0

0
0

文字

分享

0
0
0

公設化集合論的奧秘(13) 追查有理數失蹤之謎

翁 昌黎
・2015/02/27 ・1766字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級
credit:wiki
credit:wiki

「一尺之棰,日取其半,萬世不竭」       莊子

如果我們把莊子以上的想法稍作改變,不要把木棍每天鋸掉一半,而是在本該鋸掉的地方刻上一道細線,這樣一直刻劃下去,有一天是否能把木棍劃滿呢?如果你拿一枝美工刀實際去做的話,幾秒鐘刻上一道刀痕,估計木棍很快就會佈滿刀的刻跡,因為刻痕是有寬度的。若是刻痕真能像幾何學所說的那樣寬度等於零的話,直覺上木棍或許不會被蓋滿,在取1/2不斷縮小的眾多段落裡總是會有間隙存在。

但如果增加刀痕的切刻密度,比如把棍子按1/3比例切刻,然後將被切成1/3的部分再切1/3這樣無限執行下去呢?若將1/4, 1/5, 1/6, …, 1/n , … 的切刻比例都加進來如法炮製呢?你的直觀還能那麼確定棍子不會被刻痕佈滿嗎?

讓我們回到那個由無限顆白沙顆粒所形成的海灘,還有那條發出橙色亮光的實數線,數學證明告訴我們,這些與有理數等量的沙粒確實無法填滿實數線(請參考《公設化集合論的奧秘(11)》),同理以上的方法也無法將刻痕佈滿莊子家那根棍子。

僅管我們在《公設化集合論的奧秘(11)》中已經證明實數是不可數的,也就是說實數比有理數多,但我們並不清楚實數到底比有理數多多少?將這些美麗的白沙填充到橙色的實數彩虹時,彩虹到底變白了多少?是整個實數彩虹都呈現灰白狀,還是只有白色的帶狀,或者更像量子力學的双狹縫實驗中的細干涉條紋線呢?

答案我們前文已經說過,實數彩虹完全不會改變顏色,那似乎暗示無限顆白沙就像憑空消失一樣,即使請菩提祖師加持讓每顆沙粒再變成無窮的沙粒也於事無補,無數美麗的白沙消失在實數線的橙光之中。於是我們面臨一宗最詭異的疑案,這些數量等同於一切有理數的美麗白沙為何消失了?它們跑到哪裡去了?有數學上的方法能說明這個怪異現象嗎?

要破解這件玄案,首先要知道無數白沙失蹤等同於有理數失蹤,因為它們是等量的,有著相同的基數。所以我們的目標是要追查失蹤的有理數,看它們為何消失,但一個好的偵探不會被表象蒙蔽,或許這些有理數並沒有消失,只是被藏了起來罷了,甚麼情況下能將這麼多的東西藏起來?除非有比它們多得多的東西將其淹沒,所以我們才看不到有理數,讓我們來驗證這個猜測是否屬實。

由於已經證明整體實數跟(0, 1)區間裡的實數一樣多,所以只要處理開區間(0, 1)就相當於處理了整個實數。假設這個區間內所有有理數的集合為S,因為其尺寸為可數無限,所以我們可以將其成員編碼成S={x1, x2, x3,…},S就是灑到實數線上的沙粒集合。接著找一段1/10長的開區間I1將第一粒沙x1包住,然後用更小的一段 1/100長的開區間I2將第二粒沙x2包住,依此類推,我們用10n 長的開區間In來覆蓋第xn粒沙。這樣做的結果就是用來覆蓋S元素的區間總長必定大於x1, x2, x3, …的總和,因為每段In總是把某個xn覆蓋住。

現在我們把所有的In加起來看看占有多少比例,它等於:

1/10 + 1/102 + 1/103 +… + 1/10n   +… = 1/9

用簡單的等比級數公式就可以得出以上的結果。這個結果令人驚訝,因為我們發現沙粒的總和S頂多只占有區間的1/9,其餘的部分都不屬於S,合理的猜測就是8/9以上的區域屬於無理數的領地。

但更驚爆的事情還在後面,第一個開區間I1的長度1/10是我們任意選取的,我們可以選得更小,比如說1/102同樣可以包住x1,之後的區間長度也是依比例遞減。這樣覆蓋S所有元素的開區間總合就等於:

∑In = 1/102 + 1/103 + 1/104 … + 1/10n   +… = 1/90

經過這個調整,有理數S所占的比例只剩不到1/90,其餘89/90以上的區域都是無理數。

敏銳的讀者已經發現,我們可以將選取的覆蓋區間不斷縮小,因而有理數集合S所占實數區間(0, 1)的比例也就會依照1/900, 1/9000, 1/90000逐漸下降而最後趨近於0。難怪那麼多沙粒都消失不見,原來與實數相比它們所占的比例是零。

這是甚麼意思呢?這是不可數無限集合最深奧難解的性質之一,雖然同屬於無限集合,但若把有理數全數放到實數堆裡的話,它們將完全被淹沒而看不到蹤影。有理數的「數量」跟實數相比實在太過渺小,幾乎可以忽略不計,這就是整個白沙星球「失蹤」的真正原因。

經由以上的推演,我們不但證明了實數比有理數多,還進一步知道由於它們之間懸殊的比例,導致有理數無法被觀察到而造成失蹤的假象。那麼這種遠遠超出我們直觀經驗的不可數無限集合 R和由全體自然數集合N所形成冪集合 P (N) 是否一樣大呢?我們能找到方法來證明它們誰大誰小嗎?這只有等下回再分解了!

文章難易度
翁 昌黎
18 篇文章 ・ 0 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。


1

4
2

文字

分享

1
4
2

什麼是「造父變星」?標準燭光如何幫助人類量測天體距離?——天文學中的距離(四)

CASE PRESS_96
・2021/10/22 ・3033字 ・閱讀時間約 6 分鐘
  • 撰文|許世穎

「造父」是周穆王的專屬司機,也是現在「趙」姓的始祖。以它為名的「造父變星」則是標準燭光的一種,讓我們可以量測外星系的距離。這幫助哈柏發現了宇宙膨脹,大大開拓了人們對宇宙的視野。然而發現這件事情的天文學家勒梅特卻沒有獲得她該有的榮譽。

宇宙中的距離指引:標準燭光

經過了三篇文章的鋪陳以後,我們終於要離開銀河系,開始量測銀河系以外的星系距離。在前作<天有多大?宇宙中的距離(3)—「人口普查」>中,介紹了距離和亮度的關係。想像一支燃燒中、正在發光的蠟燭。距離愈遠,發出來的光照射到的範圍就愈大,看起來就會愈暗。

我們把「所有發射出來的光」稱為「光度」,而用「亮度」來描述實際上看到的亮暗程度,而它們之間的關係就是平方反比。一旦我們知道一支蠟燭的光度,再搭配我們看到的亮度,很自然地就可以推算出這支蠟燭所在區域的距離。

舉例來說,我們可以在台北望遠鏡觀測金門上的某支路燈亮度。如果能夠找到到那支路燈的規格書,得知這支路燈的光度,就可以用亮度、光度來得到這支路燈的距離。如果英國倫敦也安裝了這支路燈,那我們也可以用一樣的方法來得知倫敦離我們有多遠。

我們把「知道光度的天體」稱為「標準燭光(Standard Candle)」。可是下一個問題馬上就來了:我們哪知道誰是標準燭光啊?經過許多的研究、推論、歸納、計算等方法,我們還是可以去「猜」出一些標準燭光的候選。接下來,我們就來實際認識一個最著名的標準燭光吧!

「造父」與「造父變星」

「造父」是中國的星官之一。傳說中,「造父」原本是五帝之一「顓頊」的後代。根據《史記‧本紀‧秦本紀》記載:造父很會駕車,因此當了西周天子周穆王的專屬司機。後來徐偃王叛亂,造父駕車載周穆王火速回城平亂。平亂後,周穆王把「趙城」(現在的中國山西省洪洞縣一帶)封給造父,而後造父就把他的姓氏就從本來地「嬴」改成了「趙」。因此,造父可是趙姓的始祖呢!(《史記‧本紀‧秦本紀》:造父以善御幸於周繆王……徐偃王作亂,造父為繆王御,長驅歸周,一日千里以救亂。繆王以趙城封造父,造父族由此為趙氏。)

圖一:危宿敦煌星圖。造父在最上方。圖片來源/參考資料 2

回到星官「造父」上。造父是「北方七宿」中「危宿」的一員(圖一),位於西洋星座中的「仙王座(Cepheus)」。一共有五顆恆星(造父一到造父五),清代的星表《儀象考成》又加了另外五顆(造父增一到造父增五)。[3]

英籍荷蘭裔天文學家約翰‧古德利克(John Goodricke,1764-1786)幼年因為發燒而失聰,也無法說話。1784 年古德利克(John Goodricke,1764-1786)發現「造父一」的光度會變化,代表它是一顆「變星(Variable)」。2 年後,年僅 22 歲的他就當選了英國皇家學會的會員。卻在 2 週後就就不幸因病去世。[4]

造父一這顆變星的星等在 3.48 至 4.73 間週期性地變化,變化週期大約是 5.36 天(圖二)。經由後人持續的觀測,發現了更多不同的變星。其中一群變星的性質(週期、光譜類型、質量……等)與造父一接近,因此將這一類變星統稱為「造父變星(Cepheid Variable)」。[5]

圖二:造父一的亮度變化圖。橫軸可以看成時間,縱軸可以看成亮度。圖片來源:ThomasK Vbg [5]

勒維特定律:週光關係

時間接著來到 1893 年,年僅 25 歲的亨麗埃塔‧勒維特(Henrietta Leavitt,1868-1921)她在哈佛大學天文台的工作。當時的哈佛天文台台長愛德華‧皮克林(Edward Pickering,1846-1919)為了減少人事開銷,將負責計算的男性職員換成了女性(當時的薪資只有男性的一半)。[6]

這些「哈佛計算員(Harvard computers)」(圖三)的工作就是將已經拍攝好的感光板拿來分析、計算、紀錄等。這些計算員們在狹小的空間中分析龐大的天文數據,然而薪資卻比當時一般文書工作來的低。以勒維特來說,她的薪資是時薪 0.3 美元。順帶一提,這相當於現在時薪 9 美元左右,約略是台灣最低時薪的 1.5 倍。[6][7][8]

圖三:哈佛計算員。左三為勒維特。圖片來源:參考資料 9

勒維特接到的目標是「變星」,工作就是量測、記錄那些感光板上變星的亮度 。她在麥哲倫星雲中標示了上千個變星,包含了 47 顆造父變星。從這些造父變星的數據中她注意到:這些造父變星的亮度變化週期與它們的平均亮度有關!愈亮的造父變星,變化的週期就愈久。麥哲倫星雲離地球的距離並不遠,可以利用視差法量測出距離。用距離把亮度還原成光度以後,就能得到一個「光度與週期」的關係(圖四),稱為「週光關係(Period-luminosity relation)」,又稱為「勒維特定律(Leavitt’s Law)」。藉由週光關係,搭配觀測到的造父變星變化週期,就能得知它的平均光度,能把它當作一支標準燭光![6][8][10]

圖四:造父變星的週光關係。縱軸為平均光度,橫軸是週期。光度愈大,週期就愈久。圖片來源:NASA [11]

從「造父變星」與「宇宙膨脹」

發現造父變星的週光關係的數年後,埃德溫‧哈柏(Edwin Hubble,1889-1953)就在 M31 仙女座大星系中也發現了造父變星(圖五)。數個世紀以來,人們普遍認為 M31 只是銀河系中的一個天體。但在哈柏觀測造父變星之後才發現, M31 的距離遠遠遠遠超出銀河系的大小,最終確認了 M31 是一個獨立於銀河系之外的星系,也更進一步開拓了人類對宇宙尺度的想像。後來哈柏利用造父變星,得到了愈來愈多、愈來愈遠的星系距離。發現距離我們愈遠的星系,就以愈快的速度遠離我們。從中得到了「宇宙膨脹」的結論。[10]

圖五:M31 仙女座大星系裡的造父變星亮度隨時間改變。圖片來源:NASA/ESA/STSci/AURA/Hubble Heritage Team [1]

造父變星作為量測銀河系外星系距離的重要工具,然而勒維特卻沒有獲得該有的榮耀與待遇。當時的週光關係甚至是時任天文台的台長自己掛名發表的,而勒維特只作為一個「負責準備工作」的角色出現在該論文的第一句話。哈柏自己曾數度表示勒維特應受頒諾貝爾獎。1925 年,諾貝爾獎的評選委員之一打算將她列入提名,才得知勒維特已經因為癌症逝世了三年,由於諾貝爾獎原則上不會頒給逝世的學者,勒維特再也無法獲得這個該屬於她的殊榮。[12]

本系列其它文章:

天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」
天有多大?宇宙中的距離(4)—造父變星

參考資料:

[1] Astronomy / Meet Henrietta Leavitt, the woman who gave us a universal ruler
[2] wiki / 危宿敦煌星圖
[3] wiki / 造父 (星官)
[4] wiki / John Goodricke
[5] wiki / Classical Cepheid variable
[6] wiki / Henrietta Swan Leavitt
[7] Inflation Calculator
[8] aavso / Henrietta Leavitt – Celebrating the Forgotten Astronomer
[9] wiki / Harvard Computers
[10] wiki / Period-luminosity relation
[11] Universe Today / What are Cepheid Variables?
[12] Mile Markers to the Galaxies

所有討論 1
CASE PRESS_96
156 篇文章 ・ 373 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策