0

6
1

文字

分享

0
6
1

顛覆世界的「電腦」是怎麼誕生的呢?

寫點科普,請給指教
・2017/05/18 ・5537字 ・閱讀時間約 11 分鐘 ・SR值 548 ・八年級

二十世紀是人類史上科學技術進展最快的世紀。短短的 100 年間,湧現了大量對世界產生重大的影響的科學發現和技術突破,包括電視、飛機、抗生素、基因科學、量子力學……。

但若要評選一項滲透至人們日常生活的所有角落、改變人類生活型態最劇烈的科技發明,則非電腦莫屬。

第一次工業革命是機械與工廠、第二次工業革命是電力、第三次工業革命乃由電腦發明所激起的資訊時代。有著「第四次工業革命」之稱的人工智慧,我們已在深度學習簡史中有所探討。但追本究源,人工智慧所奠基的電腦(計算機)科學,又是怎麼來的?

今天就讓我們來思考一個有趣的問題:電腦是怎麼來的?

-----廣告,請繼續往下閱讀-----

ENIAC:情人節誕生的奇蹟

普遍認為最早的通用電腦,是美國賓州大學的莫奇來 (Mauchly)和他的學生埃克特 (Eckert)在 1946 年 2 月 14 日情人節當天所發表的「ENIAC」 。(情人節剛過不久但別再討論單身魯了,人家可是在情人節顛覆世界呢 XD)

ENIAC 計算機在進行每一次運算之前,都須根據運算要求、把不同的元件用人工插接線路的方式連接在一起。將輸入裝置和輸出裝置設好後,才進行通電……啪!一聲,電腦噠噠噠的開始運作。

但現在可能正用電腦看這篇文章的你,好像不需要在開機前把電線插來插去才能使用?

因為這個電路沒有儲存程式的功能。最早的計算機器僅內涵固定用途的程式,比如一台「計算機器」僅有固定的數學計算程式,除此之外便無其他,無論是文書處理或玩遊戲都不行。若想要改變這台機器的程式,你必須更改線路、結構甚至重新設計機器。

馮.紐曼結構與現代電腦

1945 年 6 月,是現代電腦科學的里程碑。著名的美籍猶太裔數學家馮.紐曼 (John von Neumann) 與多位學者聯名發表了一篇長達 101 頁的報告,其中包括大膽捨棄了十進制、改以二進制運算取代,同時將電腦明確分成五個部分組成(包括:記憶體、控制單元、算術邏輯單元、輸入 / 輸出裝置等),並描述了這五個部分的功能和相互關係,為電腦的邏輯結構設計奠定了基礎。

-----廣告,請繼續往下閱讀-----

事實上,EDVAC 報告中最核心的概念即是「可儲存程式的電腦 (Stored Program Computer) 」。如果是一台能儲存程式的電腦,只要一開始先將「文書程式」與「遊戲程式」都載入記憶體中,再告訴電腦去記憶體的哪一個位置開始執行就可以完成,在不需更動硬體的情況下就能讓電腦變得更加有彈性。

1951 年,美國軍方透過馮.紐曼的協助,斥資五十萬美元打造了計算機「EDVAC」。相較於十進位、又須人工插接電路的 ENIAC,可以說 EDVAC 是第一台現代意義的通用計算機,直至今的現代電腦皆仍採用馮.紐曼架構。

在我們介紹馮.紐曼其人其事、與現代電腦的運作原理前,先讓我們重看一次標題所提出的問題:「電腦是怎麼來的?」為什麼馮.紐曼能夠造出這樣的一台電腦?

不少人把馮.紐曼當作是電腦科學的奠基人,有人甚至稱他為「電腦之父」。然而他本人並不接受這個稱號。

-----廣告,請繼續往下閱讀-----

馮.紐曼認為他的研究成果是受到了英國數學家圖靈 (Alan Turing) 所啟發,他僅僅是發揚光大圖靈的原始概念。這台「可儲存程式電腦」真正的意義,其實就是通用圖靈機。馮.紐曼將這個概念的創始人公正無私地還予圖靈。

圖靈:可計算理論與圖靈機

好吧這麼來看,如果我們想要瞭解「電腦是怎麼來的?」,勢必得再先去瞭解圖靈這位同樣有著「電腦科學之父」與「人工智慧之父」之稱的偉大學者,與其圖靈機 (Turing Machine) 的理論了。

