0

16
8

文字

分享

0
16
8

搞懂「通用圖靈機」的第一站——康托爾的「無限樂園」 │《電腦簡史》數位時代(十二)

張瑞棋_96
・2020/12/07 ・3891字 ・閱讀時間約 8 分鐘 ・SR值 532 ・七年級

本文為系列文章,上一篇請見現代電腦從此展開——馮紐曼與馮紐曼架構 │《電腦簡史》數位時代(十一)

數學能不能判定?圖靈機的源起

在美國那些電腦先驅著手設計電腦之前,英國劍橋大學有位研究所新生已經發表論文,率先指出通用型電腦的可能性。這位學生就是後來有「電腦之父」、「人工智慧之父」等美譽,還在二戰期間發明電腦破解德軍密碼的天才——圖靈。

38 歲的圖靈。圖:Wikipedia

圖靈撰寫那篇論文的初衷極為特殊,與實際計算毫無關聯。之前介紹過的那些電腦先驅,若不是因為在就學期間經歷計算之苦,就是工作上遇到瓶頸,才會一頭栽入計算機的研究,希望透過機械化與自動化讓計算更快速、更準確。但圖靈都沒遇到這些狀況,他也沒想要解決實務上的技術問題。事實上,他的論文根本無關乎計算,而是要回答一個極為抽象的大哉問:數學是否可以判定?

什麼叫可以判定?這與計算機有什麼關係?要說清楚這來龍去脈,也為了搞懂圖靈所設想出來的通用圖靈機是什麼,得先探究另一個數學問題——「無限」。

象徵無限的符號。圖:Wikipedia

無限是什麼?康托爾挑戰數學界千年共識

從亞里斯多德以降,無限向來被視為一種潛無限 (potential infinity),是進行中的未完成狀態,不能當成實體看待,更不能比較大小,否則就會出現矛盾。

-----廣告,請繼續往下閱讀-----

例如伽利略便曾舉出一個悖論:自然數 (1、2、3、……) 與平方數 (1、4、9、……) 哪個比較多?照理說自然數當然遠比平方數還多,可是如果用一個蘿蔔一個坑來想的話,每個自然數都有個平方數與之對應 (1🡪12、2🡪22、3🡪32、……),表示有多少自然數,就有多少平方數,兩者一樣多,這不就前後矛盾了嗎?因此伽利略主張等於、大於、小於這些關係不能應用於無限。數學王子高斯也嚴正表示:「我反對將無限量看成真實的實體來運用,這在數學之中是永遠不被允許的。無限只是一種說法而已。」這句話可以說代表了所有數學家的共同看法。

沒想到 1874 年,不到 30 歲的德國數學家康托爾 (Georg Cantor) 竟然跳出來說:不對,無限大可以當成實體做比較,而且可區分大小,例如實數的集合就比自然數的集合大!

康托爾當然有所本才敢公然挑戰數學界長久以來的信念,不過他所提出的證明是用集合論的方法,不好解釋,我們改用他後來在 1891 年提出的「對角線法」來做說明。這不只是因為這個方法更簡潔易懂,更因為它影響深遠,啟發圖靈解決了判定問題,也才誕生出極具開創意義的「通用圖靈機」。

德國數學家康托爾 (Georg Cantor,1845-1918)。圖:Wikipedia

騙肖ㄟ,有理數和自然數一樣多?

首先讓我們重溫一下怎麼比較集合的大小。基本上只要集合所含的元素一樣多,它們就是一樣大,例如A={1,2,3},B={2,4,6},兩者的元素都是 3 個,所以 A 與 B 大小相等。問題是無限數列沒有止盡,要怎麼數有幾個?沒關係,同樣用一個蘿蔔一個坑的概念,只要兩個集合的元素彼此一一對應,就代表這兩個集合大小相等。所以按照這個定義,伽利略悖論就解決了:自然數的集合與平方數的集合一樣大。

-----廣告,請繼續往下閱讀-----

那麼自然數與有理數呢?可以用分數表示的數就是有理數,而光在 0 和 1 之間就有無限個分數,當然是有理數遠多於自然數啊!等等,且看康托爾怎麼巧妙地列出所有有理數:

