0

0
1

文字

分享

0
0
1

公設化集合論的奧秘(11) 探索神奇的實數尺寸

翁 昌黎
・2015/02/10 ・2563字 ・閱讀時間約 5 分鐘 ・SR值 540 ・八年級

credit:pixabay.com
credit:pixabay.com

文 / 翁昌黎(《孔恩vs.波普》中文譯者)

想像你在一個一望無際的沙灘,晶瑩的海岸由近乎純白質地的細沙構成在陽光下閃爍著寶石般的光輝。天空有一條發出橙色亮光的細線,似有似無,那是柏拉圖世界裡的實數線投影到這個神奇星球的擬似影像。

假設每顆沙粒代表一個集合,將這些沙粒灑向這條實數線企圖將它填滿,你會發現這些純白的細沙集合像是消失了一般,完全不影響橙色實數線的顏色,因為沙粒實在太稀少了。

就算你得到一種魔法,能在瞬間將這些無窮沙粒悉數灑在數線上,可是實數線上依然觀察不到白沙的蹤跡,因為它們仍然太過稀少。我們再度向孫悟空的師父菩提祖師求救,請他老人家傳授一個厲害點的法術,可以將剛剛灑出去的每一粒沙都變成等同於這個無窮沙灘世界的所有沙粒。但你將失望地發現,雖然親眼見識了菩提祖師將一沙粒化成無窮沙數世界的絕活,可是實數線上卻依然沒有任何一點斑白的痕跡,就好像這些從無數再化成無數的沙粒憑空消失一樣。

-----廣告,請繼續往下閱讀-----

這到底是怎麼回事?理由是它們仍然太過稀少,所以無法蓋住實數線,甚至無法顯示出它們的存在。如果我們能夠把無窮顆沙粒集合和實數線投射到我們這個時空,那你所看到的場景大概就會有如以上的描述,可數無限顆沙粒再變現出可數無限顆沙粒的總合對於實數線來說依然是杯水車薪。

為了證明整個實數集合確實比可數無限集合還大,我們先來觀察一個現象:把(–1, 1)這個實數開區間彎成半圓形,如下圖藍線部分所示。假設藍線左邊的端點是–1,而右邊的端點是1,垂直的紅虛線劃過的點是原點 0,所以垂直紅虛線的左半邊正好是負實數而右半邊則是正實數。

v

從虛擬的圓心處往黑色實數線用紅色虛線連接,你會發現每一個區間(–1, 1)內的數都正好對應到黑線上的另一個實數。而當虛線接近水平線時,左右兩邊對應到黑色數線的絕對值就會變很大,且所對應的實數越來越趨近於(–∞, ∞)。因此(–1, 1)區間內的實數和(–∞, ∞)區間內的實數(等於是R)有一對一且映成的關係。那麼根據定義,(–1, 1)區間裡的實數與全體實數R等量。

假設區間(–1, 1)中所有實數的集合為I,則基數〡I〡=〡R〡,也就是說區間(–1, 1)裡的實數個數與所有實數集合的個數一樣多。以上這個方法稱之為幾何學證明。雖然直觀上沒有問題,但站在集合論的立場,我們應該要想有沒有更嚴格的數學證明呢?這下可傷腦筋了,根據我們目前的數學知識配備,若要證明〡I〡=〡R〡,則需要找到一個從I到R的一對一且映成的函數才行。那麼到哪裡去找這麼個函數呢?

-----廣告,請繼續往下閱讀-----

正所謂眾裡尋它千百度,驀然回首那傢伙就在正切函數(tan)處。我們發現當tan的x值趨近於–π/2時,它的y值會向–∞逼近,而當tan 的x值趨近π/2時,它的y值會向∞逼近,而且任何一個x值只對應到一個y值。這不就是說正切函數tan在(–π/2, π/2)與全體實數R之間形成一對一且映成?tan:(–π/2, π/2)→(–∞, ∞)不就是夢寐以求的答案?

但剛剛的幾何證明說的是(–1, 1)→(–∞, ∞)有一對一且映成函數而不是(–π/2, π/2)→(–∞, ∞),眼看就要得手了卻差一步,該怎麼辦呢?只要設法把(–π/2, π/2)變成(–1, 1)不就好了?但我們的野心還要大一些,我們希望把(–π/2, π/2)→(–∞, ∞)的函數變成(0, 1)→(–∞, ∞)的函數,理由待會兒馬上會揭曉。

這個函數首先要把(0, 1)區間裡的每個x轉變成(–π/2, π/2)區間裡的某個y,但因為tan(y)就會把每個y從(–π/2, π/2)映射到(–∞, ∞),因此我們要找的函數就是某個用x來表達的正切函數,我們發現經由線性變換可以找到這個函數。既然我們想把某個(0, 1)區間裡的x變成(–π/2, π/2)區間裡的某個y,於是問題相當於把某個(0, 1)區間裡的x轉換成π/2 (–1, 1)區間裡的某個y,它們的關係式是:

