0

14
7

文字

分享

0
14
7

搞懂「通用圖靈機」的第一站——康托爾的「無限樂園」 │《電腦簡史》數位時代(十二)

張瑞棋_96
・2020/12/07 ・3891字 ・閱讀時間約 8 分鐘 ・SR值 532 ・七年級

本文為系列文章,上一篇請見現代電腦從此展開——馮紐曼與馮紐曼架構 │《電腦簡史》數位時代(十一)

數學能不能判定?圖靈機的源起

在美國那些電腦先驅著手設計電腦之前,英國劍橋大學有位研究所新生已經發表論文,率先指出通用型電腦的可能性。這位學生就是後來有「電腦之父」、「人工智慧之父」等美譽,還在二戰期間發明電腦破解德軍密碼的天才——圖靈。

38 歲的圖靈。圖:Wikipedia

圖靈撰寫那篇論文的初衷極為特殊,與實際計算毫無關聯。之前介紹過的那些電腦先驅,若不是因為在就學期間經歷計算之苦,就是工作上遇到瓶頸,才會一頭栽入計算機的研究,希望透過機械化與自動化讓計算更快速、更準確。但圖靈都沒遇到這些狀況,他也沒想要解決實務上的技術問題。事實上,他的論文根本無關乎計算,而是要回答一個極為抽象的大哉問:數學是否可以判定?

什麼叫可以判定?這與計算機有什麼關係?要說清楚這來龍去脈,也為了搞懂圖靈所設想出來的通用圖靈機是什麼,得先探究另一個數學問題——「無限」。

象徵無限的符號。圖:Wikipedia

無限是什麼?康托爾挑戰數學界千年共識

從亞里斯多德以降,無限向來被視為一種潛無限 (potential infinity),是進行中的未完成狀態,不能當成實體看待,更不能比較大小,否則就會出現矛盾。

例如伽利略便曾舉出一個悖論:自然數 (1、2、3、……) 與平方數 (1、4、9、……) 哪個比較多?照理說自然數當然遠比平方數還多,可是如果用一個蘿蔔一個坑來想的話,每個自然數都有個平方數與之對應 (1🡪12、2🡪22、3🡪32、……),表示有多少自然數,就有多少平方數,兩者一樣多,這不就前後矛盾了嗎?因此伽利略主張等於、大於、小於這些關係不能應用於無限。數學王子高斯也嚴正表示:「我反對將無限量看成真實的實體來運用,這在數學之中是永遠不被允許的。無限只是一種說法而已。」這句話可以說代表了所有數學家的共同看法。

沒想到 1874 年,不到 30 歲的德國數學家康托爾 (Georg Cantor) 竟然跳出來說:不對,無限大可以當成實體做比較,而且可區分大小,例如實數的集合就比自然數的集合大!

康托爾當然有所本才敢公然挑戰數學界長久以來的信念,不過他所提出的證明是用集合論的方法,不好解釋,我們改用他後來在 1891 年提出的「對角線法」來做說明。這不只是因為這個方法更簡潔易懂,更因為它影響深遠,啟發圖靈解決了判定問題,也才誕生出極具開創意義的「通用圖靈機」。

德國數學家康托爾 (Georg Cantor,1845-1918)。圖:Wikipedia

騙肖ㄟ,有理數和自然數一樣多?

首先讓我們重溫一下怎麼比較集合的大小。基本上只要集合所含的元素一樣多,它們就是一樣大,例如A={1,2,3},B={2,4,6},兩者的元素都是 3 個,所以 A 與 B 大小相等。問題是無限數列沒有止盡,要怎麼數有幾個?沒關係,同樣用一個蘿蔔一個坑的概念,只要兩個集合的元素彼此一一對應,就代表這兩個集合大小相等。所以按照這個定義,伽利略悖論就解決了:自然數的集合與平方數的集合一樣大。

那麼自然數與有理數呢?可以用分數表示的數就是有理數,而光在 0 和 1 之間就有無限個分數,當然是有理數遠多於自然數啊!等等,且看康托爾怎麼巧妙地列出所有有理數:

1/1

1/2、2/1

1/3、2/2、3/1

1/4、2/3、3/2、4/1

…………以此類推

第一行是分子與分母相加為 2 的有理數,第二行是分子與分母相加為 3 的有理數,第三行相加為 4、第四行相加為 5,……以此類推,便可以列出全部的有理數,一個都不漏。然後我們再由上往下,一行一行的由左向右依序為每個有理數編號:1、2、3、4、……,如此一來,有理數不就與自然數一一對應了嗎?所以有理數的集合與自然數的集合也是一樣大。(如果要涵蓋負的有理數,只要依樣放在這個三角形列表的右半部就行了)

到目前為止,我們看到自然數、平方數、有理數這些集合,雖然乍看明明大小不同,結果卻證明無限是不分軒輊的。那麼同樣是無限多的實數,憑什麼就比它們都來得大呢?