1/1

1/2、2/1

1/3、2/2、3/1

-----廣告,請繼續往下閱讀-----

1/4、2/3、3/2、4/1

…………以此類推

第一行是分子與分母相加為 2 的有理數,第二行是分子與分母相加為 3 的有理數,第三行相加為 4、第四行相加為 5,……以此類推,便可以列出全部的有理數,一個都不漏。然後我們再由上往下,一行一行的由左向右依序為每個有理數編號:1、2、3、4、……,如此一來,有理數不就與自然數一一對應了嗎?所以有理數的集合與自然數的集合也是一樣大。(如果要涵蓋負的有理數,只要依樣放在這個三角形列表的右半部就行了)

到目前為止,我們看到自然數、平方數、有理數這些集合,雖然乍看明明大小不同,結果卻證明無限是不分軒輊的。那麼同樣是無限多的實數,憑什麼就比它們都來得大呢?

-----廣告,請繼續往下閱讀-----

比無限大還大?康托爾祭出對角線法

實數除了有理數,還包括無理數,也就是無法用分數表示的數,例如 \(\sqrt{2}\)、π、……等等,所以我們得用小數來列舉實數。先來看 0 與 1 之間的所有實數,也就是純小數。絕大部分的數字小數點後有無限多位數,所以沒辦法像有理數那樣依序一一列舉,不過沒關係,我們就不按大小順序而是任意列舉,例如:

  1.  0.541592653……
  2.  0.041719652……
  3.  0.862235975……
  4.  0.640194231……
  5.  0.234178276……

……

反正我們姑且假設所有純小數都在這張無限長的表格裡了,因此都有個自然數與它對應。現在對角線法要上場了。我們從第一行取小數點後第一個位數,第二行取第二位數,以此類推,可以得到一個小數:0.54217……。然後我們將每個位數都加上 1,會得到一個新的小數:0.65328……。

這個新的小數很特別喔,因為它和每一行的數字都有一個位數不符,表示它絕對不在這張表裡面,也就是這個小數沒被自然數對應到,前面假設所有純小數都在這張表並不成立。

-----廣告,請繼續往下閱讀-----

你可能會說:那還不簡單,再把這個新的小數加進去這張表就好啦。可是加了之後,我們仍然可以用剛剛的對角線法,又產生一個不在表中的新數字,因此永遠有自然數對應不到的小數,足以證明小數的集合比自然數還要大。

康托爾把自然數、有理數這類可列舉的數稱為「可數無限」,是最初級的無限,算是第 0 級。小數則是「不可數無限」,是第 1 級無限,比第 0 級無限還要大(註一)。就這樣,長達兩千年的普遍信念,一夕之間被康托爾徹底顛覆了,無限不再是無從比較的概念,而是可以明確區辨的實體。

現在你知道什麼是對角線法,已經可以直接到下一站,看看圖靈如何構思出計算機。不過康托爾還有許多令人驚奇的把戲,何不繼續往下一探究竟,看看自己有多少錯誤的迷思?

無限的無限的無限……——冪集合的威力

我們已經知道無限有分等級,而純小數的無限等級比自然數或有理數還大。那有比純小數更大的無限嗎?例如 0 到 100 之間的實數?既然實數屬於特殊的不可數無限,不能用前面證明有理數與自然數一樣多的列舉對應方式,那麼範圍更大的實數是不是無限等級就比較大? 

-----廣告,請繼續往下閱讀-----

直接宣布答案:不,都一樣大。即使是從負無限大到正無限大,涵蓋所有實數的集合仍然與 0 與 1 之間的純小數一樣大。怎麼證明?如下圖,我們畫一個直徑為 1 的半圓,在它下方畫一條代表往兩端無限延伸的直線。從這條直線上的任一點畫一條線與圓心相連,會與半圓相交於一點。這個點對應到直線上的位置一定會落在 0 與 1 之間,表示任一實數都會有一個純小數與之對應,所以所有實數的集合與純小數的集合一樣大。

講到這裡,你大概會以為無限就分兩種:自然數、有理數這類可數無限屬於第 0 級無限,小數、實數這類不可數無限屬於第 1 級無限。往上不會有更大的無限,畢竟實數都已經涵蓋所有數字了。沒想到康托爾就像魔術師從空無一物的帽子變出兔子般,竟然端出了比第 1 級無限更大的無限:冪集合