1934 年,年僅 22 歲的圖靈從劍橋大學畢業、到美國普林斯頓大學攻讀博士學位。二戰爆發後,圖靈在 1939 年被英國皇家海軍招聘,協助軍方成功破譯德國的密碼系統 Enigma,讓英國軍方對德國的軍事計劃瞭如指掌。圖靈小組的傑出工作,更使得盟軍提前至少兩年戰勝納粹。

--上述是電影《模仿遊戲》的史料。對於圖靈生平有興趣的讀者,可以參考這部向圖靈致敬的電影。 (只是嚴防許多出錯的史實)

除了作為一位傑出的密碼學家,在電影沒詳述的部分中,圖靈在電腦科學上的貢獻更是難以抹滅。

-----廣告,請繼續往下閱讀-----

1936 年,24 歲的圖靈發表了一篇論文《論可計算數及其在判定問題上的應用》(On Computable Numbers, with an Application to the Entscheidungsproblem)。在這篇極富開創性的論文中,圖靈提出了「圖靈機」(Turing Machine) 概念。

「圖靈機」不是一台具體的機器,而是一種運算模型,可製造一種十分簡單但運算能力極強的機械裝置,用來計算所有能想像得到的可計算函數。

圖靈機是闡明現代電腦原理的開山之作,奠定了整個電腦科學的理論基礎。如果說馮紐曼是實際打造出一台現代電腦的電腦之父,其所依據的理論基礎即源自於圖靈機。

但,什麼叫可計算?為什麼圖靈會探討這個問題?實際上,上述關於圖靈論文與圖靈機的介紹,更明確的說法應是:圖靈在 1936 年發布的論文中,對於「哥德爾不完備定理」重新做了論述。相較於哥德爾在證明其不完備定理時、採用的通用算術形式系統,圖靈使用了叫做「圖靈機」的簡單裝置作為代替。

-----廣告,請繼續往下閱讀-----

咦,我們這邊又多提到一個人了?!哥德爾……?

哥德爾不完備定理

哥德爾 (Gödel) 被譽為自亞里士多德以來、歷史上最偉大的邏輯學家之一。毫不誇張地說,正是哥德爾使數理邏輯與哲學界發生了極大的革命。

愛因斯坦曾說:我之所以還到研究院來,只是為了與哥德爾一起走路回家。

1931 年,19 歲的圖靈進入劍橋大學就讀;但這一年,同時成了撼動數學界的里程碑——奧地利數學家哥德爾提出不完備定理,證明不存在既完備又一致的數學體系,粉碎了無數位數學家追求聖杯的野心。

人類總是渴求著確定的知識,也稱為真理——藉由純數理論與邏輯證明,數學家不斷尋找著真理的可確定性。

-----廣告,請繼續往下閱讀-----

哥德爾當年的發現,簡單來說是:「並非所有為真者,皆可循一邏輯演繹過程而得知」。再更直白點就是:「真理的範圍、比我們所能證明的範圍還大。」

數學家乃藉由公理(不證自明、理所當然為真的命題)進行一連串的推理、最後得出數學定理;基本上是活在一個以邏輯演繹為本質的世界。今天突然有人成功證明了:有些數學命題,我們既沒辦法證明它為真,也沒辦法證明它為假……,可想而知,這對於數學界無非是一項沈重的打擊!

五年後的圖靈之所以提出「圖靈機」計算模型,即是以計算機的形式重新演繹了哥德爾的不完備定理,同時補充了判定問題--是否存在一個程式,能判斷:我們任意輸入的一個程式,是否能在有限的時間內結束步驟?或者會陷入無窮迴圈?(當我們對電腦下兩個指令:【往左後往右】與【往右後往左】,電腦就會陷入無窮的迴圈)

哥德爾的發現,引起了當時重要數學家如希爾伯特與馮.紐曼(還記得這個人嗎? 這位計算機之父早年是希爾伯特的助手)等人的重視。到後來不但啟發了後續眾多數學家、哲學家:若無法使用邏輯演繹完全瞭解宇宙,該何以為繼?更激起圖靈創造出了電腦科學在理論上的濫觴。

-----廣告,請繼續往下閱讀-----

但是,為什麼哥德爾會探討這樣的問題呢?因為有人下了戰帖!

誰?就是上上句我們提到的大數學家希爾伯特!

