0

0
0

文字

分享

0
0
0

公設化集合論的奧秘(13) 追查有理數失蹤之謎

翁 昌黎
・2015/02/27 ・1766字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級

credit:wiki
credit:wiki

「一尺之棰,日取其半,萬世不竭」       莊子

如果我們把莊子以上的想法稍作改變,不要把木棍每天鋸掉一半,而是在本該鋸掉的地方刻上一道細線,這樣一直刻劃下去,有一天是否能把木棍劃滿呢?如果你拿一枝美工刀實際去做的話,幾秒鐘刻上一道刀痕,估計木棍很快就會佈滿刀的刻跡,因為刻痕是有寬度的。若是刻痕真能像幾何學所說的那樣寬度等於零的話,直覺上木棍或許不會被蓋滿,在取1/2不斷縮小的眾多段落裡總是會有間隙存在。

但如果增加刀痕的切刻密度,比如把棍子按1/3比例切刻,然後將被切成1/3的部分再切1/3這樣無限執行下去呢?若將1/4, 1/5, 1/6, …, 1/n , … 的切刻比例都加進來如法炮製呢?你的直觀還能那麼確定棍子不會被刻痕佈滿嗎?

讓我們回到那個由無限顆白沙顆粒所形成的海灘,還有那條發出橙色亮光的實數線,數學證明告訴我們,這些與有理數等量的沙粒確實無法填滿實數線(請參考《公設化集合論的奧秘(11)》),同理以上的方法也無法將刻痕佈滿莊子家那根棍子。

僅管我們在《公設化集合論的奧秘(11)》中已經證明實數是不可數的,也就是說實數比有理數多,但我們並不清楚實數到底比有理數多多少?將這些美麗的白沙填充到橙色的實數彩虹時,彩虹到底變白了多少?是整個實數彩虹都呈現灰白狀,還是只有白色的帶狀,或者更像量子力學的双狹縫實驗中的細干涉條紋線呢?

-----廣告,請繼續往下閱讀-----

答案我們前文已經說過,實數彩虹完全不會改變顏色,那似乎暗示無限顆白沙就像憑空消失一樣,即使請菩提祖師加持讓每顆沙粒再變成無窮的沙粒也於事無補,無數美麗的白沙消失在實數線的橙光之中。於是我們面臨一宗最詭異的疑案,這些數量等同於一切有理數的美麗白沙為何消失了?它們跑到哪裡去了?有數學上的方法能說明這個怪異現象嗎?

要破解這件玄案,首先要知道無數白沙失蹤等同於有理數失蹤,因為它們是等量的,有著相同的基數。所以我們的目標是要追查失蹤的有理數,看它們為何消失,但一個好的偵探不會被表象蒙蔽,或許這些有理數並沒有消失,只是被藏了起來罷了,甚麼情況下能將這麼多的東西藏起來?除非有比它們多得多的東西將其淹沒,所以我們才看不到有理數,讓我們來驗證這個猜測是否屬實。

由於已經證明整體實數跟(0, 1)區間裡的實數一樣多,所以只要處理開區間(0, 1)就相當於處理了整個實數。假設這個區間內所有有理數的集合為S,因為其尺寸為可數無限,所以我們可以將其成員編碼成S={x1, x2, x3,…},S就是灑到實數線上的沙粒集合。接著找一段1/10長的開區間I1將第一粒沙x1包住,然後用更小的一段 1/100長的開區間I2將第二粒沙x2包住,依此類推,我們用10n 長的開區間In來覆蓋第xn粒沙。這樣做的結果就是用來覆蓋S元素的區間總長必定大於x1, x2, x3, …的總和,因為每段In總是把某個xn覆蓋住。

現在我們把所有的In加起來看看占有多少比例,它等於:

-----廣告,請繼續往下閱讀-----

1/10 + 1/102 + 1/103 +… + 1/10n   +… = 1/9

用簡單的等比級數公式就可以得出以上的結果。這個結果令人驚訝,因為我們發現沙粒的總和S頂多只占有區間的1/9,其餘的部分都不屬於S,合理的猜測就是8/9以上的區域屬於無理數的領地。

但更驚爆的事情還在後面,第一個開區間I1的長度1/10是我們任意選取的,我們可以選得更小,比如說1/102同樣可以包住x1,之後的區間長度也是依比例遞減。這樣覆蓋S所有元素的開區間總合就等於:

∑In = 1/102 + 1/103 + 1/104 … + 1/10n   +… = 1/90

-----廣告,請繼續往下閱讀-----

經過這個調整,有理數S所占的比例只剩不到1/90,其餘89/90以上的區域都是無理數。

敏銳的讀者已經發現,我們可以將選取的覆蓋區間不斷縮小,因而有理數集合S所占實數區間(0, 1)的比例也就會依照1/900, 1/9000, 1/90000逐漸下降而最後趨近於0。難怪那麼多沙粒都消失不見,原來與實數相比它們所占的比例是零。

這是甚麼意思呢?這是不可數無限集合最深奧難解的性質之一,雖然同屬於無限集合,但若把有理數全數放到實數堆裡的話,它們將完全被淹沒而看不到蹤影。有理數的「數量」跟實數相比實在太過渺小,幾乎可以忽略不計,這就是整個白沙星球「失蹤」的真正原因。

經由以上的推演,我們不但證明了實數比有理數多,還進一步知道由於它們之間懸殊的比例,導致有理數無法被觀察到而造成失蹤的假象。那麼這種遠遠超出我們直觀經驗的不可數無限集合 R和由全體自然數集合N所形成冪集合 P (N) 是否一樣大呢?我們能找到方法來證明它們誰大誰小嗎?這只有等下回再分解了!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
翁 昌黎
18 篇文章 ・ 7 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

0
0

文字

分享

1
0
0
公設化集合論的奧秘(16) 戴德金切割與實數的定義
翁 昌黎
・2015/03/16 ・2458字 ・閱讀時間約 5 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

Richard Dedekind
Richard Dedekind

有理數是能夠用分數形式m/n來表達的數,其中m和n為整數且n ≠ 0。雖然到現在為止我們的公設只建構出自然數,但用自然數來建構有理數並不困難,它的基本概念是取序對(m, n)的型態來定義有理數。由於自然數和序對我們都已相當熟悉,況且有理數的概念在直觀上也很容易理解,因此我們並不打算在此介紹和證明如何用自然數定義出有理數的技術細節。可是對實數裡的「另一半」— 無理數來說,情況就大不相同了。

我們很難想像給出任意兩條線段,居然會找不到另一個線段作為衡量前兩者的共同單位。對有些情況來說,不論我們上天下地,卻永遠找不到這個共同單位,這在幾何學上叫做不可通約(incommensurable)。但這種讓古希臘畢氏學派震驚的「知識瘟疫」卻並非雪山靈芝而是隨處可見,比如從任一個正方形劃出對角線就可以根據畢氏定理12 +12 = x2 得出√2這個數,而√2就無法表示成m/n的分數形式。

根據傳說,畢氏學派把無理數的發現視為最高機密並禁止門徒對外洩漏,然而希臘的「斯諾登」希帕蘇斯先生卻冒死對外公佈了這個秘密,因而遭到如同黑社會懲罰臥底一般的待遇—扔到海裡餵魚。我們不知道這個傳說的真實性如何,但這意謂在某個歷史時期公佈某項知識成果的後果可能和今天所謂「洩漏國家機密」的後果沒兩樣。

-----廣告,請繼續往下閱讀-----

既然無理數的性質那麼「無理」,可見要用自然數或有理數的概念來對其進行嚴格定義是很困難的。但現代實數系的兩位奠基者康托和德國數學家戴德金(R. Dedekind)雖然從不同的角度和進路用不同的方法來破解這個問題,但他們在推進人類對實數的理解時也同時發展了集合的概念。現在就來看看戴德金最重要的發明—如何用有理數來重新定義實數(因而自然把無理數也包含進去)的偉大創見,它稱之為戴德金切割(Dedekind cut)

