Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

2015年,科青們為誰在泛科學流連?–【OKAPI ╳ PanSci:讀者告訴我們的事】

雷雅淇 / y編_96
・2015/12/15 ・2934字 ・閱讀時間約 6 分鐘 ・SR值 520 ・七年級

12332-1450088832

生活離不開科學,但說到科學,憶起的還是那條黑板上想破頭也解不開的方程式。科學與科技的發展無疑是帶動人類社會前進的動力,不論是生活常識、科技應用,乃至於對公共議題的思辨,都存在著對科學知識的大量需求;但在台灣,學界或是科研機構所積攢的能量,在我們的生活和網路世界中卻近乎真空。科學,到哪裡去了?

PanSci泛科學從2010年成立以來,將科學調理成一篇篇更滑順容易入口科普文章,更透過線上社群的經營,讓知識不只能被傳遞,也能隨著社群的互動提升討論高度和內容影響力。高爾基說:「科學是我們時代的神經系統。」藉由觀察社群所關注的科學議題,或許也能多少反映出我們身處於怎樣的時代。就跟著y編一起看看2015年那些在泛科學上駐足停留的腳步吧!

2015年,科青們為誰在泛科學流連?

2015/2/28發表的一篇文章,破了泛科學開站以來的最多瀏覽,至今這個紀錄仍未被打破。今年年初,全世界最潮的就是這件有白金有藍黑,每個人看顏色都不太一樣的洋裝;〈色彩恆常性:你看到什麼顏色的洋裝?〉,以大腦的「色彩恆常性」來解釋為什麼同一張圖片,顏色會看起來完全不一樣,而不是因為水星逆行到你的太陽宮。

959527-2

與其說這個時代的人類健忘,不如說有太多會吸眼球的東西,而人的注意力有限;「時事」成了最多人在追的那隻兔子。未來幾天颱風的動向影響著颱風假,你會開始想知道「路徑潛勢」是什麼意思、地震剛發生,不管是不是「地質系」都會想關心地震的成因、過年則會得一種「害怕被問畢業、工作、有沒有對象」的「春節恐慌症」……有些事件會週而復始,有些則是突發事件。些許令人欣慰的是,仍有許多人在意這些事件中的科學。

-----廣告,請繼續往下閱讀-----

面對復興航空空難、八仙塵爆事件,人們關心面對這些事件時的心理狀態:〈人為疏失還是機械故障?你怎麼想,決定你對鬼島的希望〉、〈塵爆效應:為何傷這麼大,還要繼續罵?〉。還有有些事件本身科學佔了極重要的角色,卻不見得會被重視:連環爆的食安問題,若在政策或是結構中找不到解答,起碼在泛科學我們能一起從科學角度來談。

黑糖會不會致癌鉛水管對我們有什麼影響電子鍋會不會煮出毒飯牛奶有沒有添加物激素鳳梨吃多了會不會性早熟油品精鍊能不能讓大便變黃金……面對食安問題時我們都不是專家,但這些卻又是生活中會遭遇到,無法避免的一部分。

一般媒體在處理食安新聞時仍會時不時的使用驚悚的標題、容易煽動情緒的字眼來描述事件;這不僅無助於了解事件,反而更會引起恐慌。剖析食安的相關文章在泛科學一直都有不錯的點擊,或許正反映了大眾對食品安全的焦慮與不安,渴望瞭解更多的那份心情。

所以先別談食安了……(唉)

說到食安覺得肩頭很重?來點致癌鹽酥雞喝杯塑料珍奶壓壓驚,我們來談點輕鬆的。

-----廣告,請繼續往下閱讀-----

今年有很多電影不只叫好叫座,其背後的科學內容也讓人津津樂道。《星際效應》於去年年底上映,熱潮一路燒到今年,被認為是繼《地心引力》後最「硬」的科幻電影。電影的科學顧問基普.索恩(Kip Thorne)讓很多奠基於現實科學的想像在電影裡成真(也大推索恩的著作,泛科學2015年5月選書《星際效應:電影幕後的科學事實、推測與想像》)。

