0

0
0

文字

分享

0
0
0

公設化集合論的奧秘(14) 笛卡爾乘積與可數無限

翁 昌黎
・2015/02/28 ・2670字 ・閱讀時間約 5 分鐘 ・SR值 536 ・七年級

credit:wiki
credit:wiki

我們曾經用等量於自然數尺寸的集合企圖製造更大的集合,結果發現即使把這種尺度的集合聯集無數次(可數有限次) ,得到的還是可數無限集合,這就是說聯集這種運算無法讓N突破其尺寸限制。當所屬集合之間沒有共同元素,也就是它們互不相交時,聯集就相當於加法,所以我們也可以說用加法這種運算無法增加可數無限集合的尺寸,詳細證明過程請參考《公設化集合論的奧秘 (10)》。既然加法不行,那很自然會想到乘法或許可以突破這種限制,因為在算術的領域裡,乘法得出的結果要比加法來得大。

接下來就來尋找這種乘法吧。但有甚麼數學構造相當於集合的乘法呢?相信很多人馬上會想起有個外型看起來很像乘法的東西,那就是笛卡爾乘積(Cartesian Product)

定義4:對任意集合A和B,我們將笛卡爾乘積A × B定義為集合 {z〡∃a ∃b (a∈A ∧ b∈B) ∧ z = (a, b)}。

仔細一看,這個看起來很熟悉的笛卡爾乘積不就是之前介紹過的序對(a, b)所構成的集合嗎?這個笛卡爾乘積的前半部元素從A得來而後半部的元素則從B而來。

-----廣告,請繼續往下閱讀-----

雖然這個定義就像我們所熟知的平面座標系一樣清楚明白,但對真正公設化集合論的內行人來說,她會馬上提出一個質疑,那就是雖然A和B都是集合,但我們無法確定A × B是否也是集合,所以必須在公設系統之內驗明正身。我們之前給過的序對定義為:

定義2 (a, b)= {{a}, {a, b}}

可參考《公設化集合論的奧秘 (8)》

由於a和 b分別屬於A和B集合,所以a, b ∈ A ∪ B。這樣的話,以a和b為元素所形成的集合就會成為A ∪ B的子集,也就是 {a, b} ⊆A ∪ B。而冪集合P(X) 的定義剛好是把X的子集合拿來當成P(X) 的元素,所以我們把A ∪ B看成P(X) 中的X就會得到

-----廣告,請繼續往下閱讀-----

{a, b}∈ P (A ∪ B)

同理,更小的集合{a}也是A ∪ B的子集合,{a} ⊆A ∪ B,所以

{a}∈ P (A ∪ B)

以上用紅字標註的兩個集合{a , b}{a}既然都是P (A ∪ B)的成員,那表示它們兩者所形成的集合{{a}, {a , b}}必定是P (A ∪ B)的子集,也就是

-----廣告,請繼續往下閱讀-----

{{a}, {a, b}} ⊆ P (A ∪ B)

仔細觀察會發現左邊的部分正是序對(a, b),也就是笛卡爾乘積的構成元素z 的基本形態,現在終於知道我們為何要不辭勞苦地繞那麼一大圈,為的就是要得出這個序對的形態,然後才能判別它是否符合集合的合法身分。

把這些定義關係整理一下可以得到:

z = (a, b) = {{a}, {a, b}} ⊆ P (A ∪ B)

-----廣告,請繼續往下閱讀-----

再運用一次冪集合到P (A ∪ B)身上,根據它把子集當成元素的規定,我們發現

z = (a, b) = {{a}, {a, b}} ∈ P (P (A ∪ B))

終於把笛卡爾乘積的「真身」找到了,它就是構成A × B的集合形態,把A和B的聯集連續取兩次冪集合之後得到的P (P (A ∪ B))就是以z為元素的笛卡爾乘積。

現在只剩下最後一步確認程序了,那就是P (P (A ∪ B))是否為集合?由於A和B都是集合,所以根據ZF5聯集公設(請參考《公設化集合論的奧秘 (5)》),兩個集合的聯集也是集合,所以A ∪ B是集合沒錯。

