終於把笛卡爾乘積的「真身」找到了,它就是構成A × B的集合形態,把A和B的聯集連續取兩次冪集合之後得到的P (P (A ∪ B))就是以z為元素的笛卡爾乘積。
現在只剩下最後一步確認程序了,那就是P (P (A ∪ B))是否為集合?由於A和B都是集合,所以根據ZF5聯集公設(請參考《公設化集合論的奧秘 (5)》),兩個集合的聯集也是集合,所以A ∪ B是集合沒錯。
-----廣告,請繼續往下閱讀-----
再根據ZF7冪集合公設 (請參考《公設化集合論的奧秘 (7) 》) ,把一個集合X的所有子集蒐集起來所構成的類P(X)也是集合,所以P (A ∪ B) 是集合沒錯。(關於類的概念請參考《公設化集合論的奧秘 (12) 》) 現在讓我們根據ZF7把這個程序再 一次用到P (A ∪ B) 身上,結果發現P (P (A ∪ B)) 也仍然是集合。到此我們可以確定笛卡爾乘積A × B 為集合無誤,定義4完全符合ZF公設的「法定」標準。
就成了。可惜ƒ不是映成函數,因為比如(17, 3)這個序對就不在ƒ的值域(range)裡,因此我們目前無法確定N × N 和N是否等量。但我們觀察到一個令人驚喜的現象,那就是當函數是一對一而沒有映成時,不就表示前面的集合N小於或等於後面的集合N × N嗎?因為不映成表示後面的集合N × N 存在著配對之後剩餘的元素,因此它有可能比前面的集合來得大。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
終於把笛卡爾乘積的「真身」找到了,它就是構成A × B的集合形態,把A和B的聯集連續取兩次冪集合之後得到的P (P (A ∪ B))就是以z為元素的笛卡爾乘積。
-----廣告,請繼續往下閱讀-----
現在只剩下最後一步確認程序了,那就是P (P (A ∪ B))是否為集合?由於A和B都是集合,所以根據ZF5聯集公設(請參考《公設化集合論的奧秘 (5)》),兩個集合的聯集也是集合,所以A ∪ B是集合沒錯。
再根據ZF7冪集合公設 (請參考《公設化集合論的奧秘 (7) 》) ,把一個集合X的所有子集蒐集起來所構成的類P(X)也是集合,所以P (A ∪ B) 是集合沒錯。(關於類的概念請參考《公設化集合論的奧秘 (12) 》) 現在讓我們根據ZF7把這個程序再 一次用到P (A ∪ B) 身上,結果發現P (P (A ∪ B)) 也仍然是集合。到此我們可以確定笛卡爾乘積A × B 為集合無誤,定義4完全符合ZF公設的「法定」標準。
就成了。可惜ƒ不是映成函數,因為比如(17, 3)這個序對就不在ƒ的值域(range)裡,因此我們目前無法確定N × N 和N是否等量。但我們觀察到一個令人驚喜的現象,那就是當函數是一對一而沒有映成時,不就表示前面的集合N小於或等於後面的集合N × N嗎?因為不映成表示後面的集合N × N 存在著配對之後剩餘的元素,因此它有可能比前面的集合來得大。