冪是次方的意思。一個包含 n 個元素的集合,它的子集合個數為 2n,把這些子集合當成元素全部集合在一起,就成為原來那個集合的冪集合。例如集合 A={1,2,3},那麼 A 的冪集合就是由空集合、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3},這 8 個集合為元素所構成的集合。

康托爾於 1891 年證明無限集合的冪集合是更大的無限(註二),例如自然數的集合是第 0 級無限,它的冪集合就是第 1 級無限;同理,實數的冪集合則是第 2 級無限。還沒完喔,實數的冪集合又可以組成更大的冪集合(就像上面舉例的 A 集合,它的冪集合的冪集合就有 28 =256 個元素),而誕生出第 3 級無限。

-----廣告,請繼續往下閱讀-----

你會想這樣不是沒完沒了嗎?沒錯,新的冪集合不斷衍生,無限的等級也越來越大,永無止盡。

康托爾掀起巨浪,自己卻反遭吞噬

原本一片渾沌的無限,經康托爾大刀一揮,不但有大小之分,而且宛如侏儸紀公園裡的恐龍,一隻比一隻巨大,更可怕的是完全沒有極限。不過康托爾革命性的創見並未獲得當時的主流認同,尤其他的老師公開嚴厲批判,不但造成康托爾謀求教職不順,更重創他的心靈。

1884 年開始,康托爾數度精神崩潰住院治療。出院後他曾一度放棄數學,轉而研究歷史與神學,但後來還是「雖千萬人吾往矣」,繼續打破無限的迷思,發明出影響深遠的對角線法。1900 年代初期,康托爾的研究成果終於逐漸獲得肯定,無奈 1917 年他最後一次進入療養院時,德國因為一次世界大戰戰情吃緊,實施食物配給。康托爾因此營養不良而健康惡化,隔年就在院內過世,享年73歲。

好了,無限樂園的導覽到此告一段落,下一章我們就要介紹圖靈。他的悲慘命運不下於康托爾,也是做出了無與倫比的貢獻,最後卻以悲劇結束一生。

註一:康托爾相信並不存在大小介於第 0 級與第 1 級之間的無限。但這至今仍無法證明,因此稱為「連續統假設」。

註二:康托爾就是為此而發明對角線法。證明方式與前面證明純小數比自然數多的做法類似,先假設冪集合可以與原來的集合完全對應,再證明冪集合中永遠有對應不到的元素,所以冪集合的無限等級又大一級。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1090 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
0

文字

分享

0
6
0
量子革命來襲!一分鐘搞定傳統電腦要花數千萬年的難題!你的電腦是否即將被淘汰?
PanSci_96
・2024/10/17 ・2050字 ・閱讀時間約 4 分鐘

量子電腦:解碼顛覆未來科技的關鍵

2023 年,Google 發表了一項引人注目的研究成果,顯示人類現有最強大的超級電腦 Frontier 需要花費 47 年才能完成的計算任務,Google 所研發的量子電腦 Sycamore 只需幾秒鐘便能完成。這項消息震驚了科技界,也再次引發了量子電腦的討論。

那麼,量子電腦為什麼如此強大?它能否徹底改變我們對計算技術的認知?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

量子電腦是什麼?

量子電腦是一種基於量子力學運作的新型計算機,它與我們熟悉的傳統電腦截然不同。傳統電腦的運算是建立在「位元」(bits)的基礎上,每個位元可以是 0 或 1,這種二進位制運作方式使得計算過程變得線性且單向。然而,量子電腦使用的是「量子位元」(qubits),其運算邏輯則是基於量子力學中的「疊加」與「糾纏」等現象,這使得量子位元能同時處於 0 和 1 的疊加狀態。

這意味著,量子電腦能夠在同一時間進行多個計算,從而大幅提高運算效率。對於某些非常複雜的問題,例如氣候模型、金融分析,甚至質因數分解,傳統電腦可能需要數千年才能完成的運算任務,量子電腦只需數分鐘甚至更短時間便可完成。