希爾伯特的 23 個問題

希爾伯特 (David Hilbert) 是二十世紀初期德國最偉大的數學家之一。

在世紀之交的 1900 年、一場巴黎國際數學家大會的演講當中,希爾伯特根據 19 世紀的研究成果和發展趨勢,以卓越的洞察力提出了 23 個當時尚未被解開的困難數學問題,並鼓舞年輕數學家積極攻克:

「在我們中間,常常聽到這樣的呼聲:這裡有一個數學問題,去找出它的答案!你能通過純思維找到它,因為在數學中沒有不可知。」(希爾伯特大大按曰:只要解出來就能名留青史噢!)

這就是著名的希爾伯特的 23 個問題。

希爾伯特的 23 個問題對 20 世紀的數學研究起了積極的作用,不但超乎希爾伯特的預期,更未曾預料到從其中衍生而出的電腦科學、將會對世界產生無比重大的影響。

而哥德爾之所以提出不完備定理,想解答的正是這 23 個問題中的第二個問題:算術公理系統的無矛盾性。簡單來說,希爾伯特希望能以一個完美的形式系統,成功證明所有的真理、同時找出所有矛盾的陳述。

在這個問題上,希爾伯特原先堅定地表示:「沒有人能將我們逐出康托爾的樂園。」不僅僅是第二個問題,希爾伯特在 23 個問題中所提出(顯然最在意)的第一個問題連續統假設,也是康托爾的研究中所面臨問題。

康托爾……?請放心,這會是本篇文章中所出現的最後一位人名了。

無限多的危機:康托爾集合論

到目前為止,我們已經使用了許多強烈的形容詞,包括:電腦科學之父、偉大的邏輯學家、數學家……。但在這些學者的研究基礎上,我們不能不提現代數學的奠基者——集合論之父康托爾 (Cantor) 。

令集合 A = {1, 2, 3, 4, 5 },B = {1, 3, 5, 7, 9}
則 1, 3, 5 同時為集合 A 和 B 的元素,且 A 集合和 B 集合的大小相等。

康托爾可以說是數學史上最富有想像力的數學家之一,其所開創的集合論則可以說是人類最偉大發明之一--當年康托爾面臨的,正是數學界幾百年幾千年的疑懼:「無限」。

1-1+1-1+1… = 0, 1 還是 1/2? 0.99999….. = 1?還是 <1?

無限有多大?正整數、整數 (正整數 / 負整數 / 0)、實數(有理數 / 無理數) ……等數系的數量相同嗎?

Z+: ∞ (正整數有無限多個), Z-: ∞ (負整數有無限多個), Z: ∞ (整數有無限多個)。
因此: ∞ = 2∞+1 (所有整數個數 = 正整數個數+負整數個數 + 一個 0), 移項得: -∞ = 1,
故: ∞ = -1 …?!

為了處理「無限」這個長久得不到解決的難題,康托爾在 19 世紀下半葉創立了「集合」理論,證明了各個數系雖然是都是無限多,還是有數量上的差別:

| 正整數 | = | 整數 | = | 有理數 | < | 無理數 | = | 實數 | = | 複數 |

無限多的正整數數量 = 無限多的整數數量 = 無限多的有理數數量 < 無限多的無理數數量 = 無限多的實數數量 = 無限多的複數數量

然而集合論實在太過創新、對於無限的解釋也背離了傳統,剛開始時康托爾受到了嚴厲的譴責與撻伐。

但隨後,許多年輕的數學家開始意識到集合論非常的有用--基於自然數 (正整數)與集合論,當時一切的數學成果都可以成功被推證出來。

1900 年在國際數學家大會上,法國數學家龐加萊興高采烈地宣稱:「藉助集合論,我們可以建造起整個數學大廈。」1925 年,希爾伯特也提出了「希爾伯特旅館悖論」來應和康托爾的理論。

然而康托爾集合論仍然面臨了許多問題。首先是連續統假設--我們已知:

| 正整數 | = | 整數 | = | 有理數 | < | 無理數 | = | 實數 | = | 複數 |
那麼還有沒有一個數系,介於此二者間呢?