15612771559_dbdcc71611_o-2

另一部讓科青們趨之若鶩的電影《絕地救援》,劇情內容也大多都符合科學:不論是火星之旅的所用到的科技,或是火星上的現況。不過為什麼麥特戴蒙為什麼總是那麼衰,可能就很難用科學解釋了。

y編在此私心大推泛科學上的絕地救援三部曲,篇篇精彩:

不只是科幻電影,蟻人腦筋急轉彎侏羅紀世界模仿遊戲等等其他電影也激起了相當有趣的科學討論。不只是好萊塢,英、美、日劇也都已經證明,「科學」不再是票房毒藥。在今年金鐘獎表現亮眼的《麻醉風暴》,劇組便請到真實的麻醉科醫師擔任醫療顧問;期待未來台灣每齣本土劇也都有科學顧問,就不會再發生心電圖亂亂貼管子亂亂插的窘況了。

a6561443364232

在諾貝爾的季節來臨之前,泛科學推出了「2015搞笑諾貝爾獎」專題。「大笑之後,發人深省」,集結科學家的玩心與認真大成的搞笑諾貝爾獎,你怎麼能錯過!

2015第25次第一屆搞笑諾貝爾獎得獎名單:

12045203_973525202711824_6382856302316295369_o

會動的讓人難招架

現今在網路上有很多不同形式的優質內容,如果把它們比喻成後宮佳麗,下一個紅人會是誰?「影音」跳出來嫣然一笑,游刃有餘地說:「非我莫屬了。」在網路、社群媒體蓬勃發展的現在,資訊破碎、閱讀時間短、喜歡接受影像刺激等等的收視習慣都已經回不去了。

泛科學也開始推出科學動畫和短片,目前收視最好的一支動畫〈蟑螂哪有那麼噁心〉已經突破130萬瀏覽次數。不得不承認這樣的擴散力,是文字很難企及的。

-----廣告,請繼續往下閱讀-----

「人類有了五種感官,開始探索四周浩瀚的宇宙,並稱這趟冒險之旅為『科學』。」科學帶來的感動是真切的,而在未來對於知識的需求會越來越飢渴且巨大。

PanSci泛科學希望能創造一個空間,讓不管是科學學術圈、科技產業、大眾、學生以及其他網路社群,都能放心在這裡談科學聊科學玩科學;不只傳遞值得信任的科學知識,也能從探究科學的過程中得到快樂,並互相分享科學曾帶給我們的感動。

所以不要再泛舟了,跟我們一起泛科學吧!

本文亦刊登於OKAPI閱讀生活誌的閱讀觀察總banner_640x320

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
雷雅淇 / y編_96
38 篇文章 ・ 1306 位粉絲
之前是總編輯,代號是(y.),是會在每年4、7、10、1月密切追新番的那種宅。中興生技學程畢業,台師大科教所沒畢業,對科學花心的這個也喜歡那個也愛,彷徨地不知道該追誰,索性決定要不見笑的通吃,因此正在科學傳播裡打怪練功衝裝備。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
2024 臺灣科普環島列車啟程 催生科學傳播新力量
PanSci_96
・2024/10/21 ・915字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

「2024 臺灣科普環島列車」今(21)日自臺北火車站啟程,沿著西部幹線南下,將於 10 月 21 日至 26 日搭載全臺 202 所國小學生,展開 6 天的科普環島之旅。前副總統陳建仁、國科會主委吳誠文、數位發展部部長黃彥男、交通部臺灣鐵路公司副總經理賴興隆,美、荷、法、德、英國等駐臺代表、9 家車廂參與單位代表及師生們均蒞臨開幕式。

