0

6
0

文字

分享

0
6
0

顛覆世界的「電腦」是怎麼誕生的呢?

寫點科普,請給指教
・2017/05/18 ・5537字 ・閱讀時間約 11 分鐘 ・SR值 548 ・八年級

二十世紀是人類史上科學技術進展最快的世紀。短短的 100 年間,湧現了大量對世界產生重大的影響的科學發現和技術突破,包括電視、飛機、抗生素、基因科學、量子力學……。

但若要評選一項滲透至人們日常生活的所有角落、改變人類生活型態最劇烈的科技發明,則非電腦莫屬。

第一次工業革命是機械與工廠、第二次工業革命是電力、第三次工業革命乃由電腦發明所激起的資訊時代。有著「第四次工業革命」之稱的人工智慧,我們已在深度學習簡史中有所探討。但追本究源,人工智慧所奠基的電腦(計算機)科學,又是怎麼來的?

今天就讓我們來思考一個有趣的問題:電腦是怎麼來的?

ENIAC:情人節誕生的奇蹟

普遍認為最早的通用電腦,是美國賓州大學的莫奇來 (Mauchly)和他的學生埃克特 (Eckert)在 1946 年 2 月 14 日情人節當天所發表的「ENIAC」 。(情人節剛過不久但別再討論單身魯了,人家可是在情人節顛覆世界呢 XD)

ENIAC 計算機在進行每一次運算之前,都須根據運算要求、把不同的元件用人工插接線路的方式連接在一起。將輸入裝置和輸出裝置設好後,才進行通電……啪!一聲,電腦噠噠噠的開始運作。

但現在可能正用電腦看這篇文章的你,好像不需要在開機前把電線插來插去才能使用?

因為這個電路沒有儲存程式的功能。最早的計算機器僅內涵固定用途的程式,比如一台「計算機器」僅有固定的數學計算程式,除此之外便無其他,無論是文書處理或玩遊戲都不行。若想要改變這台機器的程式,你必須更改線路、結構甚至重新設計機器。

馮.紐曼結構與現代電腦

1945 年 6 月,是現代電腦科學的里程碑。著名的美籍猶太裔數學家馮.紐曼 (John von Neumann) 與多位學者聯名發表了一篇長達 101 頁的報告,其中包括大膽捨棄了十進制、改以二進制運算取代,同時將電腦明確分成五個部分組成(包括:記憶體、控制單元、算術邏輯單元、輸入 / 輸出裝置等),並描述了這五個部分的功能和相互關係,為電腦的邏輯結構設計奠定了基礎。

事實上,EDVAC 報告中最核心的概念即是「可儲存程式的電腦 (Stored Program Computer) 」。如果是一台能儲存程式的電腦,只要一開始先將「文書程式」與「遊戲程式」都載入記憶體中,再告訴電腦去記憶體的哪一個位置開始執行就可以完成,在不需更動硬體的情況下就能讓電腦變得更加有彈性。

1951 年,美國軍方透過馮.紐曼的協助,斥資五十萬美元打造了計算機「EDVAC」。相較於十進位、又須人工插接電路的 ENIAC,可以說 EDVAC 是第一台現代意義的通用計算機,直至今的現代電腦皆仍採用馮.紐曼架構。

在我們介紹馮.紐曼其人其事、與現代電腦的運作原理前,先讓我們重看一次標題所提出的問題:「電腦是怎麼來的?」為什麼馮.紐曼能夠造出這樣的一台電腦?

