0

0
0

文字

分享

0
0
0

公設化集合論的奧秘(11) 探索神奇的實數尺寸

翁 昌黎
・2015/02/10 ・2563字 ・閱讀時間約 5 分鐘 ・SR值 540 ・八年級
credit:pixabay.com
credit:pixabay.com

文 / 翁昌黎(《孔恩vs.波普》中文譯者)

想像你在一個一望無際的沙灘,晶瑩的海岸由近乎純白質地的細沙構成在陽光下閃爍著寶石般的光輝。天空有一條發出橙色亮光的細線,似有似無,那是柏拉圖世界裡的實數線投影到這個神奇星球的擬似影像。

假設每顆沙粒代表一個集合,將這些沙粒灑向這條實數線企圖將它填滿,你會發現這些純白的細沙集合像是消失了一般,完全不影響橙色實數線的顏色,因為沙粒實在太稀少了。

就算你得到一種魔法,能在瞬間將這些無窮沙粒悉數灑在數線上,可是實數線上依然觀察不到白沙的蹤跡,因為它們仍然太過稀少。我們再度向孫悟空的師父菩提祖師求救,請他老人家傳授一個厲害點的法術,可以將剛剛灑出去的每一粒沙都變成等同於這個無窮沙灘世界的所有沙粒。但你將失望地發現,雖然親眼見識了菩提祖師將一沙粒化成無窮沙數世界的絕活,可是實數線上卻依然沒有任何一點斑白的痕跡,就好像這些從無數再化成無數的沙粒憑空消失一樣。

這到底是怎麼回事?理由是它們仍然太過稀少,所以無法蓋住實數線,甚至無法顯示出它們的存在。如果我們能夠把無窮顆沙粒集合和實數線投射到我們這個時空,那你所看到的場景大概就會有如以上的描述,可數無限顆沙粒再變現出可數無限顆沙粒的總合對於實數線來說依然是杯水車薪。

為了證明整個實數集合確實比可數無限集合還大,我們先來觀察一個現象:把(–1, 1)這個實數開區間彎成半圓形,如下圖藍線部分所示。假設藍線左邊的端點是–1,而右邊的端點是1,垂直的紅虛線劃過的點是原點 0,所以垂直紅虛線的左半邊正好是負實數而右半邊則是正實數。

v

從虛擬的圓心處往黑色實數線用紅色虛線連接,你會發現每一個區間(–1, 1)內的數都正好對應到黑線上的另一個實數。而當虛線接近水平線時,左右兩邊對應到黑色數線的絕對值就會變很大,且所對應的實數越來越趨近於(–∞, ∞)。因此(–1, 1)區間內的實數和(–∞, ∞)區間內的實數(等於是R)有一對一且映成的關係。那麼根據定義,(–1, 1)區間裡的實數與全體實數R等量。

假設區間(–1, 1)中所有實數的集合為I,則基數〡I〡=〡R〡,也就是說區間(–1, 1)裡的實數個數與所有實數集合的個數一樣多。以上這個方法稱之為幾何學證明。雖然直觀上沒有問題,但站在集合論的立場,我們應該要想有沒有更嚴格的數學證明呢?這下可傷腦筋了,根據我們目前的數學知識配備,若要證明〡I〡=〡R〡,則需要找到一個從I到R的一對一且映成的函數才行。那麼到哪裡去找這麼個函數呢?

正所謂眾裡尋它千百度,驀然回首那傢伙就在正切函數(tan)處。我們發現當tan的x值趨近於–π/2時,它的y值會向–∞逼近,而當tan 的x值趨近π/2時,它的y值會向∞逼近,而且任何一個x值只對應到一個y值。這不就是說正切函數tan在(–π/2, π/2)與全體實數R之間形成一對一且映成?tan:(–π/2, π/2)→(–∞, ∞)不就是夢寐以求的答案?