-----廣告,請繼續往下閱讀-----

Google、IBM 和量子競賽

Google 和 IBM 是目前在量子計算領域中競爭最為激烈的兩大科技公司。Google 的 Sycamore 量子電腦已經展示出極高的計算速度,令傳統超級電腦相形見絀。IBM 則持續投入量子電腦的研究,並推出了超過 1000 個量子位元的系統,預計到 2025 年,IBM 的量子電腦將擁有超過 4000 個量子位元。

除此之外,世界各國和企業都爭相投入這場「量子霸權」的競賽,台灣的量子國家隊也不例外,積極尋求量子計算方面的突破。這場量子競賽,將決定未來的計算技術格局。

量子電腦的核心原理

量子電腦之所以能如此快速,是因為它利用了量子力學中的「疊加態」和「糾纏態」。簡單來說,傳統電腦的位元只能是 0 或 1 兩種狀態,而量子位元則可以同時處於 0 和 1 兩種狀態的疊加,這使得量子電腦可以在同一時間內同時進行多次計算。

舉例來說,如果一台電腦需要處理一個要花 330 年才能解決的問題,量子電腦只需 10 分鐘便可解決。如果問題變得更複雜,傳統電腦需要 3300 年才能解決,量子電腦只需再多花一分鐘便能完成。

-----廣告,請繼續往下閱讀-----

此外,量子電腦中使用的量子閘(quantum gates)類似於傳統電腦中的邏輯閘,但它能進行更複雜的運算。量子閘可以改變量子位元的量子態,進而完成計算過程。例如,Hadamard 閘能將量子位元轉變為疊加態,使其進行平行計算。

量子電腦能大幅縮短複雜問題的計算時間,利用量子閘進行平行運算。圖/envato

計算的效率

除了硬體技術的進步,量子電腦的強大運算能力也依賴於量子演算法。當前,最著名的兩種量子演算法分別是 Grover 演算法與 Shor 演算法。

Grover 演算法主要用於搜尋無序資料庫,它能將運算時間從傳統電腦的 N 遞減至 √N,這使得資料搜索的效率大幅提升。舉例來說,傳統電腦需要花費一小時才能完成的搜索,量子電腦只需幾分鐘甚至更短時間便能找到目標資料。

Shor 演算法則專注於質因數分解。這對於現代加密技術至關重要,因為目前網路上使用的 RSA 加密技術正是基於質因數分解的困難性。傳統電腦需要數千萬年才能破解的加密,量子電腦只需幾秒鐘便可破解。這也引發了全球對後量子密碼學(PQC)的研究,因為一旦量子電腦大規模應用,現有的加密系統將面臨極大的威脅。

-----廣告,請繼續往下閱讀-----

量子電腦的挑戰:退相干與材料限制

儘管量子電腦具有顛覆性的運算能力,但其技術發展仍面臨諸多挑戰。量子位元必須保持在「疊加態」才能進行運算,但量子態非常脆弱,容易因環境中的微小干擾而坍縮成 0 或 1,這種現象被稱為「量子退相干」。量子退相干導致量子計算無法穩定進行,因此,如何保持量子位元穩定是量子電腦發展的一大難題。

目前,科學家們正在探索多種材料和技術來解決這一問題,例如超導體和半導體技術,並嘗試研發更穩定且易於量產的量子電腦硬體。然而,要實現大規模的量子計算應用,仍需克服諸多技術瓶頸。

量子電腦對未來生活的影響

量子電腦的快速發展將為未來帶來深遠的影響。它不僅將推動科學研究的進步,例如藥物設計、材料科學和天文物理等領域,還可能徹底改變我們的日常生活。例如,交通運輸、物流優化、金融風險管理,甚至氣候變遷預測,都有望因量子計算的應用而變得更加精確和高效。

然而,量子計算的發展也帶來了一些潛在的風險。隨著量子電腦逐漸成熟,現有的加密技術可能會被徹底摧毀,全球的資訊安全體系將面臨巨大挑戰。因此,各國政府和企業已經開始研究新的加密方法,以應對量子時代的來臨。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1265 篇文章 ・ 2618 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

30
2

文字

分享

0
30
2
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

林澤民_96
37 篇文章 ・ 246 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。