-----廣告,請繼續往下閱讀-----

再根據ZF7冪集合公設 (請參考《公設化集合論的奧秘 (7) 》) ,把一個集合X的所有子集蒐集起來所構成的類P(X)也是集合,所以P (A ∪ B) 是集合沒錯。(關於類的概念請參考《公設化集合論的奧秘 (12) 》) 現在讓我們根據ZF7把這個程序再 一次用到P (A ∪ B) 身上,結果發現P (P (A ∪ B)) 也仍然是集合。到此我們可以確定笛卡爾乘積A × B 為集合無誤,定義4完全符合ZF公設的「法定」標準。

確定了A × B為集合之後,我們才能放心大膽地測試由自然數集合N所構成的笛卡爾乘積N × N的尺寸是否能突破可數無限的限制,如果N × N連集合都不是的話,那我們就不用這麼辛苦白忙這一大圈了。

最後讓我們檢查一下笛卡爾乘積A × B是否真正捕捉到乘法算術的本質,就用有限集合來實驗一下吧。假設A和B都是由3個元素所構成的集合,比如A = {a, b, c} 而 B = {1, 2, 3} ,那麼A × B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)} ,點算一下剛好是9個元素,等於3 × 3,確實是乘法沒錯。

接下來能否找到N × N與N 之間的大小關係呢?我們發現可以找到一個一對一函數從N到N × N,只要取:

-----廣告,請繼續往下閱讀-----

ƒ : N → N × N

n → (n, 0)

就成了。可惜ƒ不是映成函數,因為比如(17, 3)這個序對就不在ƒ的值域(range)裡,因此我們目前無法確定N × N 和N是否等量。但我們觀察到一個令人驚喜的現象,那就是當函數是一對一而沒有映成時,不就表示前面的集合N小於或等於後面的集合N × N嗎?因為不映成表示後面的集合N × N 存在著配對之後剩餘的元素,因此它有可能比前面的集合來得大。

於是我們據此做出一個集合之間小於或等於的定義:

-----廣告,請繼續往下閱讀-----

定義5:如果在集合A和B之間存在一個一對一函數  ƒ : A→B,則說A小於或等量於B,寫成A ≤ B。相當於〡A〡≤  〡B〡,也就是A的基數小於等於B的基數。

根據以上定義,前面的函數ƒ告訴我們〡N〡≤  〡N × N〡,但若要確定〡N × N〡真的大於〡N〡的話,我們還需要證明N和N × N不等量才行。也就是若〡N〡≤ 〡N × N〡,則必須加上N和N × N不等量這個條件才能說〡N〡<〡N × N〡。

在這緊要關頭我們卻發現有一個函數g:N × N → N恰好是一對一函數,這怎麼可能呢?才剛剛發現〡N〡≤  〡N × N〡,為何半路又殺出一個搗蛋的函數g?口說無憑,我們就把函數g亮出來吧:

g:N × N → N

(n , m) → 2n3m

有證據證明這個函數是一對一嗎?有的,根據算術基本定理,任何大於1的正整數都可以唯一分解為依序排列的質數乘積模式如:P1aP2bP3c…Pkk…,其中P1 < P2 < P3< Pk <… 為由小到大的質數,而a, b, c, …, k 等為正整數。由於值域裡的2和3正好是最小的兩個質數,因此一個序對(n, m)決定一個唯一的2n3m值,故知道函數g為一對一函數。根據定義5,〡N × N〡≤ 〡N〡。於是我們同時有〡N〡≤ 〡N × N〡和〡N × N〡≤  〡N〡兩種情況。

如果是任意兩個實數r1, r2的話,如果r1≤ r2 且 r2 ≤ r1則r1 = r2。但對於包含N在內的任意集合來說,以上的算術規則是否仍然正確?也就是如果

〡N〡≤ 〡N × N〡且〡N × N〡≤  〡N〡的話,

〡N〡=〡N × N〡是否成立?

答案是肯定的,這就是著名的施洛德—伯恩斯坦定理(Schröder-Bernstein theorem),它是關於集合尺寸的一個非常重要的定理,我們目前尚未證明它,所以只能暫時假裝它是對的。但施洛德—伯恩斯坦定理一旦成立,我們剛才的美夢就全泡湯了,原本期待笛卡爾乘積可以突破可數無限的藩籬,現在卻得到〡N〡=〡N × N〡這個結論。

不僅如此,我們還能夠進一步證明推廣到任意整數n的笛卡爾乘積C1 × C2 × C3 × C4 × … × Cn 其尺寸仍然是可數無限。突破可數無限的集合運算方式似乎近在咫尺又瞬間擦身而過,這個施洛德—伯恩斯坦定理的證明又暗藏甚麼玄機?就讓我們下回再分解吧!

-----廣告,請繼續往下閱讀-----
文章難易度
翁 昌黎
18 篇文章 ・ 7 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
康托爾誕辰|科學史上的今天:3/3
張瑞棋_96
・2015/03/03 ・960字 ・閱讀時間約 2 分鐘 ・SR值 559 ・八年級

-----廣告,請繼續往下閱讀-----

對數學家與哲學家而言,無限大就像個怪物。哲學碰上無限就會產生一堆悖論,例如芝諾悖論、無限大飯店、⋯⋯等等。無限大更是在數學製造了一堆矛盾,例如:無限序列 1 – 1 + 1 – 1 + ⋯⋯的總和到底是等於 0 或 1、或是 1/2?我們可以讓自然數與平方數的數列彼此一一對應(1→1, 2→4, 3→9, ⋯⋯),但平方數顯然又只占自然數的一小部分,那麼自然數的集合究竟比平方數的集合大還是兩者一樣大?

面對這些令人困惑的矛盾,大家的共識就是:無限只能當作一種概念,一個持續的未完成狀態,所以不能計算或比較大小。數學王子高斯就嚴肅表示:「我反對將無限量看成真實的實體來運用,這在數學之中是永遠不被允許的。無限只是一種說法而已。」直到不信邪的德國數學家康托爾出現,祭出集合論這面照妖鏡,才讓無限這個怪物現出原形,扭轉了千年以來對於無限的認知。

康托爾創立集合論,將無限當成可以一一對應其中元素的集合來處理。經由他無懈可擊的證明,無限的確有大小等級不同之分。自然數、平方數、整數、有理數的集合都是「可數無限」,屬於最初級(第零級)的無限,它們都一樣大。但無理數、實數的集合就是另一種「不可數無限」,硬是比第零級的無限還大,屬於第一級的無限。不只如此,還有更大的無限,一級一級往上沒有止盡。也就是說,世人以為無限是一隻神秘的怪物,但康托爾卻撥開迷霧,指出無限其實是一群數不完的大小不同的怪物。

然而康托爾天才般的洞見卻被當時的學界權威批評為「並無重要意義」、「騙局」。康托爾一方面承受極大的壓力,一方面又受困於自己提出來的疑問──存不存在大小介於第零級與第一級之間的無限?他試圖證明並不存在這樣的無限集合(稱為「連續統假設」),但搏鬥多年卻始終未果,乃數度精神崩潰住院治療。到了一次大戰,因實施食物配給而健康更加惡化,終於在 1918 年於精神療養院中過世,享年 73 歲。

-----廣告,請繼續往下閱讀-----

如今康托爾的貢獻已被普遍認同,他開創的集合論已成為現代數學的基石。大數學家希爾伯特曾捍衛地宣稱:「沒有人能將我們從康托爾為我們創造的樂園中驅逐出去」。他的連續統假設仍列於有待解決的 23 個最重要的數學問題之首,等待後人征服。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1094 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
公設化集合論的奧秘(13) 追查有理數失蹤之謎
翁 昌黎
・2015/02/27 ・1766字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級

credit:wiki
credit:wiki

「一尺之棰,日取其半,萬世不竭」       莊子

如果我們把莊子以上的想法稍作改變,不要把木棍每天鋸掉一半,而是在本該鋸掉的地方刻上一道細線,這樣一直刻劃下去,有一天是否能把木棍劃滿呢?如果你拿一枝美工刀實際去做的話,幾秒鐘刻上一道刀痕,估計木棍很快就會佈滿刀的刻跡,因為刻痕是有寬度的。若是刻痕真能像幾何學所說的那樣寬度等於零的話,直覺上木棍或許不會被蓋滿,在取1/2不斷縮小的眾多段落裡總是會有間隙存在。

但如果增加刀痕的切刻密度,比如把棍子按1/3比例切刻,然後將被切成1/3的部分再切1/3這樣無限執行下去呢?若將1/4, 1/5, 1/6, …, 1/n , … 的切刻比例都加進來如法炮製呢?你的直觀還能那麼確定棍子不會被刻痕佈滿嗎?