但剛剛的幾何證明說的是(–1, 1)→(–∞, ∞)有一對一且映成函數而不是(–π/2, π/2)→(–∞, ∞),眼看就要得手了卻差一步,該怎麼辦呢?只要設法把(–π/2, π/2)變成(–1, 1)不就好了?但我們的野心還要大一些,我們希望把(–π/2, π/2)→(–∞, ∞)的函數變成(0, 1)→(–∞, ∞)的函數,理由待會兒馬上會揭曉。

這個函數首先要把(0, 1)區間裡的每個x轉變成(–π/2, π/2)區間裡的某個y,但因為tan(y)就會把每個y從(–π/2, π/2)映射到(–∞, ∞),因此我們要找的函數就是某個用x來表達的正切函數,我們發現經由線性變換可以找到這個函數。既然我們想把某個(0, 1)區間裡的x變成(–π/2, π/2)區間裡的某個y,於是問題相當於把某個(0, 1)區間裡的x轉換成π/2 (–1, 1)區間裡的某個y,它們的關係式是:

π/2 (a x +b) =y

我們先把π/2提出來,待會兒再放回去,計算上會方便很多,因此:

當x = 0的時候 y= –1,代入式子得到b= –1

當x = 1的時候 y= 1,代入式子得到a= 2

把a和b的值放回關係式得到π/2 (2 x–1) =y 。

就是它了:函數 tan[π/2 (2 x–1)] 可以把(0, 1)區間裡的實數一一對映到所有實數,因此我們用數學分析的方法證明了(0, 1)區間裡的實數和整個實數一樣多,比剛剛的幾何證明方法又進了一步。

這個結果夠驚人的了,這麼小段的(0, 1)區間裡的實數居然和整個R一樣多,但我們更想進一步知道R是否也是可數無限?對於這個問題康托總共給出兩個完全不同證明方法,第一個是在1874年提出的,其中用到集合的排序和有界(bounded)的概念。第二個證明直到1891年才提出,採用的正是康托拿手的對角線證明法,我們就再次來看看康托如何拿這項精妙的數學武器來對付巨大的實數尺吋。

因為剛剛已經證明了R和區間(0, 1)等量,所以只要證明(0, 1)區間裡的實數是否可數就等於證明了R是否可數, 這大大簡化了我們的工作,剛剛些許辛苦還是值得的。由於這個區間內的實數都能用無限小數的展開形式來表示,假設它們的個數是可數的話,那我們就能將區間裡的實數編上序號,比如:

r1 = 0.320059874…

r2 = 0.912533121…

r3 = 0.007213568…

r4 = 0.552418792…

r5 = 0.778451420…

r6 = 0.118841234…

r7 = 0.665590012…

需要注意的是,由於0.99999…等於1,所以在這個可數無限序列裡0.999999…的寫法被排除掉。

現在我們用一種特別的方法來製造一個新的實數x,那就是對任何小數點之後的數進行改裝,凡是遇到1就把它改成2,凡是遇到1以外的數(比如0, 2, 3, 4, 5, 6,  …)就把它改成1。我們拿以上的實數序列作例子,依次取小數點後面的第1, 2, 3, 4, 5, 6, …位,也就是按照對角線的方向來進行改造。

我們看到r1小數點後的第1個位數是3(如紅色數字所示),所以依照規定將其改成1,r2小數點後的第2個位數是1 ,所以依照規定改成2。依此類推,我們得到一個新的實數

x = 0.1211121…

這個數字的特點是它不同於r1,因為小數點後第1位數不相等,它也不等於r2,因為小數點後第2位數不相等。依此類推,我們依照此法製造出來的數字x不等於任何序列中的數字。但它明明是(0, 1)區間裡的實數,所以與一開始的假設相矛盾。我們得到(0, 1)區間裡的實數是不可數這個結論,因此,實數R也是不可數的。

原來,R的個數比可數的N和Q都要來得大。於是一個疑問自然浮現:在《公設化集合論的奧秘 (7)》一文裡,我們也是用對角線法證明了全體自然數N的冪集合P(N) 的元素個數同樣是不可數,那麼自然數冪集合的基數P(N)是否等於實數的基數〡R〡呢? 這兩種不可數集合其尺寸會一樣大嗎?我們又如何知道它們是否有相同的尺寸呢?這些問題只有等下回再分解囉!

文章難易度
翁 昌黎
18 篇文章 ・ 0 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。


1

4
2

文字

分享

1
4
2

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3033字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來地「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

所有討論 1
CASE PRESS_96
156 篇文章 ・ 373 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策