不少人把馮.紐曼當作是電腦科學的奠基人,有人甚至稱他為「電腦之父」。然而他本人並不接受這個稱號。

馮.紐曼認為他的研究成果是受到了英國數學家圖靈 (Alan Turing) 所啟發,他僅僅是發揚光大圖靈的原始概念。這台「可儲存程式電腦」真正的意義,其實就是通用圖靈機。馮.紐曼將這個概念的創始人公正無私地還予圖靈。

圖靈:可計算理論與圖靈機

好吧這麼來看,如果我們想要瞭解「電腦是怎麼來的?」,勢必得再先去瞭解圖靈這位同樣有著「電腦科學之父」與「人工智慧之父」之稱的偉大學者,與其圖靈機 (Turing Machine) 的理論了。

1934 年,年僅 22 歲的圖靈從劍橋大學畢業、到美國普林斯頓大學攻讀博士學位。二戰爆發後,圖靈在 1939 年被英國皇家海軍招聘,協助軍方成功破譯德國的密碼系統 Enigma,讓英國軍方對德國的軍事計劃瞭如指掌。圖靈小組的傑出工作,更使得盟軍提前至少兩年戰勝納粹。

--上述是電影《模仿遊戲》的史料。對於圖靈生平有興趣的讀者,可以參考這部向圖靈致敬的電影。 (只是嚴防許多出錯的史實)

除了作為一位傑出的密碼學家,在電影沒詳述的部分中,圖靈在電腦科學上的貢獻更是難以抹滅。

1936 年,24 歲的圖靈發表了一篇論文《論可計算數及其在判定問題上的應用》(On Computable Numbers, with an Application to the Entscheidungsproblem)。在這篇極富開創性的論文中,圖靈提出了「圖靈機」(Turing Machine) 概念。

「圖靈機」不是一台具體的機器,而是一種運算模型,可製造一種十分簡單但運算能力極強的機械裝置,用來計算所有能想像得到的可計算函數。

圖靈機是闡明現代電腦原理的開山之作,奠定了整個電腦科學的理論基礎。如果說馮紐曼是實際打造出一台現代電腦的電腦之父,其所依據的理論基礎即源自於圖靈機。

但,什麼叫可計算?為什麼圖靈會探討這個問題?實際上,上述關於圖靈論文與圖靈機的介紹,更明確的說法應是:圖靈在 1936 年發布的論文中,對於「哥德爾不完備定理」重新做了論述。相較於哥德爾在證明其不完備定理時、採用的通用算術形式系統,圖靈使用了叫做「圖靈機」的簡單裝置作為代替。

咦,我們這邊又多提到一個人了?!哥德爾……?

哥德爾不完備定理

哥德爾 (Gödel) 被譽為自亞里士多德以來、歷史上最偉大的邏輯學家之一。毫不誇張地說,正是哥德爾使數理邏輯與哲學界發生了極大的革命。

愛因斯坦曾說:我之所以還到研究院來,只是為了與哥德爾一起走路回家。

1931 年,19 歲的圖靈進入劍橋大學就讀;但這一年,同時成了撼動數學界的里程碑——奧地利數學家哥德爾提出不完備定理,證明不存在既完備又一致的數學體系,粉碎了無數位數學家追求聖杯的野心。

人類總是渴求著確定的知識,也稱為真理——藉由純數理論與邏輯證明,數學家不斷尋找著真理的可確定性。

哥德爾當年的發現,簡單來說是:「並非所有為真者,皆可循一邏輯演繹過程而得知」。再更直白點就是:「真理的範圍、比我們所能證明的範圍還大。」

數學家乃藉由公理(不證自明、理所當然為真的命題)進行一連串的推理、最後得出數學定理;基本上是活在一個以邏輯演繹為本質的世界。今天突然有人成功證明了:有些數學命題,我們既沒辦法證明它為真,也沒辦法證明它為假……,可想而知,這對於數學界無非是一項沈重的打擊!