由於有理數建立在自然數的基礎上,而自然數又建立在集合論的公設上,所以它們早已取得明確的「身分」,現在身分不明且難以被直觀掌握的就剩下無理數了。戴德金切割到底是個甚麼東西呢?首先來看看切割(cut)的定義:

一個切割就是一個序對(A, B),其中A, B ≠ Ø且A 和B不相交(也就是A ∩ B = Ø)。此外A ∪ B = P,也就是說切割是把某個集合P給切開,分成沒有共同元素的A, B兩半。

第二個條件是A的所有元素都比B的元素小,也就是說從數線的觀點來看,A的元素都在B元素的左邊。

-----廣告,請繼續往下閱讀-----

滿足上述兩個條件的序對(A, B)就是一個對P集合的切割。由於序對(A, B)是集合,所以一個切割本身就相當於集合。而所謂戴德金切割必須加上第三個條件,那就是序對左邊的A集合沒有最大元素。它的直觀意思是說如果我們用某個點來切開P集合,那麼這個點不在A裡面。

我們現在手頭的武器是全部的有理數,所以可以把集合P用全體有理數Q來替代,那麼戴德金切割就成了把全部有理數分成A, B兩半的序對(A, B) ,所以A ∪ B = Q。由於A與B不相交,因此確定了其中一邊也同時確定了另一邊,習慣上我們用序對左邊的集合A來定義實數,稱之為戴德金左集合(Dedekind left set)。也就是說一個實數就是一堆有理數所形成的戴德金左集合,而全體實數就是這些戴德金左集合所形成的集合。

為了更容易理解戴德金左集合的定義,我們用√2來具體說明。如下圖所示,雖然目前我們尚不知道無理數√2的定義,但我們可以利用畢氏定理將邊長為1的正方形取對角線,然後用圓規將與對角線等長的線段畫到數線上,這樣就標出了長度相當於√2在數線上的位置。

我們發現它正好把大於此數和小於此數的有理數Q分成兩半,紅色部分為所有小於√2的有理數,而藍色部分則為所有大於√2的有理數。紅色部分和藍色部分沒有共同成員,它們的聯集等於全體有理數,所以顯然滿足戴德金切割的第一個條件。而紅色集合內的有理數顯然都在藍色成員的左邊,因此滿足第二個條件。此外以√2為分界的戴德金左集合(紅色部分)顯然沒有最大元素,因為作為分界的√2不屬於有理數,所以第三個條件也滿足了,它是一個戴德金切割。

-----廣告,請繼續往下閱讀-----

未命名

接下來就看怎麼樣來定義這個特殊的戴德金左集合。有人會說這很容易啊,只要定義 A = {q〡q <√2 且 q∈ Q}不就得了?但請注意,我們目前還不知道√2是甚麼,我們只知道有理數是甚麼東東,正絞盡腦汁想把√2的定義找出來,所以上面對A的定義等於是拿未知的東西來定義未知,也是拿尚待定義的東西來作為定義,這是不可接受的。

為了要避開這種循環定義,我們把上式梢作修改成

A = {q〡q2 < 2 且 q ∈ Q}

這樣一來所有的條件就都符合有理數的規定範圍。但仔細一看問題又來了,因為戴德金左集合會一直往負的方向無限延伸,因此越往左其平方值會越來越大,比如:

-----廣告,請繼續往下閱讀-----

-2 ∈ Q 且-2∈ A,但顯然 (-2)2 > 2,這與A的規定顯然不合。該怎麼辦呢? 只要利用邏輯概念將小於√2的正負數分開處理就行了,因此我們重新把A定義為