始終證明不出問題、又受到世人無數攻訐的康托爾,晚年發了瘋、死在精神病院中。

但除此之外,集合論還有一個問題是羅素悖論:「這句話是假的。」讀者只要稍加推論就會發現:如果這句話是真的,那麼這句話是假的會成立……?!如果這句話是假的,那這句話就是真的……?! 這個命題就矛盾了。

羅素悖論應用在集合論的問題即是:如果我們創造一個集合 A,裡面收集了所有不包含在自己這個集合的集合:A = {x|x∉x}。若是 A∈A 成立,則 A 是 A 的集合、使得 A∉A。但若 A∉A,則符合命題,使得 A∈A。

好不容易我們在集合論的基礎上構築起了數學大廈,結果發現集合論也是不完美的。究竟能不能找到一個完備的系統,從上面建築起整個數學的基礎呢?

這樣的系統是否存在呢?希爾伯特除了在 23 個問題中的第一個問題提出「連續統假設」,身為康托爾堅定的擁護者(腦粉),也在第二個問題中提了這樣的難題。

這也接續到我們先前的介紹:再後來哥德爾成功證明了不完備定理、解決了 23 個問題中的第二個問題,到圖靈用「圖靈機」的概念更加簡單明瞭的重新演繹一次哥德爾不完備定理,最後馮.紐曼基於通用圖靈機的概念、建出了第一台具備現代電腦架構雛形的電腦。

哇!「電腦是怎麼來的」居然爬梳出這麼多的問題?

哲學:不懈探究真理的精神

若要探究下去,你知道:康托爾、希爾伯特、哥德爾、馮.紐曼…等人都是德國人嗎(哥德爾和馮.紐曼皆為奧匈帝國人)?19 世紀的德國究竟是一個什麼樣的時代,造就了如此多的數學大家?

事實上,你知道這些數學家同時還有著哲學家的頭銜嗎?更進一步來說,19 世紀知名德國哲學家,尚包括了:黑格爾、叔本華、馬克思、尼采、康德… 毫無疑問地,當時的德國可說是歐洲最具代表性的哲學重鎮。

哲學反映了人類對真理的追求,體現人類的智能與認知極限。因而數學的發展不只是解一些生活問題,而成為一種學問、一種探求真理的道路與哲學手段。

哲學在西方文化中扮演了非常重要的角色,也是現代科學會出現在歐洲的重要原因。至於西方哲學追求真理的精神,又是起源於何時何處呢?這又要回溯到希臘時期,比如亞里斯多德的三段式證法或畢達哥拉斯學派……。

觀察過往,出現像上述「無限有多大」這樣的數學危機,在人類史上也不是第一次發生了:負數的英文為--Negative Number、無理數--Irrational Number、虛數--Imaginary Number。否定的 (Negative)、不合理的 (Irrational)、想像的 (Imaginary)……。

從這些詞彙中可以看出在探究真理的過程中,人類總是不斷遭遇思想上的困難,卻又能在突破後、成功踏上嶄新的道路。 今天我們思考了一個問題:「電腦是怎麼來的?」,並從中衍生出了更多值得探索的問題:

.數學是邏輯、也是哲學?
.歷史上其他的數學危機有哪些、又是如何被解決的?
.希臘亞里斯多德時代至一戰前的德國,哲學是如何百花齊放?
.無限有多大?
.悲劇性的數學家康托爾為什麼偉大?
.希爾伯特的 23 個問題?
.我們能造出一台判別真理的機器嗎?
.哥德爾不完備定理是什麼?圖靈機呢?
.計算機的電路是怎麼計算和記憶的?

沒有了探求宇宙真理的精神,或許工業革命就不會出現在歐洲了? 人類也不會有科技發展、或者今日的生活。

少年啊,你渴望真理嗎?

後續幾篇,我們會繼續用深入淺出的方式一一來討論這些問題,歡迎一起加入這樣的思考訓練吧!


本文轉載自寫點科普,請給指教。 《電腦是怎麼來的?(思考訓練)》,歡迎贊助和訂閱Lynn的網站喔。

-----廣告,請繼續往下閱讀-----
文章難易度
寫點科普,請給指教
2 篇文章 ・ 3 位粉絲
我是Lynn,【寫點科普,請給指教】是一個針對各產業現況進行科普的寫作計畫, 期望能用淺顯易懂的文字,讓讀者瞭解各產業領域的運行規則,以培養思考與觀察力的敏銳。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
2

文字

分享

0
2
2
歐氏幾何學的啟示
賴昭正_96
・2025/12/09 ・4611字 ・閱讀時間約 9 分鐘

無需證據就能肯定的事情,同樣也可以無需證據就能否定。

-歐幾里德(Euclid)古希臘數學和邏輯學家

當筆者還是一位教書匠時,時常鼓勵學生應該多讀數學,不是因為數學的實用性,而是因為它是訓練邏輯的基礎。愛因斯坦(A. Einstein)曾經說過:「就其方式而言,純數學是邏輯思想的詩歌。」而26歲時就提出了反物質的存在、奠定了量子電動力學基礎的狄拉克(Paul Dirac)更認為數學幫助他了解物理定律(宇宙)。我們不是大物理學家,在這裡只能介紹一個簡單的、 2300年前的數學━幾何(geometry),看它如何能幫助我們了解我們日常生活中的邏輯。

歐幾里德

歐幾里德(Euclid)大約於西元前 300 年生於埃及亞歷山大。我們對歐幾里德的生平知之甚少,只有希臘哲學家普羅克洛斯(Proclus,410-485 年)在其《希臘著名數學家》總結中提到:歐幾里德在托勒密一世(Ptolemy I Soter,公元前 323 年至公元前 285 年)統治時期在亞歷山大任教。儘管如此,雖然歷史上有過更偉大的數學家,也有過更重要的數學家,但如果說數學界有家喻戶曉的名字,那非「歐幾里德」莫屬!歐幾里德對人類文明的長期影響可以說非常深遠:幾個世紀以來,數學和歐幾里德在整個西方世界幾乎是同義詞。

歐幾里德的《幾何原本》(The Element of Geometry,通常縮寫為 Elements)是有史以來最著名數學著作之一。印刷術發明後,這部著作是最早以印刷形式出現的書籍之一:它出版了超過一千種不同的版本,只有《聖經》比它多。《幾何原本》通常被描述為一本幾何書,但它事實上也涉及數論和一種以幾何形式呈現的原型代數。

歐氏幾何

歐幾里德有兩大創新。其一是「證明」的概念:除非是從已知為真的命題中推導出來,歐幾里德拒絕接受任何數學命題為真。第二項創新是認識到任何事物都要始於無法被證明的某些「假設」。因此,歐幾里德預先提出了五個基本假設作為其所有推論的基礎:兩點可以用一條線連接;任何有限的線都可以延伸;可以以任意圓心和任意半徑畫一個圓;所有直角都相等;及兩條直線可以平行永不相交。

-----廣告,請繼續往下閱讀-----

對歐幾里德來說,邏輯證明是幾何學的本質特徵,而「證明」至今仍是數學事業的基石。缺乏證明的命題無論有多少間接證據支持它、或蘊含意義多麼重要,都會被(合理地)懷疑。歐幾里德公理━他精心挑選的邏輯推論鏈━的影響極為深遠。例如,他用當時被認為無可挑剔的邏輯證明了:一旦同意他的公理,你就必然得出不能理解之「無理數」存在的結論!

嚴格的邏輯證明

「無理數」是不能用兩個整數相除來精確表達的實數。所以要證明x不是一個無理數,我們只要能找出兩個實數來表達它即可。例如利用高速電腦或人腦,我們發現可以用 40/99 表達 1.212121……,所以 1.212121…… 不是無理數。可是如果我們也同樣地想利用高速電腦來證明 \(\sqrt{2}\) = 1.4142135……呢?我們可以在一秒鐘內完成成千上萬的嘗試;但如果在數年後,我們還是找不到一組整數來表達\(\sqrt{2}\) 時,我們能下結論說 \(\sqrt{2}\) 是無理數嗎?不能,因為對歐幾里德來說,這不是嚴格的邏輯證明(註一)!