比無限大還大?康托爾祭出對角線法

實數除了有理數,還包括無理數,也就是無法用分數表示的數,例如 \(\sqrt{2}\)、π、……等等,所以我們得用小數來列舉實數。先來看 0 與 1 之間的所有實數,也就是純小數。絕大部分的數字小數點後有無限多位數,所以沒辦法像有理數那樣依序一一列舉,不過沒關係,我們就不按大小順序而是任意列舉,例如:

  1.  0.541592653……
  2.  0.041719652……
  3.  0.862235975……
  4.  0.640194231……
  5.  0.234178276……

……

反正我們姑且假設所有純小數都在這張無限長的表格裡了,因此都有個自然數與它對應。現在對角線法要上場了。我們從第一行取小數點後第一個位數,第二行取第二位數,以此類推,可以得到一個小數:0.54217……。然後我們將每個位數都加上 1,會得到一個新的小數:0.65328……。

這個新的小數很特別喔,因為它和每一行的數字都有一個位數不符,表示它絕對不在這張表裡面,也就是這個小數沒被自然數對應到,前面假設所有純小數都在這張表並不成立。

你可能會說:那還不簡單,再把這個新的小數加進去這張表就好啦。可是加了之後,我們仍然可以用剛剛的對角線法,又產生一個不在表中的新數字,因此永遠有自然數對應不到的小數,足以證明小數的集合比自然數還要大。

康托爾把自然數、有理數這類可列舉的數稱為「可數無限」,是最初級的無限,算是第 0 級。小數則是「不可數無限」,是第 1 級無限,比第 0 級無限還要大(註一)。就這樣,長達兩千年的普遍信念,一夕之間被康托爾徹底顛覆了,無限不再是無從比較的概念,而是可以明確區辨的實體。

現在你知道什麼是對角線法,已經可以直接到下一站,看看圖靈如何構思出計算機。不過康托爾還有許多令人驚奇的把戲,何不繼續往下一探究竟,看看自己有多少錯誤的迷思?

無限的無限的無限……——冪集合的威力

我們已經知道無限有分等級,而純小數的無限等級比自然數或有理數還大。那有比純小數更大的無限嗎?例如 0 到 100 之間的實數?既然實數屬於特殊的不可數無限,不能用前面證明有理數與自然數一樣多的列舉對應方式,那麼範圍更大的實數是不是無限等級就比較大? 

直接宣布答案:不,都一樣大。即使是從負無限大到正無限大,涵蓋所有實數的集合仍然與 0 與 1 之間的純小數一樣大。怎麼證明?如下圖,我們畫一個直徑為 1 的半圓,在它下方畫一條代表往兩端無限延伸的直線。從這條直線上的任一點畫一條線與圓心相連,會與半圓相交於一點。這個點對應到直線上的位置一定會落在 0 與 1 之間,表示任一實數都會有一個純小數與之對應,所以所有實數的集合與純小數的集合一樣大。

講到這裡,你大概會以為無限就分兩種:自然數、有理數這類可數無限屬於第 0 級無限,小數、實數這類不可數無限屬於第 1 級無限。往上不會有更大的無限,畢竟實數都已經涵蓋所有數字了。沒想到康托爾就像魔術師從空無一物的帽子變出兔子般,竟然端出了比第 1 級無限更大的無限:冪集合

冪是次方的意思。一個包含 n 個元素的集合,它的子集合個數為 2n,把這些子集合當成元素全部集合在一起,就成為原來那個集合的冪集合。例如集合 A={1,2,3},那麼 A 的冪集合就是由空集合、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3},這 8 個集合為元素所構成的集合。

康托爾於 1891 年證明無限集合的冪集合是更大的無限(註二),例如自然數的集合是第 0 級無限,它的冪集合就是第 1 級無限;同理,實數的冪集合則是第 2 級無限。還沒完喔,實數的冪集合又可以組成更大的冪集合(就像上面舉例的 A 集合,它的冪集合的冪集合就有 28 =256 個元素),而誕生出第 3 級無限。

你會想這樣不是沒完沒了嗎?沒錯,新的冪集合不斷衍生,無限的等級也越來越大,永無止盡。

康托爾掀起巨浪,自己卻反遭吞噬

原本一片渾沌的無限,經康托爾大刀一揮,不但有大小之分,而且宛如侏儸紀公園裡的恐龍,一隻比一隻巨大,更可怕的是完全沒有極限。不過康托爾革命性的創見並未獲得當時的主流認同,尤其他的老師公開嚴厲批判,不但造成康托爾謀求教職不順,更重創他的心靈。

1884 年開始,康托爾數度精神崩潰住院治療。出院後他曾一度放棄數學,轉而研究歷史與神學,但後來還是「雖千萬人吾往矣」,繼續打破無限的迷思,發明出影響深遠的對角線法。1900 年代初期,康托爾的研究成果終於逐漸獲得肯定,無奈 1917 年他最後一次進入療養院時,德國因為一次世界大戰戰情吃緊,實施食物配給。康托爾因此營養不良而健康惡化,隔年就在院內過世,享年73歲。

好了,無限樂園的導覽到此告一段落,下一章我們就要介紹圖靈。他的悲慘命運不下於康托爾,也是做出了無與倫比的貢獻,最後卻以悲劇結束一生。

註一:康托爾相信並不存在大小介於第 0 級與第 1 級之間的無限。但這至今仍無法證明,因此稱為「連續統假設」。

註二:康托爾就是為此而發明對角線法。證明方式與前面證明純小數比自然數多的做法類似,先假設冪集合可以與原來的集合完全對應,再證明冪集合中永遠有對應不到的元素,所以冪集合的無限等級又大一級。


數感宇宙探索課程,現正募資中!

文章難易度
張瑞棋_96
423 篇文章 ・ 487 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。


2

11
3

文字

分享

2
11
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
8 篇文章 ・ 17 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook