Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

公設化集合論的奧秘(14) 笛卡爾乘積與可數無限

翁 昌黎
・2015/02/28 ・2670字 ・閱讀時間約 5 分鐘 ・SR值 536 ・七年級

credit:wiki
credit:wiki

我們曾經用等量於自然數尺寸的集合企圖製造更大的集合,結果發現即使把這種尺度的集合聯集無數次(可數有限次) ,得到的還是可數無限集合,這就是說聯集這種運算無法讓N突破其尺寸限制。當所屬集合之間沒有共同元素,也就是它們互不相交時,聯集就相當於加法,所以我們也可以說用加法這種運算無法增加可數無限集合的尺寸,詳細證明過程請參考《公設化集合論的奧秘 (10)》。既然加法不行,那很自然會想到乘法或許可以突破這種限制,因為在算術的領域裡,乘法得出的結果要比加法來得大。

接下來就來尋找這種乘法吧。但有甚麼數學構造相當於集合的乘法呢?相信很多人馬上會想起有個外型看起來很像乘法的東西,那就是笛卡爾乘積(Cartesian Product)

定義4:對任意集合A和B,我們將笛卡爾乘積A × B定義為集合 {z〡∃a ∃b (a∈A ∧ b∈B) ∧ z = (a, b)}。

仔細一看,這個看起來很熟悉的笛卡爾乘積不就是之前介紹過的序對(a, b)所構成的集合嗎?這個笛卡爾乘積的前半部元素從A得來而後半部的元素則從B而來。

-----廣告,請繼續往下閱讀-----

雖然這個定義就像我們所熟知的平面座標系一樣清楚明白,但對真正公設化集合論的內行人來說,她會馬上提出一個質疑,那就是雖然A和B都是集合,但我們無法確定A × B是否也是集合,所以必須在公設系統之內驗明正身。我們之前給過的序對定義為:

定義2 (a, b)= {{a}, {a, b}}

可參考《公設化集合論的奧秘 (8)》

由於a和 b分別屬於A和B集合,所以a, b ∈ A ∪ B。這樣的話,以a和b為元素所形成的集合就會成為A ∪ B的子集,也就是 {a, b} ⊆A ∪ B。而冪集合P(X) 的定義剛好是把X的子集合拿來當成P(X) 的元素,所以我們把A ∪ B看成P(X) 中的X就會得到

-----廣告,請繼續往下閱讀-----

{a, b}∈ P (A ∪ B)

同理,更小的集合{a}也是A ∪ B的子集合,{a} ⊆A ∪ B,所以

{a}∈ P (A ∪ B)

以上用紅字標註的兩個集合{a , b}{a}既然都是P (A ∪ B)的成員,那表示它們兩者所形成的集合{{a}, {a , b}}必定是P (A ∪ B)的子集,也就是

-----廣告,請繼續往下閱讀-----

{{a}, {a, b}} ⊆ P (A ∪ B)

仔細觀察會發現左邊的部分正是序對(a, b),也就是笛卡爾乘積的構成元素z 的基本形態,現在終於知道我們為何要不辭勞苦地繞那麼一大圈,為的就是要得出這個序對的形態,然後才能判別它是否符合集合的合法身分。

把這些定義關係整理一下可以得到:

z = (a, b) = {{a}, {a, b}} ⊆ P (A ∪ B)

-----廣告,請繼續往下閱讀-----

再運用一次冪集合到P (A ∪ B)身上,根據它把子集當成元素的規定,我們發現

z = (a, b) = {{a}, {a, b}} ∈ P (P (A ∪ B))

終於把笛卡爾乘積的「真身」找到了,它就是構成A × B的集合形態,把A和B的聯集連續取兩次冪集合之後得到的P (P (A ∪ B))就是以z為元素的笛卡爾乘積。

現在只剩下最後一步確認程序了,那就是P (P (A ∪ B))是否為集合?由於A和B都是集合,所以根據ZF5聯集公設(請參考《公設化集合論的奧秘 (5)》),兩個集合的聯集也是集合,所以A ∪ B是集合沒錯。

-----廣告,請繼續往下閱讀-----

再根據ZF7冪集合公設 (請參考《公設化集合論的奧秘 (7) 》) ,把一個集合X的所有子集蒐集起來所構成的類P(X)也是集合,所以P (A ∪ B) 是集合沒錯。(關於類的概念請參考《公設化集合論的奧秘 (12) 》) 現在讓我們根據ZF7把這個程序再 一次用到P (A ∪ B) 身上,結果發現P (P (A ∪ B)) 也仍然是集合。到此我們可以確定笛卡爾乘積A × B 為集合無誤,定義4完全符合ZF公設的「法定」標準。

確定了A × B為集合之後,我們才能放心大膽地測試由自然數集合N所構成的笛卡爾乘積N × N的尺寸是否能突破可數無限的限制,如果N × N連集合都不是的話,那我們就不用這麼辛苦白忙這一大圈了。

最後讓我們檢查一下笛卡爾乘積A × B是否真正捕捉到乘法算術的本質,就用有限集合來實驗一下吧。假設A和B都是由3個元素所構成的集合,比如A = {a, b, c} 而 B = {1, 2, 3} ,那麼A × B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)} ,點算一下剛好是9個元素,等於3 × 3,確實是乘法沒錯。

接下來能否找到N × N與N 之間的大小關係呢?我們發現可以找到一個一對一函數從N到N × N,只要取:

-----廣告,請繼續往下閱讀-----

ƒ : N → N × N

n → (n, 0)

就成了。可惜ƒ不是映成函數,因為比如(17, 3)這個序對就不在ƒ的值域(range)裡,因此我們目前無法確定N × N 和N是否等量。但我們觀察到一個令人驚喜的現象,那就是當函數是一對一而沒有映成時,不就表示前面的集合N小於或等於後面的集合N × N嗎?因為不映成表示後面的集合N × N 存在著配對之後剩餘的元素,因此它有可能比前面的集合來得大。

於是我們據此做出一個集合之間小於或等於的定義:

-----廣告,請繼續往下閱讀-----

定義5:如果在集合A和B之間存在一個一對一函數  ƒ : A→B,則說A小於或等量於B,寫成A ≤ B。相當於〡A〡≤  〡B〡,也就是A的基數小於等於B的基數。

根據以上定義,前面的函數ƒ告訴我們〡N〡≤  〡N × N〡,但若要確定〡N × N〡真的大於〡N〡的話,我們還需要證明N和N × N不等量才行。也就是若〡N〡≤ 〡N × N〡,則必須加上N和N × N不等量這個條件才能說〡N〡<〡N × N〡。

在這緊要關頭我們卻發現有一個函數g:N × N → N恰好是一對一函數,這怎麼可能呢?才剛剛發現〡N〡≤  〡N × N〡,為何半路又殺出一個搗蛋的函數g?口說無憑,我們就把函數g亮出來吧:

g:N × N → N

(n , m) → 2n3m

有證據證明這個函數是一對一嗎?有的,根據算術基本定理,任何大於1的正整數都可以唯一分解為依序排列的質數乘積模式如:P1aP2bP3c…Pkk…,其中P1 < P2 < P3< Pk <… 為由小到大的質數,而a, b, c, …, k 等為正整數。由於值域裡的2和3正好是最小的兩個質數,因此一個序對(n, m)決定一個唯一的2n3m值,故知道函數g為一對一函數。根據定義5,〡N × N〡≤ 〡N〡。於是我們同時有〡N〡≤ 〡N × N〡和〡N × N〡≤  〡N〡兩種情況。

如果是任意兩個實數r1, r2的話,如果r1≤ r2 且 r2 ≤ r1則r1 = r2。但對於包含N在內的任意集合來說,以上的算術規則是否仍然正確?也就是如果

〡N〡≤ 〡N × N〡且〡N × N〡≤  〡N〡的話,

〡N〡=〡N × N〡是否成立?

答案是肯定的,這就是著名的施洛德—伯恩斯坦定理(Schröder-Bernstein theorem),它是關於集合尺寸的一個非常重要的定理,我們目前尚未證明它,所以只能暫時假裝它是對的。但施洛德—伯恩斯坦定理一旦成立,我們剛才的美夢就全泡湯了,原本期待笛卡爾乘積可以突破可數無限的藩籬,現在卻得到〡N〡=〡N × N〡這個結論。

不僅如此,我們還能夠進一步證明推廣到任意整數n的笛卡爾乘積C1 × C2 × C3 × C4 × … × Cn 其尺寸仍然是可數無限。突破可數無限的集合運算方式似乎近在咫尺又瞬間擦身而過,這個施洛德—伯恩斯坦定理的證明又暗藏甚麼玄機?就讓我們下回再分解吧!

-----廣告,請繼續往下閱讀-----
文章難易度
翁 昌黎
18 篇文章 ・ 5 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
康托爾誕辰|科學史上的今天:3/3
張瑞棋_96
・2015/03/03 ・960字 ・閱讀時間約 2 分鐘 ・SR值 559 ・八年級

對數學家與哲學家而言,無限大就像個怪物。哲學碰上無限就會產生一堆悖論,例如芝諾悖論、無限大飯店、⋯⋯等等。無限大更是在數學製造了一堆矛盾,例如:無限序列 1 – 1 + 1 – 1 + ⋯⋯的總和到底是等於 0 或 1、或是 1/2?我們可以讓自然數與平方數的數列彼此一一對應(1→1, 2→4, 3→9, ⋯⋯),但平方數顯然又只占自然數的一小部分,那麼自然數的集合究竟比平方數的集合大還是兩者一樣大?

面對這些令人困惑的矛盾,大家的共識就是:無限只能當作一種概念,一個持續的未完成狀態,所以不能計算或比較大小。數學王子高斯就嚴肅表示:「我反對將無限量看成真實的實體來運用,這在數學之中是永遠不被允許的。無限只是一種說法而已。」直到不信邪的德國數學家康托爾出現,祭出集合論這面照妖鏡,才讓無限這個怪物現出原形,扭轉了千年以來對於無限的認知。

康托爾創立集合論,將無限當成可以一一對應其中元素的集合來處理。經由他無懈可擊的證明,無限的確有大小等級不同之分。自然數、平方數、整數、有理數的集合都是「可數無限」,屬於最初級(第零級)的無限,它們都一樣大。但無理數、實數的集合就是另一種「不可數無限」,硬是比第零級的無限還大,屬於第一級的無限。不只如此,還有更大的無限,一級一級往上沒有止盡。也就是說,世人以為無限是一隻神秘的怪物,但康托爾卻撥開迷霧,指出無限其實是一群數不完的大小不同的怪物。

然而康托爾天才般的洞見卻被當時的學界權威批評為「並無重要意義」、「騙局」。康托爾一方面承受極大的壓力,一方面又受困於自己提出來的疑問──存不存在大小介於第零級與第一級之間的無限?他試圖證明並不存在這樣的無限集合(稱為「連續統假設」),但搏鬥多年卻始終未果,乃數度精神崩潰住院治療。到了一次大戰,因實施食物配給而健康更加惡化,終於在 1918 年於精神療養院中過世,享年 73 歲。

-----廣告,請繼續往下閱讀-----

如今康托爾的貢獻已被普遍認同,他開創的集合論已成為現代數學的基石。大數學家希爾伯特曾捍衛地宣稱:「沒有人能將我們從康托爾為我們創造的樂園中驅逐出去」。他的連續統假設仍列於有待解決的 23 個最重要的數學問題之首,等待後人征服。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
公設化集合論的奧秘(13) 追查有理數失蹤之謎
翁 昌黎
・2015/02/27 ・1766字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級

credit:wiki
credit:wiki

「一尺之棰,日取其半,萬世不竭」       莊子

如果我們把莊子以上的想法稍作改變,不要把木棍每天鋸掉一半,而是在本該鋸掉的地方刻上一道細線,這樣一直刻劃下去,有一天是否能把木棍劃滿呢?如果你拿一枝美工刀實際去做的話,幾秒鐘刻上一道刀痕,估計木棍很快就會佈滿刀的刻跡,因為刻痕是有寬度的。若是刻痕真能像幾何學所說的那樣寬度等於零的話,直覺上木棍或許不會被蓋滿,在取1/2不斷縮小的眾多段落裡總是會有間隙存在。

但如果增加刀痕的切刻密度,比如把棍子按1/3比例切刻,然後將被切成1/3的部分再切1/3這樣無限執行下去呢?若將1/4, 1/5, 1/6, …, 1/n , … 的切刻比例都加進來如法炮製呢?你的直觀還能那麼確定棍子不會被刻痕佈滿嗎?