π/2 (a x +b) =y

-----廣告,請繼續往下閱讀-----

我們先把π/2提出來,待會兒再放回去,計算上會方便很多,因此:

當x = 0的時候 y= –1,代入式子得到b= –1

當x = 1的時候 y= 1,代入式子得到a= 2

把a和b的值放回關係式得到π/2 (2 x–1) =y 。

-----廣告,請繼續往下閱讀-----

就是它了:函數 tan[π/2 (2 x–1)] 可以把(0, 1)區間裡的實數一一對映到所有實數,因此我們用數學分析的方法證明了(0, 1)區間裡的實數和整個實數一樣多,比剛剛的幾何證明方法又進了一步。

這個結果夠驚人的了,這麼小段的(0, 1)區間裡的實數居然和整個R一樣多,但我們更想進一步知道R是否也是可數無限?對於這個問題康托總共給出兩個完全不同證明方法,第一個是在1874年提出的,其中用到集合的排序和有界(bounded)的概念。第二個證明直到1891年才提出,採用的正是康托拿手的對角線證明法,我們就再次來看看康托如何拿這項精妙的數學武器來對付巨大的實數尺吋。

因為剛剛已經證明了R和區間(0, 1)等量,所以只要證明(0, 1)區間裡的實數是否可數就等於證明了R是否可數, 這大大簡化了我們的工作,剛剛些許辛苦還是值得的。由於這個區間內的實數都能用無限小數的展開形式來表示,假設它們的個數是可數的話,那我們就能將區間裡的實數編上序號,比如:

r1 = 0.320059874…

-----廣告,請繼續往下閱讀-----

r2 = 0.912533121…

r3 = 0.007213568…

r4 = 0.552418792…

r5 = 0.778451420…

-----廣告,請繼續往下閱讀-----

r6 = 0.118841234…

r7 = 0.665590012…

-----廣告,請繼續往下閱讀-----

需要注意的是,由於0.99999…等於1,所以在這個可數無限序列裡0.999999…的寫法被排除掉。

現在我們用一種特別的方法來製造一個新的實數x,那就是對任何小數點之後的數進行改裝,凡是遇到1就把它改成2,凡是遇到1以外的數(比如0, 2, 3, 4, 5, 6,  …)就把它改成1。我們拿以上的實數序列作例子,依次取小數點後面的第1, 2, 3, 4, 5, 6, …位,也就是按照對角線的方向來進行改造。

我們看到r1小數點後的第1個位數是3(如紅色數字所示),所以依照規定將其改成1,r2小數點後的第2個位數是1 ,所以依照規定改成2。依此類推,我們得到一個新的實數

x = 0.1211121…

這個數字的特點是它不同於r1,因為小數點後第1位數不相等,它也不等於r2,因為小數點後第2位數不相等。依此類推,我們依照此法製造出來的數字x不等於任何序列中的數字。但它明明是(0, 1)區間裡的實數,所以與一開始的假設相矛盾。我們得到(0, 1)區間裡的實數是不可數這個結論,因此,實數R也是不可數的。

原來,R的個數比可數的N和Q都要來得大。於是一個疑問自然浮現:在《公設化集合論的奧秘 (7)》一文裡,我們也是用對角線法證明了全體自然數N的冪集合P(N) 的元素個數同樣是不可數,那麼自然數冪集合的基數P(N)是否等於實數的基數〡R〡呢? 這兩種不可數集合其尺寸會一樣大嗎?我們又如何知道它們是否有相同的尺寸呢?這些問題只有等下回再分解囉!

-----廣告,請繼續往下閱讀-----
文章難易度
翁 昌黎
18 篇文章 ・ 5 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

0
0

文字

分享

1
0
0
公設化集合論的奧秘(18) 優雅的等式〡R〡=〡P(N)〡=〡2^N〡
翁 昌黎
・2015/04/02 ・3222字 ・閱讀時間約 6 分鐘 ・SR值 537 ・八年級

Georg Cantor credit:wiki
Georg Cantor
credit:wiki

有一種說法認為集合論的發明是在1873年12月,精確地說是1873年12月7日,因為那一天康托證明了連續統(continuum)是不可數的,所以應該把那一天當成現代集合論的生日。不論你是否同意這個出生證明,但康托1873年年底所用的證明方法並非後來廣為人知的對角線法,也就是我們在《公設化集合論的奧秘 (11)》所採用的方法,對角線法的提出要到大約19年後的1892年才公諸於眾。

