Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

公設化集合論的奧秘(14) 笛卡爾乘積與可數無限

翁 昌黎
・2015/02/28 ・2670字 ・閱讀時間約 5 分鐘 ・SR值 536 ・七年級

credit:wiki
credit:wiki

我們曾經用等量於自然數尺寸的集合企圖製造更大的集合,結果發現即使把這種尺度的集合聯集無數次(可數有限次) ,得到的還是可數無限集合,這就是說聯集這種運算無法讓N突破其尺寸限制。當所屬集合之間沒有共同元素,也就是它們互不相交時,聯集就相當於加法,所以我們也可以說用加法這種運算無法增加可數無限集合的尺寸,詳細證明過程請參考《公設化集合論的奧秘 (10)》。既然加法不行,那很自然會想到乘法或許可以突破這種限制,因為在算術的領域裡,乘法得出的結果要比加法來得大。

接下來就來尋找這種乘法吧。但有甚麼數學構造相當於集合的乘法呢?相信很多人馬上會想起有個外型看起來很像乘法的東西,那就是笛卡爾乘積(Cartesian Product)

定義4:對任意集合A和B,我們將笛卡爾乘積A × B定義為集合 {z〡∃a ∃b (a∈A ∧ b∈B) ∧ z = (a, b)}。

仔細一看,這個看起來很熟悉的笛卡爾乘積不就是之前介紹過的序對(a, b)所構成的集合嗎?這個笛卡爾乘積的前半部元素從A得來而後半部的元素則從B而來。

-----廣告,請繼續往下閱讀-----

雖然這個定義就像我們所熟知的平面座標系一樣清楚明白,但對真正公設化集合論的內行人來說,她會馬上提出一個質疑,那就是雖然A和B都是集合,但我們無法確定A × B是否也是集合,所以必須在公設系統之內驗明正身。我們之前給過的序對定義為:

定義2 (a, b)= {{a}, {a, b}}

可參考《公設化集合論的奧秘 (8)》

由於a和 b分別屬於A和B集合,所以a, b ∈ A ∪ B。這樣的話,以a和b為元素所形成的集合就會成為A ∪ B的子集,也就是 {a, b} ⊆A ∪ B。而冪集合P(X) 的定義剛好是把X的子集合拿來當成P(X) 的元素,所以我們把A ∪ B看成P(X) 中的X就會得到

-----廣告,請繼續往下閱讀-----

{a, b}∈ P (A ∪ B)

同理,更小的集合{a}也是A ∪ B的子集合,{a} ⊆A ∪ B,所以

{a}∈ P (A ∪ B)

以上用紅字標註的兩個集合{a , b}{a}既然都是P (A ∪ B)的成員,那表示它們兩者所形成的集合{{a}, {a , b}}必定是P (A ∪ B)的子集,也就是

-----廣告,請繼續往下閱讀-----

{{a}, {a, b}} ⊆ P (A ∪ B)

仔細觀察會發現左邊的部分正是序對(a, b),也就是笛卡爾乘積的構成元素z 的基本形態,現在終於知道我們為何要不辭勞苦地繞那麼一大圈,為的就是要得出這個序對的形態,然後才能判別它是否符合集合的合法身分。

把這些定義關係整理一下可以得到:

z = (a, b) = {{a}, {a, b}} ⊆ P (A ∪ B)

-----廣告,請繼續往下閱讀-----

再運用一次冪集合到P (A ∪ B)身上,根據它把子集當成元素的規定,我們發現

z = (a, b) = {{a}, {a, b}} ∈ P (P (A ∪ B))

終於把笛卡爾乘積的「真身」找到了,它就是構成A × B的集合形態,把A和B的聯集連續取兩次冪集合之後得到的P (P (A ∪ B))就是以z為元素的笛卡爾乘積。

現在只剩下最後一步確認程序了,那就是P (P (A ∪ B))是否為集合?由於A和B都是集合,所以根據ZF5聯集公設(請參考《公設化集合論的奧秘 (5)》),兩個集合的聯集也是集合,所以A ∪ B是集合沒錯。

-----廣告,請繼續往下閱讀-----

再根據ZF7冪集合公設 (請參考《公設化集合論的奧秘 (7) 》) ,把一個集合X的所有子集蒐集起來所構成的類P(X)也是集合,所以P (A ∪ B) 是集合沒錯。(關於類的概念請參考《公設化集合論的奧秘 (12) 》) 現在讓我們根據ZF7把這個程序再 一次用到P (A ∪ B) 身上,結果發現P (P (A ∪ B)) 也仍然是集合。到此我們可以確定笛卡爾乘積A × B 為集合無誤,定義4完全符合ZF公設的「法定」標準。

確定了A × B為集合之後,我們才能放心大膽地測試由自然數集合N所構成的笛卡爾乘積N × N的尺寸是否能突破可數無限的限制,如果N × N連集合都不是的話,那我們就不用這麼辛苦白忙這一大圈了。

最後讓我們檢查一下笛卡爾乘積A × B是否真正捕捉到乘法算術的本質,就用有限集合來實驗一下吧。假設A和B都是由3個元素所構成的集合,比如A = {a, b, c} 而 B = {1, 2, 3} ,那麼A × B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)} ,點算一下剛好是9個元素,等於3 × 3,確實是乘法沒錯。

接下來能否找到N × N與N 之間的大小關係呢?我們發現可以找到一個一對一函數從N到N × N,只要取:

-----廣告,請繼續往下閱讀-----

ƒ : N → N × N

n → (n, 0)

就成了。可惜ƒ不是映成函數,因為比如(17, 3)這個序對就不在ƒ的值域(range)裡,因此我們目前無法確定N × N 和N是否等量。但我們觀察到一個令人驚喜的現象,那就是當函數是一對一而沒有映成時,不就表示前面的集合N小於或等於後面的集合N × N嗎?因為不映成表示後面的集合N × N 存在著配對之後剩餘的元素,因此它有可能比前面的集合來得大。

於是我們據此做出一個集合之間小於或等於的定義:

-----廣告,請繼續往下閱讀-----

定義5:如果在集合A和B之間存在一個一對一函數  ƒ : A→B,則說A小於或等量於B,寫成A ≤ B。相當於〡A〡≤  〡B〡,也就是A的基數小於等於B的基數。

根據以上定義,前面的函數ƒ告訴我們〡N〡≤  〡N × N〡,但若要確定〡N × N〡真的大於〡N〡的話,我們還需要證明N和N × N不等量才行。也就是若〡N〡≤ 〡N × N〡,則必須加上N和N × N不等量這個條件才能說〡N〡<〡N × N〡。

在這緊要關頭我們卻發現有一個函數g:N × N → N恰好是一對一函數,這怎麼可能呢?才剛剛發現〡N〡≤  〡N × N〡,為何半路又殺出一個搗蛋的函數g?口說無憑,我們就把函數g亮出來吧:

g:N × N → N

(n , m) → 2n3m

有證據證明這個函數是一對一嗎?有的,根據算術基本定理,任何大於1的正整數都可以唯一分解為依序排列的質數乘積模式如:P1aP2bP3c…Pkk…,其中P1 < P2 < P3< Pk <… 為由小到大的質數,而a, b, c, …, k 等為正整數。由於值域裡的2和3正好是最小的兩個質數,因此一個序對(n, m)決定一個唯一的2n3m值,故知道函數g為一對一函數。根據定義5,〡N × N〡≤ 〡N〡。於是我們同時有〡N〡≤ 〡N × N〡和〡N × N〡≤  〡N〡兩種情況。

如果是任意兩個實數r1, r2的話,如果r1≤ r2 且 r2 ≤ r1則r1 = r2。但對於包含N在內的任意集合來說,以上的算術規則是否仍然正確?也就是如果

〡N〡≤ 〡N × N〡且〡N × N〡≤  〡N〡的話,

〡N〡=〡N × N〡是否成立?

答案是肯定的,這就是著名的施洛德—伯恩斯坦定理(Schröder-Bernstein theorem),它是關於集合尺寸的一個非常重要的定理,我們目前尚未證明它,所以只能暫時假裝它是對的。但施洛德—伯恩斯坦定理一旦成立,我們剛才的美夢就全泡湯了,原本期待笛卡爾乘積可以突破可數無限的藩籬,現在卻得到〡N〡=〡N × N〡這個結論。

不僅如此,我們還能夠進一步證明推廣到任意整數n的笛卡爾乘積C1 × C2 × C3 × C4 × … × Cn 其尺寸仍然是可數無限。突破可數無限的集合運算方式似乎近在咫尺又瞬間擦身而過,這個施洛德—伯恩斯坦定理的證明又暗藏甚麼玄機?就讓我們下回再分解吧!

-----廣告,請繼續往下閱讀-----
文章難易度
翁 昌黎
18 篇文章 ・ 5 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
康托爾誕辰|科學史上的今天:3/3
張瑞棋_96
・2015/03/03 ・960字 ・閱讀時間約 2 分鐘 ・SR值 559 ・八年級

對數學家與哲學家而言,無限大就像個怪物。哲學碰上無限就會產生一堆悖論,例如芝諾悖論、無限大飯店、⋯⋯等等。無限大更是在數學製造了一堆矛盾,例如:無限序列 1 – 1 + 1 – 1 + ⋯⋯的總和到底是等於 0 或 1、或是 1/2?我們可以讓自然數與平方數的數列彼此一一對應(1→1, 2→4, 3→9, ⋯⋯),但平方數顯然又只占自然數的一小部分,那麼自然數的集合究竟比平方數的集合大還是兩者一樣大?

面對這些令人困惑的矛盾,大家的共識就是:無限只能當作一種概念,一個持續的未完成狀態,所以不能計算或比較大小。數學王子高斯就嚴肅表示:「我反對將無限量看成真實的實體來運用,這在數學之中是永遠不被允許的。無限只是一種說法而已。」直到不信邪的德國數學家康托爾出現,祭出集合論這面照妖鏡,才讓無限這個怪物現出原形,扭轉了千年以來對於無限的認知。

康托爾創立集合論,將無限當成可以一一對應其中元素的集合來處理。經由他無懈可擊的證明,無限的確有大小等級不同之分。自然數、平方數、整數、有理數的集合都是「可數無限」,屬於最初級(第零級)的無限,它們都一樣大。但無理數、實數的集合就是另一種「不可數無限」,硬是比第零級的無限還大,屬於第一級的無限。不只如此,還有更大的無限,一級一級往上沒有止盡。也就是說,世人以為無限是一隻神秘的怪物,但康托爾卻撥開迷霧,指出無限其實是一群數不完的大小不同的怪物。

然而康托爾天才般的洞見卻被當時的學界權威批評為「並無重要意義」、「騙局」。康托爾一方面承受極大的壓力,一方面又受困於自己提出來的疑問──存不存在大小介於第零級與第一級之間的無限?他試圖證明並不存在這樣的無限集合(稱為「連續統假設」),但搏鬥多年卻始終未果,乃數度精神崩潰住院治療。到了一次大戰,因實施食物配給而健康更加惡化,終於在 1918 年於精神療養院中過世,享年 73 歲。

-----廣告,請繼續往下閱讀-----

如今康托爾的貢獻已被普遍認同,他開創的集合論已成為現代數學的基石。大數學家希爾伯特曾捍衛地宣稱:「沒有人能將我們從康托爾為我們創造的樂園中驅逐出去」。他的連續統假設仍列於有待解決的 23 個最重要的數學問題之首,等待後人征服。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1031 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
公設化集合論的奧秘(13) 追查有理數失蹤之謎
翁 昌黎
・2015/02/27 ・1766字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

credit:wiki
credit:wiki

「一尺之棰,日取其半,萬世不竭」       莊子

如果我們把莊子以上的想法稍作改變,不要把木棍每天鋸掉一半,而是在本該鋸掉的地方刻上一道細線,這樣一直刻劃下去,有一天是否能把木棍劃滿呢?如果你拿一枝美工刀實際去做的話,幾秒鐘刻上一道刀痕,估計木棍很快就會佈滿刀的刻跡,因為刻痕是有寬度的。若是刻痕真能像幾何學所說的那樣寬度等於零的話,直覺上木棍或許不會被蓋滿,在取1/2不斷縮小的眾多段落裡總是會有間隙存在。

但如果增加刀痕的切刻密度,比如把棍子按1/3比例切刻,然後將被切成1/3的部分再切1/3這樣無限執行下去呢?若將1/4, 1/5, 1/6, …, 1/n , … 的切刻比例都加進來如法炮製呢?你的直觀還能那麼確定棍子不會被刻痕佈滿嗎?