同樣地,費馬(Fermat)大定理於 1637 年提出,謂若 n 大於 2(n>2),則沒有任何三個整數 a,b,c 可滿足 an+bn=cn 方程式。隨著時間的推移,這個簡單的定理成為數學界最著名的未證命題之一。許多數學家和業餘愛好者要麼適用於所有 n>2 的值,要麼針對特定情況,試圖證明這一命題,推動了數論領域全新的發展。最初是手工證明,後來是計算機證明,找到了最高可達 400 萬的所有 n 值;儘管如此,因為不是嚴格的邏輯證明,數學家還是不能肯定該定律的正確性。

英國數學家懷爾斯爵士(Sir Andrew Wiles)於 1993 年 6 月 23 日首次公佈了他的證明,不幸地該證明在三個月後被發現含一個錯誤。一年後的 1994 年 9 月 19 日,懷爾斯在其自謂為「職業生涯中最重要的時刻」時偶然發現了一個啟示,使他能夠修正該錯誤,於 1995 年令歐幾里德、數學界滿意地嚴格證明了費馬大定理的正確性。

-----廣告,請繼續往下閱讀-----

又雖然早在公元五百年左右就有印度數學家懷疑圓周率 π 是無理數;但兩千年過去了,雖然還是找不到一組整數來表達它,還是沒有任何數學家敢說π是無理數。1761 年法國數學家蘭伯特 (Johann Heinrich Lambert) 終於首次嚴格地證明了π 為一無理數!

歐幾里德幾何學

歐幾里德之五個初始、無法被證明的命題似乎都是大家很容易認定或接受的日常生活經驗。但事實上,歐幾里德的第五公設「兩條直線可以平行永不相交」遠非那麼合理明顯。因此許多數學家一直在懷疑可以從其它四個假設中推導出來(刪除它),或者能用更簡單、與其它一樣明顯的東西代替。但到了十九世紀,數學家們終於證明了它不能從其它四個假設中推導出來,明白了歐幾里德加入第五個公設是絕對正確的!

我們之所以認為「兩條直線可以永不相交」是合理的是因為我們生活在平面宇宙中:例如如果宇宙是二維空間,那我們就是生活在一張無限大的平面白紙上。但如果我們是生活在一個圓球的表面上呢?事實上我們不正是生活在一個圓球的地球表面上嗎?!但因我們的生活圈太小了,故整個周圍看起來好像一平面上而已。如果在地球表面上我們將兩「平行線」(註二)往同一方向延長不到一萬公里,它們是會相交於一點的(如果該兩點是在赤道上,那麼垂直於赤道的兩「平行線」將相交於北極或南極)。所以「兩條直線可以永不相交」在地球上不但不合理,根本完全是錯誤的假設━它只適用於日常生活中。

這些合理的懷疑歐幾里德之第五公設並沒有付諸流水。1854年,黎曼(Bernhard Riemann)在一次著名的演講中建構了無限多的非歐幾里德幾何族,為非歐幾里德幾何學邁出了決定性的一步。其中最簡單的一族缺乏平行線的公設,被稱為「非歐幾何」(non-Euclidean Geometry)。

-----廣告,請繼續往下閱讀-----

在歐幾里德幾何裡,兩點之間的最短距離是一條直線;在非歐幾里德幾何球體表面上,兩點之間的最短距離則是沿著球體表面的大圓弧路徑(稱為測地線,註三)。在歐幾里德幾何裡,三角形內角總和為180度;但在非歐幾里德幾何球體表面上,由三個大圓弧組成的球體表面三角形內角總和則大於180度。

幾何與物理

非歐幾何的發展對數學和物理學產生了深遠的影響。它顯示歐幾里德幾何並非唯一邏輯一致的體系,為愛因斯坦的相對論鋪平了道路。

牛頓物理學從根本上來說是使用平坦的歐幾里德空間和通用時間的概念來描述運動,因此當地球不沿著直線運動時,牛頓必須用重力來解釋。愛因斯坦的相對論運用非歐幾何來描述彎曲時空,謂重力並非一種力,而是時空曲率的表現:巨大的太陽彎曲了其附近時空,地球只是沿著這一彎曲時空中之「最直」的路徑(測地線)運動而已。

同樣地,牛頓物理學假設重力只對有質量的物體施加力,而光是無質量的,因此光應該永遠沿著直線傳播。但愛因斯坦廣義相對論將重力描述為時空的彎曲(不是力),光將在這彎曲的時空沿著「直線」(測地線)傳播,但我們觀察到的將是「光不沿著直線傳播」!愛因斯坦的這一成功預測使他「瞬間」成為家喻戶曉的科學家(「延伸閱讀1」)。

歐幾里德幾何社會邏輯

人類可能是唯一知道死是怎麼一回事的動物,因此很早就在尋找生命的目的,很難接受霹靂一聲、無中生有地出現了時間、空間、及能量的近代宇宙觀(「延伸閱讀2」)。因此許多人認為我們來到這個世界是有目的的,我們是「上帝」(註四)創造出來的。因此「上帝」存在成了一個大家能接受、不需要證明的合理「公設」。對信教的人來說,它解釋了日常生活中的所有現象。對愛因斯坦及一些科學家來說:如果不是超人的「上帝」,為什麼我們看到的宇宙能不可思議地依循某些定律井然有序地運轉,但我們只是朦朧地了解這些定律?

