其實,該介紹這些資訊的或許是氣象局或新聞媒體,但有趣的是在上面提到那則新聞中,看到了兩邊互推責任,也推動了我寫這篇文章。氣象局發布這些資訊,但資料的詮釋如何進入人們的腦子裡,仍有待加強;而媒體在告訴民眾未來颱風的動向時,也該讓我們明白「那段時間」該當心。經常看到引用日本美國的路徑圖,或者是引用 CNN 報導,我們習以為常的中度颱風,被 CNN 報的跟「怪獸」一樣,但事實是:在美國,1000毫米的累積雨量可能是某些地區好幾年的數值,而美國國家海洋大氣總署近期也不斷的宣導民眾要「高規格」看待劇烈天氣,以達減災效果;日本 NHK 更是因為早年災害訊息誤報而成立的電臺,對於防災更加重視。這些國家即便遇到這種變化多端的颱風路徑,仍然是謹慎以對、不敢輕忽,更不會有斥責預報不準的「異象」出現;我曾在311後的會議上問過 NHK 的記者,對於地震或氣象的誤報,該如何報導,NHK 記者回答我,本來這類的預報或預警就有不確定性,他們的民眾也能理解這一點。
為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。
-----廣告,請繼續往下閱讀-----
那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。
典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。
1990 年後,中央氣象局開始使用高速電腦,並且使用美國國家大氣研究中心 (NCAR) 為首開發的 Weather Research and Forecasting 模型做數值運算,利用系集式方法,藉由不同的物理模式或參數改變,模擬出如同「蝴蝶效應」的結果,運算出多種颱風的可能行進路線。預測時間拉長後,誤差累積也更多,行進路徑的可能性當然也會越廣。
不用為了天氣捐贈你的 D 槽,就交給電腦科學家接棒上場吧。從 CPU、GPU 間的通訊、使用 GPU 來做計算加速或是作為主要運算元件、到改寫符合新架構的軟體程式、以及資料壓縮與讀寫 (I/O)。同時還要加上「資料同化」時所需的衛星或是全球量測資料。明明是做氣象預報,卻需要等同發展 AI 的電腦科技做輔助,任務十分龐大。對這部分有興趣的朋友可以參考我們之前的這一集喔!