五年後的圖靈之所以提出「圖靈機」計算模型,即是以計算機的形式重新演繹了哥德爾的不完備定理,同時補充了判定問題--是否存在一個程式,能判斷:我們任意輸入的一個程式,是否能在有限的時間內結束步驟?或者會陷入無窮迴圈?(當我們對電腦下兩個指令:【往左後往右】與【往右後往左】,電腦就會陷入無窮的迴圈)

哥德爾的發現,引起了當時重要數學家如希爾伯特與馮.紐曼(還記得這個人嗎? 這位計算機之父早年是希爾伯特的助手)等人的重視。到後來不但啟發了後續眾多數學家、哲學家:若無法使用邏輯演繹完全瞭解宇宙,該何以為繼?更激起圖靈創造出了電腦科學在理論上的濫觴。

但是,為什麼哥德爾會探討這樣的問題呢?因為有人下了戰帖!

誰?就是上上句我們提到的大數學家希爾伯特!

希爾伯特的 23 個問題

希爾伯特 (David Hilbert) 是二十世紀初期德國最偉大的數學家之一。

在世紀之交的 1900 年、一場巴黎國際數學家大會的演講當中,希爾伯特根據 19 世紀的研究成果和發展趨勢,以卓越的洞察力提出了 23 個當時尚未被解開的困難數學問題,並鼓舞年輕數學家積極攻克:

「在我們中間,常常聽到這樣的呼聲:這裡有一個數學問題,去找出它的答案!你能通過純思維找到它,因為在數學中沒有不可知。」(希爾伯特大大按曰:只要解出來就能名留青史噢!)

這就是著名的希爾伯特的 23 個問題。

希爾伯特的 23 個問題對 20 世紀的數學研究起了積極的作用,不但超乎希爾伯特的預期,更未曾預料到從其中衍生而出的電腦科學、將會對世界產生無比重大的影響。

而哥德爾之所以提出不完備定理,想解答的正是這 23 個問題中的第二個問題:算術公理系統的無矛盾性。簡單來說,希爾伯特希望能以一個完美的形式系統,成功證明所有的真理、同時找出所有矛盾的陳述。

在這個問題上,希爾伯特原先堅定地表示:「沒有人能將我們逐出康托爾的樂園。」不僅僅是第二個問題,希爾伯特在 23 個問題中所提出(顯然最在意)的第一個問題連續統假設,也是康托爾的研究中所面臨問題。

康托爾……?請放心,這會是本篇文章中所出現的最後一位人名了。

無限多的危機:康托爾集合論

到目前為止,我們已經使用了許多強烈的形容詞,包括:電腦科學之父、偉大的邏輯學家、數學家……。但在這些學者的研究基礎上,我們不能不提現代數學的奠基者——集合論之父康托爾 (Cantor) 。

令集合 A = {1, 2, 3, 4, 5 },B = {1, 3, 5, 7, 9}
則 1, 3, 5 同時為集合 A 和 B 的元素,且 A 集合和 B 集合的大小相等。

康托爾可以說是數學史上最富有想像力的數學家之一,其所開創的集合論則可以說是人類最偉大發明之一--當年康托爾面臨的,正是數學界幾百年幾千年的疑懼:「無限」。

1-1+1-1+1… = 0, 1 還是 1/2? 0.99999….. = 1?還是 <1?

無限有多大?正整數、整數 (正整數 / 負整數 / 0)、實數(有理數 / 無理數) ……等數系的數量相同嗎?

Z+: ∞ (正整數有無限多個), Z-: ∞ (負整數有無限多個), Z: ∞ (整數有無限多個)。
因此: ∞ = 2∞+1 (所有整數個數 = 正整數個數+負整數個數 + 一個 0), 移項得: -∞ = 1,
故: ∞ = -1 …?!

