由新到舊 由舊到新 日期篩選

・2015/03/16
有理數是能夠用分數形式m/n來表達的數,其中m和n為整數且n ≠ 0。雖然到現在為止我們的公設只建構出自然數,但用自然數來建構有理數並不困難,它的基本概念是取序對(m, n)的型態來定義有理數。由於自然數和序對我們都已相當熟悉,況且有理數的概念在直觀上也很容易理解,因此我們並不打算在此介紹和證明如何用自然數定義出有理數的技術細節。可是對實數裡的「另一半」— 無理數來說,情況就大不相同了。
・2015/02/27
我們在《公設化集合論的奧秘(11)》中已經證明實數是不可數的,也就是說實數比有理數多,但我們並不清楚實數到底比有理數多多少?
・2015/02/10
想像你在一個一望無際的沙灘,晶瑩的海岸由近乎純白質地的細沙構成,在陽光下閃爍著寶石般的光輝。天空有一條發出橙色亮光的細線,似有似無,那是柏拉圖世界裡的實數線投影到這個神奇星球的擬似影像。