但從那一天起,人類對無限的了解進入了一個全新的階段,我們知道實數(連續統)比自然數還大。在證明實數是不可數之後,我們可否進一步下結論說自然數的冪集合P(N)與實數的尺寸一樣大,因為它們都是不可數集合?在沒發現不可數集合之前,我們原以為無限只有一種,那就是像自然數一樣可以從0, 1, 2, 3, 4, 5, 6 … 一直往下數沒有盡頭這種無限,直到這種想法被康托的證明方法擊碎。有了這個教訓,我們最好更加謹慎,任何直觀的想法都應該由嚴格的證明來確認,所以尋找證明是必要的工作。

假如要證明實數集合R與P(N) 等量,那麼根據定義1 (請參考《公設化集合論的奧秘 (8)》) ,就必須找到一個一對一且映成的函數F: R → P(N)才行。但這可不是件容易的事,我們如何在浩如星辰的實數和全體自然數的冪集合之間找到這種一一對應呢?先別失望,我們之前介紹的戴德金左集合(請參考《公設化集合論的奧秘 (16)》《公設化集合論的奧秘 (17)》)或許可以在此危難之際發揮作用。由於戴德金實數是由一堆有理數(實際上是可數無限個)來定義的,這給了我們一個透視實數集合結構的絕佳機會。

-----廣告,請繼續往下閱讀-----

既然每個戴德金實數就相當於無限多個有理數的集合,比如0被定義為 {q〡q ∈ Q 且q<0},也就是所有負有理數的集合,那我們正好可以定義一個一對一的恆等函數,使得每個實數r (相當於一個戴德金左集合)對應到一個相等的有理數子集合:

f: R → P(Q)

 r → r

也就是說定義域R裡裝了哪一堆有理數那我的値域就取同樣一堆有理數來配對,因為這樣一堆有理數正好符合對應域P(Q)的定義條件—全體有理數的子集合。這麼容易就完成證明啦?還是個恆等函數,這也簡單到有點欺負人了吧!

-----廣告,請繼續往下閱讀-----

且慢,有兩個問題尚待解決。首先,我們所要證明的函數關係是從 R → P(N)而不是R → P(Q)。其次,R和P(N)等量的條件是找到一個一對一且映成的函數,但我們剛剛找的f: R → P(Q)只滿足一對一的條件卻不映成,這一點可以很容易看出來。由於戴德金實數必定由無限個有理數所構成,因為左集合會往負數方向無限伸展,可是對於P(Q)來說,它顯然也必須包含由有限元素所構成的集合,比如{1/6, 37, 522}就是Q的一個有限子集合,但我們無法找到與之相對應的戴德金實數r

現在回顧《公設化集合論的奧秘 (14)》裡的定義:

定義5如果在集合A和B之間存在一個一對一函數ƒ : A→B,則說A小於或等量於B,寫成A ≤ B。相當於〡A〡≤  〡B〡,也就是A的基數小於等於B的基數。

由這個定義得知,我們目前能確定的只是〡R〡≤ 〡P(Q)〡,而不是〡R〡= 〡P(N)〡。證明定理有時候就像擬訂作戰策略,對於無法一次消滅的敵人,你要分段把它逐步吃掉,而不能急於蟒蛇吞象最後把自己噎死。千萬不要輕忽每一次的小進展,那就讓我們把以上成果當成是一個好的開始吧。

-----廣告,請繼續往下閱讀-----

有了半壁江山,就想辦法湊出另一半吧!這提醒我們之前提到的施洛德—伯恩斯坦定理(Schröder-Bernstein theorem) ,它的一般表述形式是:

對任意集合A和B,如果〡A〡≤ 〡B〡〡B〡≤ 〡A〡

〡A〡=〡B〡

這個定理的威力在於它允許我們使用和有限數值一樣的方式來辨認集合的尺寸。比如有兩個數a和 b,如果a ≤ b 而且b ≤ a的話,那一定會得出a = b,施洛德—伯恩斯坦定理把這層關係從有限數推廣到不可數無限集合。

-----廣告,請繼續往下閱讀-----

此外,這個定理還有一個實際功能,那就是當我們想證明兩個集合等量卻苦於找不到一對一且映成函數時,可以有個更簡潔的辦法。我們只需找到兩個一對一函數,一個從A到B,另一個從B到A就成了,對於許多複雜的集合等量證明來說,這不啻是天降福音。接下來只須稍稍解決一個小問題,那就是之前我們已經證明有理數和自然數一樣多(《公設化集合論的奧秘 (9)》),所以〡Q〡=〡N〡,得到〡P(Q)〡=〡P(N)〡,因此原來的戰鬥成果〡R〡≤ 〡P(Q)〡就可以順理成章地變成〡R〡≤ 〡P(Q)〡=〡P(N)〡,用小學的數學就能得到〡R〡≤ 〡P(N)〡