為了處理「無限」這個長久得不到解決的難題,康托爾在 19 世紀下半葉創立了「集合」理論,證明了各個數系雖然是都是無限多,還是有數量上的差別:

| 正整數 | = | 整數 | = | 有理數 | < | 無理數 | = | 實數 | = | 複數 |

無限多的正整數數量 = 無限多的整數數量 = 無限多的有理數數量 < 無限多的無理數數量 = 無限多的實數數量 = 無限多的複數數量

然而集合論實在太過創新、對於無限的解釋也背離了傳統,剛開始時康托爾受到了嚴厲的譴責與撻伐。

但隨後,許多年輕的數學家開始意識到集合論非常的有用--基於自然數 (正整數)與集合論,當時一切的數學成果都可以成功被推證出來。

1900 年在國際數學家大會上,法國數學家龐加萊興高采烈地宣稱:「藉助集合論,我們可以建造起整個數學大廈。」1925 年,希爾伯特也提出了「希爾伯特旅館悖論」來應和康托爾的理論。

然而康托爾集合論仍然面臨了許多問題。首先是連續統假設--我們已知:

| 正整數 | = | 整數 | = | 有理數 | < | 無理數 | = | 實數 | = | 複數 |
那麼還有沒有一個數系,介於此二者間呢?

始終證明不出問題、又受到世人無數攻訐的康托爾,晚年發了瘋、死在精神病院中。

但除此之外,集合論還有一個問題是羅素悖論:「這句話是假的。」讀者只要稍加推論就會發現:如果這句話是真的,那麼這句話是假的會成立……?!如果這句話是假的,那這句話就是真的……?! 這個命題就矛盾了。

羅素悖論應用在集合論的問題即是:如果我們創造一個集合 A,裡面收集了所有不包含在自己這個集合的集合:A = {x|x∉x}。若是 A∈A 成立,則 A 是 A 的集合、使得 A∉A。但若 A∉A,則符合命題,使得 A∈A。

好不容易我們在集合論的基礎上構築起了數學大廈,結果發現集合論也是不完美的。究竟能不能找到一個完備的系統,從上面建築起整個數學的基礎呢?

這樣的系統是否存在呢?希爾伯特除了在 23 個問題中的第一個問題提出「連續統假設」,身為康托爾堅定的擁護者(腦粉),也在第二個問題中提了這樣的難題。

這也接續到我們先前的介紹:再後來哥德爾成功證明了不完備定理、解決了 23 個問題中的第二個問題,到圖靈用「圖靈機」的概念更加簡單明瞭的重新演繹一次哥德爾不完備定理,最後馮.紐曼基於通用圖靈機的概念、建出了第一台具備現代電腦架構雛形的電腦。

哇!「電腦是怎麼來的」居然爬梳出這麼多的問題?

哲學:不懈探究真理的精神

若要探究下去,你知道:康托爾、希爾伯特、哥德爾、馮.紐曼…等人都是德國人嗎(哥德爾和馮.紐曼皆為奧匈帝國人)?19 世紀的德國究竟是一個什麼樣的時代,造就了如此多的數學大家?

事實上,你知道這些數學家同時還有著哲學家的頭銜嗎?更進一步來說,19 世紀知名德國哲學家,尚包括了:黑格爾、叔本華、馬克思、尼采、康德… 毫無疑問地,當時的德國可說是歐洲最具代表性的哲學重鎮。

哲學反映了人類對真理的追求,體現人類的智能與認知極限。因而數學的發展不只是解一些生活問題,而成為一種學問、一種探求真理的道路與哲學手段。

哲學在西方文化中扮演了非常重要的角色,也是現代科學會出現在歐洲的重要原因。至於西方哲學追求真理的精神,又是起源於何時何處呢?這又要回溯到希臘時期,比如亞里斯多德的三段式證法或畢達哥拉斯學派……。

觀察過往,出現像上述「無限有多大」這樣的數學危機,在人類史上也不是第一次發生了:負數的英文為--Negative Number、無理數--Irrational Number、虛數--Imaginary Number。否定的 (Negative)、不合理的 (Irrational)、想像的 (Imaginary)……。

從這些詞彙中可以看出在探究真理的過程中,人類總是不斷遭遇思想上的困難,卻又能在突破後、成功踏上嶄新的道路。 今天我們思考了一個問題:「電腦是怎麼來的?」,並從中衍生出了更多值得探索的問題:

.數學是邏輯、也是哲學?
.歷史上其他的數學危機有哪些、又是如何被解決的?
.希臘亞里斯多德時代至一戰前的德國,哲學是如何百花齊放?
.無限有多大?
.悲劇性的數學家康托爾為什麼偉大?
.希爾伯特的 23 個問題?
.我們能造出一台判別真理的機器嗎?
.哥德爾不完備定理是什麼?圖靈機呢?
.計算機的電路是怎麼計算和記憶的?

沒有了探求宇宙真理的精神,或許工業革命就不會出現在歐洲了? 人類也不會有科技發展、或者今日的生活。

少年啊,你渴望真理嗎?

後續幾篇,我們會繼續用深入淺出的方式一一來討論這些問題,歡迎一起加入這樣的思考訓練吧!


本文轉載自寫點科普,請給指教。 《電腦是怎麼來的?(思考訓練)》,歡迎贊助和訂閱Lynn的網站喔。

文章難易度
寫點科普,請給指教
2 篇文章 ・ 3 位粉絲
我是Lynn,【寫點科普,請給指教】是一個針對各產業現況進行科普的寫作計畫, 期望能用淺顯易懂的文字,讓讀者瞭解各產業領域的運行規則,以培養思考與觀察力的敏銳。

0

1
0

文字

分享

0
1
0
跳脫古典數學邏輯!直覺主義的興起——《大話題:邏輯》
大家出版_96
・2023/04/08 ・1479字 ・閱讀時間約 3 分鐘

非古典邏輯:直覺主義

布勞威爾 (1881 – 1966)是最早脫離所謂「古典邏輯」系統的學者之一。他反對弗雷格和羅素將數學化約為邏輯的構想,認為數學根基於我們對某些基本數學物件(如數字和直線)的「直覺」,因此他的學說便稱為「直覺主義」。

直覺主義。圖/大話題:邏輯

惡魔論證

布勞威爾主要將焦點擺在無限集合和序列上,例如所有正數的集合和無理數(如 π 和)小數點後的數字形成的序列等等。他的論證大致如下:

我邏輯上能證明 666 這個序列一定會出現在任何無理數(如 π)的擴張裡。因為若主張 666 不在裡面,就代表 666 不出現在 π 的小數點後數字的任何地方,但這一點在數學上是無法證明的。就算世界上所有白紙都寫滿π的小數點後數字,還是有無限多的數字沒檢查到。

惡魔論證。圖/大話題:邏輯。

直覺邏輯的興起

雖然布勞威爾只想證明有些數學證明的方式和邏輯證明不同,但有些人發現他的論證也能用來證明某些數學領域的邏輯和其他數學領域不同,甚至有些人還據以建構出一套邏輯系統,並嘗試證明這套邏輯適用於所有數學領域。這套系統就叫「直覺邏輯」。

直覺邏輯系統。圖/大話題:邏輯。

直覺主義 v.s. 歸謬法

直覺邏輯有一個關鍵特點,就是不能用萊布尼茲的歸謬法。歸謬法是先假設某個數學陳述的否定為真,然後導出矛盾,進而證明該陳述為真。但要從「某事的否定為假」推導出「某事為真」就得仰賴排中律,因此在某些數學領域裡,歸謬法並不符合數學應該運作的方式,也就是從公理推導出數學語句。

直覺邏輯與歸謬法互相對立。圖/大話題:邏輯。

直覺主義的數學熱潮

上述問題在 1930 年代引發了一波新的數學熱潮,不少學者嘗試用直覺邏輯替一些常用的基本數學陳述找到證明,也確實找到了不少。

數學系和哲學系紛紛成立,新的學術領域也隨之誕生。就連希爾伯特的方法明明是直覺邏輯的對手,也被加以改造,只使用得到認可的直覺主義程序。直到這股風潮引起了哥德爾的注意。