-----廣告,請繼續往下閱讀-----

在「延伸閱讀3」裡,筆者提到了要證明上帝的存在是很困難的,但要證明上帝不存在更加困難!因此「上帝不存在」也是屬於「不能證明、不需要回答的合理假設」,所以在民主國家裡人人有宗教信仰或不信仰的自由。

在社會上要證明某人沒有博士學位很困難甚或不可能(註五),因此能被接受、不需要證明之唯一合理假設應該是「人人沒有博士學位」。在這前提下,如果你說你有博士學位,則證明有博士學位的責任應該落在你身上,而不是檢察官或具告人!

同樣地,因為證明我們沒有犯罪很困難甚或不可能,所以「我們沒有犯罪」應該是唯一的不需要證明之合理假設;如果你控告我犯罪,那法庭應該要你(告訴人或檢察官)提出不被懷疑及合理質疑的證據。這事實上正是民主國家所採取的法律制度。

結論

歐幾里德的專著《幾何原本》為幾何學提供了一個系統而公理化的方法:他從一組不證自明的真理(公理和公設)出發,運用演繹推理推導出定理和證明,為數學的嚴謹性和邏輯推理確立了標準,塑造了數學家和科學家解決問題和建構理論的方式,甚至影響了數學以外的各個領域如法律和政治思想,在人類社會發展中發揮了基礎性作用。例如美國傑斐遜(Thomas Jefferson)和其他開國元勳們就是運用歐幾里德演繹法構建了《獨立宣言》:他們從類似於歐幾里德幾何的「不證自明」的真理━公理━入手,建立邏輯論證,以證明革命和建立新政府的必要性。因為這些基本原則被普遍接受,無需進一步證明,因此賦予了《獨立宣言》強大而不可否認的力量。

-----廣告,請繼續往下閱讀-----

我們在這裡探討了日常生活中所碰到的宗教信仰、學位真假、與犯罪判決的爭論與判斷,得到結論:人人有宗教信仰或不信仰的自由,確定犯罪的責任在檢察官身上,證明有學位的義務則落在當事人身上!

註釋

  • (註一)嚴格地證明 \(\sqrt{2}\) 是無理數很簡單,有興趣的讀者可參考「延伸閱讀3」。
  • (註二)原則上必須是趨近於零的短線。
  • (註三)大圓弧是球體上任何圓心與球心重合的圓(例如赤道)。但是因為天氣、急流和空域限制等因素,航班並不沿著大圓弧路徑飛行,例如台北到舊金山的實際航線比大圓弧長了約10%。
  • (註四)這裡指的「上帝」是抽象的、廣泛的超人造物主。
  • (註五)在「延伸閱讀4」一文裡,筆者提到了要證明有博士學位應該是非常簡單的,如拿出正式的畢業證書或學校出證明;但要外人證明你沒有博士學位,則將與證明上帝不存在一樣更加困難:因為即使我們找遍全世界所有的地方,都沒發現你的論文或證書,我們還是不能說你沒有博士學位的博士學位━因為這不是「嚴格的邏輯證明」!

延伸閱讀

  1. 抱歉了愛因斯坦,但我真的沒辦法給那個酷理論——為何相對論與諾貝爾獎擦身而過?」,泛科學,2021/07/28。
  2. 思考的極限:宇宙創造出「空間」與「時間」? ——宇宙觀的發展史(下篇)|20 世紀後」,泛科學,2023/05/17。
  3. 愛因斯坦相信的上帝,是你以為的那位上帝嗎?」,泛科學,2018/03/30。
  4. 要被接受,需有不被合理質疑的證據–從科學與蔡博士學位事件討論起」,科技報導,2020/02/01。
  5. 從圓周率與無理數,談數學也有其無法理解、不精確、與不確定性」,泛科學,2019/06/03。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
50 篇文章 ・ 61 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
50 篇文章 ・ 61 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。