面,我們結合音樂和語言,將最珍貴的知識傳遞下去。圖/pixabay

這麼說來,器樂(instrumental music)性質特殊,跟歌曲和口語有所區分。它是一種完全脫離語言的音樂。最早的製笛師也許研究出如何創造超越語言特性的音樂。在這方面,他們或許跟其他動物找到了共通性。

動物們也有音樂和語言

昆蟲、鳥類、蛙類和其他物種的聲音也許有自己的文法和句式,卻肯定不屬於人類語言的範疇。如果器樂確實讓我們感受到超越語言或先於語言的聲音,那麼這是一種矛盾的體驗。

人類對工具的使用為時不久又獨一無二,透過這樣的活動,我們超越語言,體驗到聲音的含義與細節。我們的動物親族或許仍然這樣體驗聲音,演化成為人類之前的祖先肯定也是。器樂或許帶領我們的感官回到工具和語言出現之前的體驗。

打擊樂的出現可能也早於口語或歌曲。由於鼓的材質多半是生活中常見的皮革或木頭,不耐久存、容易腐朽,考古學上的證據因此相當稀少。已知最早的鼓只有六千年歷史,出現在中國,但人類打鼓的歷史應該久遠得多。

-----廣告,請繼續往下閱讀-----

在非洲,野生黑猩猩、倭黑猩猩和大黑猩猩都使用鼓聲做為社交信號。這些猩猩表親使用雙手、雙腳和石頭敲擊身體、地面或樹木的板根。

這意味著我們的祖先可能會擊鼓,或許用來傳達身分或領域訊息,在此同時凝聚成團結合作、節奏一致的群體。相較於其他類人猿,人類鼓聲的節拍更有規律,也更精準。有趣的是,對許多黑猩猩族群而言,用石塊敲擊樹木可說是一種儀式。

黑猩猩會選擇特定樹木,在選定的每個地點疊出石堆。牠們不但把石頭存放起來,還會將它們拋或扔向樹木,發出砰或喀嗒聲。牠們敲擊樹木時,通常一面發出洪亮的「噓喘」,一面用手腳擊打樹幹。那麼,黑猩猩和人類都會將敲擊聲、嗓音、社會展演和儀式結合在一起。

黑猩猩和人類都會將敲擊聲、嗓音、社會展演和儀式結合在一起。圖/pixabay

這個現象告訴我們,人類音樂的這些元素,歷史比我們的物種更悠久。

-----廣告,請繼續往下閱讀-----

最古老的緣起仍成謎

人類音樂最古老的根源究竟從什麼時間點開始,目前還是個謎,器樂與其他藝術形態之間的關係卻比較清楚。世上已知最古老的樂器,就埋葬在已知最古老的具象雕像旁,二者都來自洞穴裡人類遺跡的最底層。

它們底下的沉積層已經看不到人類的痕跡,而後,在更深處是尼安德塔人的工具。在地球上的這個位置,器樂和具象藝術同時出現,就在解剖學意義上的現代人最早抵達歐洲冰雪大地的時刻。

樂器與具象雕刻品有個共通概念,那就是物質經過三度空間的修改,可以變成活動的物件,刺激我們的感官、心靈和情感,如今我們稱之為「藝術的體驗」。笛子與雕像的並置告訴我們,在奧瑞納文化時期,人類的創意不只展現在單一活動或功能上。工匠的技藝、音樂的創新與具象派藝術彼此連結。

最早期的人類藝術也為藝術形式之間的相關性提供佐證。已知最早的繪畫是抽象的,而非具象。這些繪畫來自七萬三千年前,掩埋在南非布隆伯斯洞窟(Blombos Cave)的沉積層裡。在那個洞穴裡,有人用赭石筆在易碎的岩石上畫出交叉陰影圖案。這個圖案所在的沉積層還有其他創意作品存在,比如貝殼珠子、骨錐、矛頭和赭石鐫刻的作品。

-----廣告,請繼續往下閱讀-----
布隆伯斯洞窟的貝殼珠。圖/wikipedia

只是,現階段的紀錄顯示,德國南部洞穴立體藝術品製作工藝發展的速度,可能與使用顏料的具象藝術不一樣。笛子和小雕像似乎沒有經過刻意著色,它們所在的洞穴也沒有壁畫裝飾。在這個地區,要等到更後期的馬格達連文化(Magdalenian,大約這些笛子出現後再經過兩萬年),才有明顯以赭色顏料塗畫的岩石裝飾。

馬格達林洞穴壁畫。圖/wikipedia

歐洲另一個奧瑞納文化遺址、西班牙北部的埃爾卡斯蒂洞窟(El Castillo),發展軌跡卻是不同。洞穴裡的圓盤壁畫時間超過四萬年,在同一面牆壁上有個三萬七千年前的手掌圖案。不過,據我們目前所知,這個時期在這個地區並沒有立體藝術創作。

同樣的,蘇拉威西洞穴的具象壁畫也跟任何已知雕刻作品無關。這些差異透露的,是考古紀錄有欠完整,而不是人類藝術的發展歷程。目前看來,立體藝術作品(雕像與笛子)最早發展的時間和地點似乎與繪畫不同。

見證音樂的悠久歷史

這段悠久的歷史重塑我們對更近期藝術的體驗。望著舊石器時代的笛子和小雕像,我想到大英博物館、紐約大都會藝術博物館和羅浮宮的人潮。有時我們會排隊幾小時,只為了看一眼人類藝術與文化的重要時刻。但在德國鄉間這座小博物館裡,我們見識到藝術更深遠的根源。

-----廣告,請繼續往下閱讀-----

我張開雙臂。假設我雙手之間的距離是已知人類音樂與具象藝術存在的時間,冰河期的笛子和雕刻品的位置會在我左手指尖,跟蘇拉威西的洞穴壁畫一起。各大博物館裡的主要藝術品的位置則在我右手伸直的指尖,是過去一千年來的產物。

這絕不代表過去幾百年來的藝術創作不重要,相反的,紀錄遠古人類精湛藝術的遺址和博物館既與更近期的作品相得益彰,也為人類的藝術創作尋根溯源。藝術在與每個地區的動物和環境的關係中誕生,又藉著舊石器時代人類的高超技藝與想像力向上提升。

—本文摘自《傾聽地球之聲》,2022 年 11 月,商周出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。