讓我們回到那個由無限顆白沙顆粒所形成的海灘,還有那條發出橙色亮光的實數線,數學證明告訴我們,這些與有理數等量的沙粒確實無法填滿實數線(請參考《公設化集合論的奧秘(11)》),同理以上的方法也無法將刻痕佈滿莊子家那根棍子。

僅管我們在《公設化集合論的奧秘(11)》中已經證明實數是不可數的,也就是說實數比有理數多,但我們並不清楚實數到底比有理數多多少?將這些美麗的白沙填充到橙色的實數彩虹時,彩虹到底變白了多少?是整個實數彩虹都呈現灰白狀,還是只有白色的帶狀,或者更像量子力學的双狹縫實驗中的細干涉條紋線呢?

-----廣告,請繼續往下閱讀-----

答案我們前文已經說過,實數彩虹完全不會改變顏色,那似乎暗示無限顆白沙就像憑空消失一樣,即使請菩提祖師加持讓每顆沙粒再變成無窮的沙粒也於事無補,無數美麗的白沙消失在實數線的橙光之中。於是我們面臨一宗最詭異的疑案,這些數量等同於一切有理數的美麗白沙為何消失了?它們跑到哪裡去了?有數學上的方法能說明這個怪異現象嗎?

要破解這件玄案,首先要知道無數白沙失蹤等同於有理數失蹤,因為它們是等量的,有著相同的基數。所以我們的目標是要追查失蹤的有理數,看它們為何消失,但一個好的偵探不會被表象蒙蔽,或許這些有理數並沒有消失,只是被藏了起來罷了,甚麼情況下能將這麼多的東西藏起來?除非有比它們多得多的東西將其淹沒,所以我們才看不到有理數,讓我們來驗證這個猜測是否屬實。

由於已經證明整體實數跟(0, 1)區間裡的實數一樣多,所以只要處理開區間(0, 1)就相當於處理了整個實數。假設這個區間內所有有理數的集合為S,因為其尺寸為可數無限,所以我們可以將其成員編碼成S={x1, x2, x3,…},S就是灑到實數線上的沙粒集合。接著找一段1/10長的開區間I1將第一粒沙x1包住,然後用更小的一段 1/100長的開區間I2將第二粒沙x2包住,依此類推,我們用10n 長的開區間In來覆蓋第xn粒沙。這樣做的結果就是用來覆蓋S元素的區間總長必定大於x1, x2, x3, …的總和,因為每段In總是把某個xn覆蓋住。

現在我們把所有的In加起來看看占有多少比例,它等於:

-----廣告,請繼續往下閱讀-----

1/10 + 1/102 + 1/103 +… + 1/10n   +… = 1/9

用簡單的等比級數公式就可以得出以上的結果。這個結果令人驚訝,因為我們發現沙粒的總和S頂多只占有區間的1/9,其餘的部分都不屬於S,合理的猜測就是8/9以上的區域屬於無理數的領地。

但更驚爆的事情還在後面,第一個開區間I1的長度1/10是我們任意選取的,我們可以選得更小,比如說1/102同樣可以包住x1,之後的區間長度也是依比例遞減。這樣覆蓋S所有元素的開區間總合就等於:

∑In = 1/102 + 1/103 + 1/104 … + 1/10n   +… = 1/90

-----廣告,請繼續往下閱讀-----

經過這個調整,有理數S所占的比例只剩不到1/90,其餘89/90以上的區域都是無理數。

敏銳的讀者已經發現,我們可以將選取的覆蓋區間不斷縮小,因而有理數集合S所占實數區間(0, 1)的比例也就會依照1/900, 1/9000, 1/90000逐漸下降而最後趨近於0。難怪那麼多沙粒都消失不見,原來與實數相比它們所占的比例是零。

這是甚麼意思呢?這是不可數無限集合最深奧難解的性質之一,雖然同屬於無限集合,但若把有理數全數放到實數堆裡的話,它們將完全被淹沒而看不到蹤影。有理數的「數量」跟實數相比實在太過渺小,幾乎可以忽略不計,這就是整個白沙星球「失蹤」的真正原因。

經由以上的推演,我們不但證明了實數比有理數多,還進一步知道由於它們之間懸殊的比例,導致有理數無法被觀察到而造成失蹤的假象。那麼這種遠遠超出我們直觀經驗的不可數無限集合 R和由全體自然數集合N所形成冪集合 P (N) 是否一樣大呢?我們能找到方法來證明它們誰大誰小嗎?這只有等下回再分解了!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
翁 昌黎
18 篇文章 ・ 7 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。