以施洛德—伯恩斯坦定理的觀點來看,證明已經完成了一半。接下來我們想要在2NR之間建立起一個一對一函數,也就是讓〡2N 〡≤ 〡R〡成立。我們再次用小學數學來解釋這樣做的理由,在《公設化集合論的奧秘 (15)》我們證明了〡P(N)〡=〡2N,因此只要〡2N 〡≤ 〡R〡成立,那麼〡P(N)〡≤ 〡R〡就會成立。

這讓我想起一個卡通節目,每次當兩位總在冒險旅途的主角一遇到甚麼災難,只要把兩枚原本一體的神奇戒指結合,就會跑出一個法力無邊的阿拉伯神祇名叫蘇仙,祂的神通可以打退各方的妖魔鬼怪。數學式〡R〡≤ 〡P(N)〡〡P(N)〡≤ 〡R〡就有如集合論中的神奇戒指,當它們一結合就能招喚出法力無窮的蘇仙讓我們見識到集合論的奇蹟:〡R〡= 〡P(N)〡

但要如何打造另外一半的戒指呢?我們需要找到一個一對一函數

-----廣告,請繼續往下閱讀-----

θ: 2N → R

之前說過2N是指以下這種函數類型所成的集合

F: {0, 1, 2, 3, 4…} → {0, 1}

所以我們的目標是找一個這種類型的函數f對應到某個實數r。它的形式就是:

-----廣告,請繼續往下閱讀-----

θ: 2N → R

     f →  r

化繁為簡是數學思考的靈魂,所以在尋找f之前我們先將θ的對應域R做點簡化工作。在《公設化集合論的奧秘 (11)》一文我們已經證明全體實數R的個數和開區間(0, 1)裡的實數一樣多,因此我們可以把目標函數θ: 2N → R調整為θ: 2N → (0, 1),也就是讓2N 中的元素f對應到(0, 1)間的某個實數即可。這個函數的樣貌如下:

θ: 2N →(0, 1)

-----廣告,請繼續往下閱讀-----

     f →  0.a0a1a2a3a4…an

我們之前介紹過 2N的成員,它的成員是某個函數f,有如一排編上號碼從0一直延伸至無窮的燈泡,每個燈泡可以是亮燈或關閉的狀態,而f就相當於某種特定的亮燈組合方式。比如現在給出一種亮燈組合,它規定只有第一個編號為0的燈點亮,其餘所有的燈都是暗的,這時f函數的値有如下的規律:

f(0) = 1, f(1) = 0, f(2) = 0, f(3) = 0, f(4) = 0,  … f(n) = 0 …

每個不同的函數f代表一種特定的亮燈組合方式。

現在只要把f的第一個函數值f(0)指定為a0 ,第二個函數值f(1)指定為a1,第三個值f(2)指定為a2,依此類推,我們就能夠得到一個介於0和1之間的實數,其小數點之後的位數只由0與1構成。以剛才的函數為例,我們得到a0 =1, a1=0, a2=0, a3=0… 因此和它對應的實數就是0.100000000…,也就是0.1。顯然如果函數不同f1 ≠ f2,則其指定的每個an值當然不同,這就導致與其相對應的實數0.a0a1a2a3a4…an …也不同,於是我們得到 θ(f1) ≠ θ(f2),因此θ為一對一函數。於是我們證明了蘇仙戒指的另一半:

〡2N 〡= 〡P(N)〡≤ 〡R〡

於是我們所知道的不可數集合的三種形態全部等量,形成一個相當優雅簡潔的集合等式〡R〡= 〡P(N)〡=〡2N

我們之前用0來標示自然數和有理數這種可數無限集合的基數,因此我們有等式:

〡N〡= 〡Q〡= ℵ0

而對於比0還大的不可數集合我們用1來表示,因此又有如下的等式:

〡R〡= 〡P(N)〡=〡2N〡= ℵ1

經過長期的努力,我們終於將這些主要的無限集合之間的尺寸關係弄清楚了, 但這就是故事的終點了嗎?發揮想像力,朝著變大和變小的方向飛行,兩個有趣的問題又會浮現出來。第一個問題是有比1更大的集合嗎?如果有,那要如何才能發現它呢?或者怎樣才能把它製造出來呢?第二個問題是在01之間有沒有一種中等尺寸的無限集合,它既比0大但又比1小,比如說是否存在一個基數為1/2的集合?要回答這些有趣的問題就只有等下回再分解了!

-----廣告,請繼續往下閱讀-----
所有討論 1
翁 昌黎
18 篇文章 ・ 5 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。