讓我們回到那個由無限顆白沙顆粒所形成的海灘,還有那條發出橙色亮光的實數線,數學證明告訴我們,這些與有理數等量的沙粒確實無法填滿實數線(請參考《公設化集合論的奧秘(11)》),同理以上的方法也無法將刻痕佈滿莊子家那根棍子。

僅管我們在《公設化集合論的奧秘(11)》中已經證明實數是不可數的,也就是說實數比有理數多,但我們並不清楚實數到底比有理數多多少?將這些美麗的白沙填充到橙色的實數彩虹時,彩虹到底變白了多少?是整個實數彩虹都呈現灰白狀,還是只有白色的帶狀,或者更像量子力學的双狹縫實驗中的細干涉條紋線呢?

-----廣告,請繼續往下閱讀-----

答案我們前文已經說過,實數彩虹完全不會改變顏色,那似乎暗示無限顆白沙就像憑空消失一樣,即使請菩提祖師加持讓每顆沙粒再變成無窮的沙粒也於事無補,無數美麗的白沙消失在實數線的橙光之中。於是我們面臨一宗最詭異的疑案,這些數量等同於一切有理數的美麗白沙為何消失了?它們跑到哪裡去了?有數學上的方法能說明這個怪異現象嗎?

要破解這件玄案,首先要知道無數白沙失蹤等同於有理數失蹤,因為它們是等量的,有著相同的基數。所以我們的目標是要追查失蹤的有理數,看它們為何消失,但一個好的偵探不會被表象蒙蔽,或許這些有理數並沒有消失,只是被藏了起來罷了,甚麼情況下能將這麼多的東西藏起來?除非有比它們多得多的東西將其淹沒,所以我們才看不到有理數,讓我們來驗證這個猜測是否屬實。

由於已經證明整體實數跟(0, 1)區間裡的實數一樣多,所以只要處理開區間(0, 1)就相當於處理了整個實數。假設這個區間內所有有理數的集合為S,因為其尺寸為可數無限,所以我們可以將其成員編碼成S={x1, x2, x3,…},S就是灑到實數線上的沙粒集合。接著找一段1/10長的開區間I1將第一粒沙x1包住,然後用更小的一段 1/100長的開區間I2將第二粒沙x2包住,依此類推,我們用10n 長的開區間In來覆蓋第xn粒沙。這樣做的結果就是用來覆蓋S元素的區間總長必定大於x1, x2, x3, …的總和,因為每段In總是把某個xn覆蓋住。

現在我們把所有的In加起來看看占有多少比例,它等於:

-----廣告,請繼續往下閱讀-----

1/10 + 1/102 + 1/103 +… + 1/10n   +… = 1/9

用簡單的等比級數公式就可以得出以上的結果。這個結果令人驚訝,因為我們發現沙粒的總和S頂多只占有區間的1/9,其餘的部分都不屬於S,合理的猜測就是8/9以上的區域屬於無理數的領地。

但更驚爆的事情還在後面,第一個開區間I1的長度1/10是我們任意選取的,我們可以選得更小,比如說1/102同樣可以包住x1,之後的區間長度也是依比例遞減。這樣覆蓋S所有元素的開區間總合就等於:

∑In = 1/102 + 1/103 + 1/104 … + 1/10n   +… = 1/90

-----廣告,請繼續往下閱讀-----

經過這個調整,有理數S所占的比例只剩不到1/90,其餘89/90以上的區域都是無理數。

敏銳的讀者已經發現,我們可以將選取的覆蓋區間不斷縮小,因而有理數集合S所占實數區間(0, 1)的比例也就會依照1/900, 1/9000, 1/90000逐漸下降而最後趨近於0。難怪那麼多沙粒都消失不見,原來與實數相比它們所占的比例是零。

這是甚麼意思呢?這是不可數無限集合最深奧難解的性質之一,雖然同屬於無限集合,但若把有理數全數放到實數堆裡的話,它們將完全被淹沒而看不到蹤影。有理數的「數量」跟實數相比實在太過渺小,幾乎可以忽略不計,這就是整個白沙星球「失蹤」的真正原因。

經由以上的推演,我們不但證明了實數比有理數多,還進一步知道由於它們之間懸殊的比例,導致有理數無法被觀察到而造成失蹤的假象。那麼這種遠遠超出我們直觀經驗的不可數無限集合 R和由全體自然數集合N所形成冪集合 P (N) 是否一樣大呢?我們能找到方法來證明它們誰大誰小嗎?這只有等下回再分解了!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
翁 昌黎
18 篇文章 ・ 5 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。