A = {q ∈ Q 〡q2 < 2 或 q為負數}

如果有耐心地依序檢查,會發現這個定義符合戴德金切割的條件,因而正是用來定義√2的戴德金左集合。

這個看似古怪的定義讓我們可以單憑有理數重新定義出所有實數(尤其是無理數),而且這樣定義出來的無理數完全可以滿足實數所須具備的各種運算和性質,真可謂鬼斧神工。更重要的是透過戴德金切割我們發現,無限集合居然可以用來標定某個特定實數,這實在太神奇了。戴德金左集合宛如實數的基因密碼,透過對這些密碼的識別和辨認達到對實數本身身分的確認。僅管構成生物基因的分子為數眾多但卻是有限的,然而每個戴德金左集合的元素個數卻都是無限,任何一個實數都可以用某個無限集合來唯一確定。

-----廣告,請繼續往下閱讀-----

如果你還沒有意識到此中令人驚奇之處,那麼我們再把戴德金切割比喻成商品的條碼,每一個條碼都指向一種特殊的商品。讓我們感到驚異的是,在實數的定義裡,構成每個條碼的信息單元(有理數)竟然不是有限而是無限。

雖然戴德金切割用這種有理數的「無限條碼」奇蹟似地界定出實數,但有些數的意義似乎產生了奇怪的病變。比如自然數0原來是用空集合來定義,所以0 = { } ,可是在戴德金左集合的新包裝下,0 不再是空無一物而成了 {q〡q ∈ Q 且q<0} ,這到底是怎麼回事呢?難道同一個數可以同時由兩個集合來定義嗎?要解開這個難題,這就只有等下回再分解了!

-----廣告,請繼續往下閱讀-----
所有討論 1
翁 昌黎
18 篇文章 ・ 7 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。

0

1
1

文字

分享

0
1
1
康托爾誕辰|科學史上的今天:3/3
張瑞棋_96
・2015/03/03 ・960字 ・閱讀時間約 2 分鐘 ・SR值 559 ・八年級

對數學家與哲學家而言,無限大就像個怪物。哲學碰上無限就會產生一堆悖論,例如芝諾悖論、無限大飯店、⋯⋯等等。無限大更是在數學製造了一堆矛盾,例如:無限序列 1 – 1 + 1 – 1 + ⋯⋯的總和到底是等於 0 或 1、或是 1/2?我們可以讓自然數與平方數的數列彼此一一對應(1→1, 2→4, 3→9, ⋯⋯),但平方數顯然又只占自然數的一小部分,那麼自然數的集合究竟比平方數的集合大還是兩者一樣大?

面對這些令人困惑的矛盾,大家的共識就是:無限只能當作一種概念,一個持續的未完成狀態,所以不能計算或比較大小。數學王子高斯就嚴肅表示:「我反對將無限量看成真實的實體來運用,這在數學之中是永遠不被允許的。無限只是一種說法而已。」直到不信邪的德國數學家康托爾出現,祭出集合論這面照妖鏡,才讓無限這個怪物現出原形,扭轉了千年以來對於無限的認知。

康托爾創立集合論,將無限當成可以一一對應其中元素的集合來處理。經由他無懈可擊的證明,無限的確有大小等級不同之分。自然數、平方數、整數、有理數的集合都是「可數無限」,屬於最初級(第零級)的無限,它們都一樣大。但無理數、實數的集合就是另一種「不可數無限」,硬是比第零級的無限還大,屬於第一級的無限。不只如此,還有更大的無限,一級一級往上沒有止盡。也就是說,世人以為無限是一隻神秘的怪物,但康托爾卻撥開迷霧,指出無限其實是一群數不完的大小不同的怪物。

然而康托爾天才般的洞見卻被當時的學界權威批評為「並無重要意義」、「騙局」。康托爾一方面承受極大的壓力,一方面又受困於自己提出來的疑問──存不存在大小介於第零級與第一級之間的無限?他試圖證明並不存在這樣的無限集合(稱為「連續統假設」),但搏鬥多年卻始終未果,乃數度精神崩潰住院治療。到了一次大戰,因實施食物配給而健康更加惡化,終於在 1918 年於精神療養院中過世,享年 73 歲。