儘管後來學者對這場爭辯的興趣削弱了一些,但「唯有構造性證明才能確保一個陳述句為真」的基本看法至今仍然得到不少邏輯學家、數學家、科學家和哲學家支持。

許多人試著用直覺邏輯替數學陳述找證明。圖/大話題:邏輯。

處理未來陳述句的老問題

大約同一時期,波蘭數學家盧卡西維茨(1897 – 1956)1920 年提出的構想勾起了一些學者的興趣。此前十多年,這個構想從來不曾在波蘭以外的地區引起多大反應。盧卡西維茨當時想解決的,是從亞里斯多德到羅素都面對過的老問題。

編按:「如何判斷大笨鐘一千年後會遇上大雪」這句話的真值?

未來陳述句是邏輯無法確認之事。圖/大話題:邏輯。

——本文摘自《大話題:邏輯》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

大家出版_96
14 篇文章 ・ 8 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。

0

1
0

文字

分享

0
1
0
白馬 ≠ 馬?當陳述句變成數學邏輯等式!——《大話題:邏輯》
大家出版_96
・2023/04/07 ・2243字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

從簡單陳述句轉變為複合句——「連接詞」

大約一百年後,克律西波斯(c.280 – c.206 BC)改變了邏輯的關注焦點,從簡單的主述詞陳述句轉向「蘇格拉底是人,且芝諾也是人」之類的複合句。

這是很大的進展。當時甚至有人說「克律西波斯的邏輯就是神會用的邏輯」。我們稍後會見到,克律西波斯的邏輯也是人類使用的邏輯,只不過我們還得等兩千年才會明白這一點。

複合句使用的連接詞不同,其真假受個別句子影響的方式也不同。

出現了「且」、「和」等連接詞。圖/大話題:邏輯。

譬如「不是…就是…」這個連接詞組可以這樣用,也只有「不是…就是…」這個連接詞組可以這樣用:

編按:「不是」穆罕默德到山那邊,「就是」山到穆罕默德這邊。

其後一千五百年甚至更久,克律西波斯沒有對邏輯留下多少影響。不僅因為他的作品失傳了,只留下他人的轉述,也因為亞里斯多德成了天主教會的心頭好。

「不是」;「就是」的應用。圖/大話題:邏輯。

萊布尼茲定律

接下來兩千年,邏輯學家建構出愈來愈多三段論,有些甚至前提不只兩個。這些邏輯學家就像煉金術士,拿著概念拼拼湊湊,想辦法生出有效論證。最後有一個人在這股狂熱當中想出了方法,那人就是萊布尼茲(1646 – 1716)。

萊布尼茲想到的方法是將陳述句看成代數裡的等式。等式使用等號(=)來表達式子兩邊數值相等。

例如:x2 + y2 = z2

萊布尼茲將等號帶進邏輯裡,用來指稱 a 和 b 等同。

萊布尼茲定律的陳述句。圖/大話題:邏輯。

自此之後,這個等同式就叫做「萊布尼茲定律」。萊布尼茲將 a = b 拆成兩個不可分割的述句「a 是 b」和「b 是 a」,意思是「所有 a 都是 b」和「所有 b 都是 a」。

例如:「所有單身漢都是沒結婚的男人,且所有沒結婚的男人都是單身漢。」

若 a 和 b 等同,那麼陳述句裡的 a 就算換成 b,這個陳述句的真假顯然不會隨之改變。例如,「蘇格拉底是沒結婚的男人,沒結婚的男人是單身漢,因此蘇格拉底是單身漢」。

這個定律很重要,因為有了它,我們就能以有限多的步驟來判斷近乎無限多的句子的真值。萊布尼茲使用的步驟數是四個。

陳述句中的等同式。圖/大話題:邏輯。

1. a = a

例:「蘇格拉底是蘇格拉底。」

2. 若 a 是 b,且 b 是 c,則 a 是 c

例:「所有人都會死,蘇格拉底是人,所以蘇格拉底會死。」

說「a 是 b」就等於說「所有 a 都是 b」。

3. a =非(非 a)