讓我們回到那個由無限顆白沙顆粒所形成的海灘,還有那條發出橙色亮光的實數線,數學證明告訴我們,這些與有理數等量的沙粒確實無法填滿實數線(請參考《公設化集合論的奧秘(11)》),同理以上的方法也無法將刻痕佈滿莊子家那根棍子。

僅管我們在《公設化集合論的奧秘(11)》中已經證明實數是不可數的,也就是說實數比有理數多,但我們並不清楚實數到底比有理數多多少?將這些美麗的白沙填充到橙色的實數彩虹時,彩虹到底變白了多少?是整個實數彩虹都呈現灰白狀,還是只有白色的帶狀,或者更像量子力學的双狹縫實驗中的細干涉條紋線呢?

-----廣告,請繼續往下閱讀-----

答案我們前文已經說過,實數彩虹完全不會改變顏色,那似乎暗示無限顆白沙就像憑空消失一樣,即使請菩提祖師加持讓每顆沙粒再變成無窮的沙粒也於事無補,無數美麗的白沙消失在實數線的橙光之中。於是我們面臨一宗最詭異的疑案,這些數量等同於一切有理數的美麗白沙為何消失了?它們跑到哪裡去了?有數學上的方法能說明這個怪異現象嗎?

要破解這件玄案,首先要知道無數白沙失蹤等同於有理數失蹤,因為它們是等量的,有著相同的基數。所以我們的目標是要追查失蹤的有理數,看它們為何消失,但一個好的偵探不會被表象蒙蔽,或許這些有理數並沒有消失,只是被藏了起來罷了,甚麼情況下能將這麼多的東西藏起來?除非有比它們多得多的東西將其淹沒,所以我們才看不到有理數,讓我們來驗證這個猜測是否屬實。

由於已經證明整體實數跟(0, 1)區間裡的實數一樣多,所以只要處理開區間(0, 1)就相當於處理了整個實數。假設這個區間內所有有理數的集合為S,因為其尺寸為可數無限,所以我們可以將其成員編碼成S={x1, x2, x3,…},S就是灑到實數線上的沙粒集合。接著找一段1/10長的開區間I1將第一粒沙x1包住,然後用更小的一段 1/100長的開區間I2將第二粒沙x2包住,依此類推,我們用10n 長的開區間In來覆蓋第xn粒沙。這樣做的結果就是用來覆蓋S元素的區間總長必定大於x1, x2, x3, …的總和,因為每段In總是把某個xn覆蓋住。

現在我們把所有的In加起來看看占有多少比例,它等於:

-----廣告,請繼續往下閱讀-----

1/10 + 1/102 + 1/103 +… + 1/10n   +… = 1/9

用簡單的等比級數公式就可以得出以上的結果。這個結果令人驚訝,因為我們發現沙粒的總和S頂多只占有區間的1/9,其餘的部分都不屬於S,合理的猜測就是8/9以上的區域屬於無理數的領地。

但更驚爆的事情還在後面,第一個開區間I1的長度1/10是我們任意選取的,我們可以選得更小,比如說1/102同樣可以包住x1,之後的區間長度也是依比例遞減。這樣覆蓋S所有元素的開區間總合就等於:

∑In = 1/102 + 1/103 + 1/104 … + 1/10n   +… = 1/90

-----廣告,請繼續往下閱讀-----

經過這個調整,有理數S所占的比例只剩不到1/90,其餘89/90以上的區域都是無理數。

敏銳的讀者已經發現,我們可以將選取的覆蓋區間不斷縮小,因而有理數集合S所占實數區間(0, 1)的比例也就會依照1/900, 1/9000, 1/90000逐漸下降而最後趨近於0。難怪那麼多沙粒都消失不見,原來與實數相比它們所占的比例是零。

這是甚麼意思呢?這是不可數無限集合最深奧難解的性質之一,雖然同屬於無限集合,但若把有理數全數放到實數堆裡的話,它們將完全被淹沒而看不到蹤影。有理數的「數量」跟實數相比實在太過渺小,幾乎可以忽略不計,這就是整個白沙星球「失蹤」的真正原因。

經由以上的推演,我們不但證明了實數比有理數多,還進一步知道由於它們之間懸殊的比例,導致有理數無法被觀察到而造成失蹤的假象。那麼這種遠遠超出我們直觀經驗的不可數無限集合 R和由全體自然數集合N所形成冪集合 P (N) 是否一樣大呢?我們能找到方法來證明它們誰大誰小嗎?這只有等下回再分解了!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
翁 昌黎
18 篇文章 ・ 5 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。