高中生成為科學傳播新力量 助力全臺科普教育

吳主委表示,自 2016 年以來,已連續 9 年舉辦科普環島列車活動,持續推動科學教育。今年活動規模擴大,火車將在 6 天內行經 17 個縣市、32 個站點,提供超過 300 項科學實驗,讓全臺學童能從小接觸科學。

更值得一提的是,近年來國科會積極邀請全臺高中學生,透過科學培訓後上車擔任「車廂關主」,帶領國小學童玩科普;高中生們由「知識接收者」轉為「科學傳播者」的角色,不僅加深其擔任小老師的使命感,也提升科學傳播、知識轉譯及組織規劃能力。

今年有 391 位來自全臺 18 所高中的學生參與培訓,其中 162 位為女學生,突破科技領域的性別刻板印象,展現女性在科學界的力量。這些科普小老師們將於 10 月 21 日至 26 日帶著全臺各縣市、鄉鎮國小學童學習更多有趣的科學實驗,為科普教育展開多面向的正循環。

-----廣告,請繼續往下閱讀-----

2024 年的科普環島列車很不一樣! 全民一起上列車、長知識

「2024 年臺灣科普環島列車」停靠站點及時刻表

今年臺灣科普環島列車首度開放全民上車體驗,活動開放報名迅速額滿,共有360位民眾參加,8節車廂搭載不同科技主題的特色實驗,包含今年最發燒的 AI 人工智慧、半導體、衛星通訊、以及與我們生活息息相關的隔震減震知識,都設計在車廂的科學實驗活動中,讓參與活動的學生、民眾能獲得最新最熱的科技知識。各車廂活動由台灣默克集團、友達永續基金會、瑞健醫療、ASM 台灣先藝科技、國家地震工程研究中心、數位發展部、緯創資通、聯華電子科技文教基金會和上銀科技等單位規劃設計。

國科會特別感謝各參與單位的支持與合作,讓此次活動更豐富多元。科普列車活動期間,在全國各地火車站及周邊地區也同時舉辦科學市集,歡迎各地民眾經過火車站時不要錯過難得的科學體驗機會!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
0

文字

分享

0
2
0
量子科技即將走入生活?最有趣的科學知識傳播 QuBear 量子熊,來了!
鳥苷三磷酸 (PanSci Promo)_96
・2023/07/10 ・676字 ・閱讀時間約 1 分鐘

不知從什麼時候,「量子」取代了磁場、奈米,成了時興的名詞。特別是把量子與資訊兜在一起,無論是在科學或是科技上,都深具潛力。或許有一天,我們將打開以量子位元建構的量子電腦,透過量子演算法進行各種計算,並把資訊用量子傳輸的方式傳遞出去。

這樣的日子可能真的不遠了。

為了因應量子科技時代的來臨,行政院在 2022 年 3 月宣布成立「量子國家隊」,由 17 個產學研團隊組成,包含了通用量子電腦硬體技術、光量子技術、量子軟體技術與應用開發這三大領域。

「量子熊 QuBear」身為量子國家隊的推廣擔當,針對年輕世代學子,激發量子科學與科技的興趣與瞭解,將全力推動 Quantum PAY,以三大多元管道「Podcast、 Article、YouTube」進行知識傳播,內容類型含括播客、文章跟影音短片。量子熊 QuBear 除了打造線上平台,更製作多個 quantum PAY 學習模組,努力朝著建立量子熊的微學習平台,以及建構長遠的科學知識傳播生態圈的目標前進。

最後,你或許會好奇,量子熊的名字是怎麼來的?

-----廣告,請繼續往下閱讀-----

量子電腦的核心技術是量子位元 (qubit)。英文發音快一點,就跟 QuBear 有點相似,於是就裝個可愛,叫做量子熊啦!

記得看到量子熊時,幫忙按讚、訂閱,還有~開啟小鈴鐺~https://www.youtube.com/channel/UCkWM3vYaCd_VoPHQ1hrUdzA

-----廣告,請繼續往下閱讀-----