例:「如果蘇格拉底會死,則蘇格拉底不是不會死的。」

4. a 是 b = 非 b 是非 a

例:「蘇格拉底是人,意思是如果你不是人,你就不是蘇格拉底。」

利用這四個簡單的法則,萊布尼茲就能證明所有可能出現的三段論。比起亞里斯多德的四角對當,這才是人類史上第一個真正的真理理論,因為它使用事先定下的法則,藉由代換等同的符號(同義詞)來導出結論。

非真即假的歸謬法

萊布尼茲最常用的證明方法是一個極為重要的邏輯工具,深受後世邏輯學家和哲學家喜愛。他稱呼這個方法為歸謬法。

這個工具很簡單,卻好用得驚人,自萊布尼茲發明以來便廣獲使用。我們用一個例子來講最清楚。

檢驗「打籃球」得陳述句是否為真?圖/大話題:邏輯。

使用歸謬法時,我們先假設要檢驗的那個陳述句為真,再看它能導出哪些結論。如果導出的結論互相矛盾,我們就知道那個陳述句是假的,因為矛盾永遠為假。

歸謬法有一大好處,那就是即使我們不知道如何證明,也能判斷一個陳述句的真假;只要證明這個陳述句的否定會導出矛盾,就知道它是真的了。

歸謬法僅用真假二分,但卻沒有提出證明。圖/大話題:邏輯.

新工具

「我發明的這個工具完全使用理性,是裁決爭議的判官、解釋概念的權威、衡量可能性的天平、指引我們穿越經驗之海的指南針,是萬物的清單、思想的表格、檢視事物的顯微鏡、預測遙遠事物的望遠鏡、通用的演算法、不使詐的魔術、不空妄的計謀,也是人人都能用自己的語言閱讀,所及之處皆會帶來真宗教的經文。」

萊布尼茲致信漢諾威公爵,1679 年

不難想見,天主教會將萊布尼茲視為異端。但「思想有其必然法則」的想法卻對西方哲學家產生了深遠的影響,包括康德、黑格爾、馬克思和羅素。

萊布尼茲的思想影響到後世許多西方哲學家。圖/大話題:邏輯。

——本文摘自《大話題:邏輯》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

大家出版_96
14 篇文章 ・ 8 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。

0

3
3

文字

分享

0
3
3
鑑識故事系列:德國免費電玩,邀玩家扮法醫
胡中行_96
・2023/03/20 ・1664字 ・閱讀時間約 3 分鐘

本系列以往藉由講解真實案件,來分享鑑識科學;這篇則摘要免費電玩的虛構情境,鼓勵讀者親自體驗辦案。2023 年 1 月的《國際法醫期刊》(International Journal of Legal Medicine),介紹了一款德國漢堡開放線上大學(Hamburg Open Online University)的遊戲,名叫「Adventure Legal Medicine」(非官方中譯:法醫歷險)。論文詳述開發過程與教學功能,還強調玩家不管有無醫學知識,皆能輕易上手。[1]

=========微劇情,防雷線=========

想避開遊戲情境簡介的讀者,請跳過圖片後的第一段,謝謝。

電玩《Adventure Legal Medicine》的繪畫風格。圖/參考資料 1,Figure 1(CC BY 4.0)

情境設定

依照學習的領域,此遊戲有下列 5 個故事情境,可供選擇:

  1. 估計死亡時間(time of death estimation):有人死在公寓裡。玩家必須選取正確的驗屍工具,例如:直腸體溫計(rectal thermometer)或神經反射錘(reflex hammer),來推估死亡時間。[1, 2]
  2. 體外驗屍檢查(external post-mortem examination):河岸上死者的某些身體部位,藏有非自然死亡的線索。[1]像是顱骨和手肘擦傷等,都有待玩家一探究竟。[2]
  3. 鑑識人類學(forensic anthropology):森林裡,散落著人類骨骸。觀察並測量骨頭,以推估年紀、性別和身高。將結果拿去跟失蹤人口的檔案比對,玩家或許就能找出死者的身份。[1]
  4. DNA親子鑑定(DNA analysis/paternity test):不知從哪迸出 4 個人,想繼承情境 2 那名死者的巨額財產。[1]玩家得從唾液樣本,分析他們的 DNA,判斷誰才是真有血親關係的子嗣。[1, 2]
  5. 解剖、酒精與藥物(autopsy/alcohol and drug influence):玩家幫車禍死者體外驗屍;解剖以檢查器官;並進行毒物學分析。最後,判讀以上檢查所得的結果。[1]

開發過程

這個遊戲是鑑識病理學家、鑑識人類學家、心理學家、醫科學生、遊戲工程師和插畫藝術家,共同合作的結晶。類似於商業開發的線上遊戲,產品正式釋出之前,得先找人來封閉測試。2 名分別為 25 和 49 歲的男性;以及 21、25 與 54 歲的 3 名女性,率先嘗試情境 1 和 2 的前期測試版。研發團隊根據他們的感想與建議,改進遊戲,並設計情境 3。接著,請 40 名醫學系的學生,操作情境 1 至 3 的測試版。另外,其他不同教育程度的學生,作為一般大眾的樣本,也受邀試玩。最終統合大家的評論後,團隊設計出情境 4 和 5 的遊戲。[1]

嚴肅遊戲

德國研發團隊將產品定位成「嚴肅遊戲」(serious game),以教學而非娛樂為主要目的,而且在視覺上多採灰階,來保持中性。[1]筆者試玩了一小部份,又觀賞攻略影片,覺得繪圖和音效雖不華麗,但頗為用心。由於遊戲全程都有電子版的課本唾手可得,玩家本身無須具備專業知識。每個階段結束後,還能透過小測驗,了解學習成效。對相關科系而言,也可用於輔助教學或自學。從 2020 年 1 月在 Google Play 上架以來,有數千人下載,並獲得平均 4.5 星的評價;可惜不曉得線上網頁版的使用人次。[1]下面是此遊戲的基本資料、連結與攻略,歡迎讀者分享闖關心得。

Adventure Legal Medicine

  • 名稱:Adventure Legal Medicine[1](英文別名:Forensic Medicine Adventure;德文名稱:Abenteuer Rechtsmedizin)[2]
  • 對象:醫學相關科系的學生及一般愛好者。[1]
  • 語言:英文和德文。[1]英文版的故事敘述,用字不難;但基於辦案的情境,勢必會出現骨骼、基因等,鑑識科學常見的專有名詞。
  • 行動裝置版:僅支援Android系統的平板電腦和手機;沒有 iOS 的版本。請點超連結下載,或上Google Play搜尋「Abenteuer Rechtsmedizin」。[1]
  • 線上網頁版http://elearning.uke.de/HOOU/RechtsmedizinSeriousGame/ (完全載入後,可以按下方代表德文的「DE」,將語言改為英文「EN」。)[1]
電玩《Adventure Legal Medicine》英文版,前 4 個情境的攻略。影/參考資料 2

  

參考資料

  1. Anders S, Steen A, Müller T, et al. (2023) ‘Adventure Legal Medicine: a free online serious game for supplementary use in undergraduate medical education’. International Journal of Legal Medicine, 137, 545–549.
  2. SLY MobileGaming (15 JAN 2021) ‘Forensic Medicine Adventure Abenteuer Rechtsmedizin | Point and Click Game Walkthrough’. YouTube.
胡中行_96
118 篇文章 ・ 40 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。