-----廣告,請繼續往下閱讀-----

如今康托爾的貢獻已被普遍認同,他開創的集合論已成為現代數學的基石。大數學家希爾伯特曾捍衛地宣稱:「沒有人能將我們從康托爾為我們創造的樂園中驅逐出去」。他的連續統假設仍列於有待解決的 23 個最重要的數學問題之首,等待後人征服。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1094 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
公設化集合論的奧秘(13) 追查有理數失蹤之謎
翁 昌黎
・2015/02/27 ・1766字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

credit:wiki
credit:wiki

「一尺之棰,日取其半,萬世不竭」       莊子

如果我們把莊子以上的想法稍作改變,不要把木棍每天鋸掉一半,而是在本該鋸掉的地方刻上一道細線,這樣一直刻劃下去,有一天是否能把木棍劃滿呢?如果你拿一枝美工刀實際去做的話,幾秒鐘刻上一道刀痕,估計木棍很快就會佈滿刀的刻跡,因為刻痕是有寬度的。若是刻痕真能像幾何學所說的那樣寬度等於零的話,直覺上木棍或許不會被蓋滿,在取1/2不斷縮小的眾多段落裡總是會有間隙存在。

但如果增加刀痕的切刻密度,比如把棍子按1/3比例切刻,然後將被切成1/3的部分再切1/3這樣無限執行下去呢?若將1/4, 1/5, 1/6, …, 1/n , … 的切刻比例都加進來如法炮製呢?你的直觀還能那麼確定棍子不會被刻痕佈滿嗎?

讓我們回到那個由無限顆白沙顆粒所形成的海灘,還有那條發出橙色亮光的實數線,數學證明告訴我們,這些與有理數等量的沙粒確實無法填滿實數線(請參考《公設化集合論的奧秘(11)》),同理以上的方法也無法將刻痕佈滿莊子家那根棍子。

僅管我們在《公設化集合論的奧秘(11)》中已經證明實數是不可數的,也就是說實數比有理數多,但我們並不清楚實數到底比有理數多多少?將這些美麗的白沙填充到橙色的實數彩虹時,彩虹到底變白了多少?是整個實數彩虹都呈現灰白狀,還是只有白色的帶狀,或者更像量子力學的双狹縫實驗中的細干涉條紋線呢?

-----廣告,請繼續往下閱讀-----

答案我們前文已經說過,實數彩虹完全不會改變顏色,那似乎暗示無限顆白沙就像憑空消失一樣,即使請菩提祖師加持讓每顆沙粒再變成無窮的沙粒也於事無補,無數美麗的白沙消失在實數線的橙光之中。於是我們面臨一宗最詭異的疑案,這些數量等同於一切有理數的美麗白沙為何消失了?它們跑到哪裡去了?有數學上的方法能說明這個怪異現象嗎?

要破解這件玄案,首先要知道無數白沙失蹤等同於有理數失蹤,因為它們是等量的,有著相同的基數。所以我們的目標是要追查失蹤的有理數,看它們為何消失,但一個好的偵探不會被表象蒙蔽,或許這些有理數並沒有消失,只是被藏了起來罷了,甚麼情況下能將這麼多的東西藏起來?除非有比它們多得多的東西將其淹沒,所以我們才看不到有理數,讓我們來驗證這個猜測是否屬實。

由於已經證明整體實數跟(0, 1)區間裡的實數一樣多,所以只要處理開區間(0, 1)就相當於處理了整個實數。假設這個區間內所有有理數的集合為S,因為其尺寸為可數無限,所以我們可以將其成員編碼成S={x1, x2, x3,…},S就是灑到實數線上的沙粒集合。接著找一段1/10長的開區間I1將第一粒沙x1包住,然後用更小的一段 1/100長的開區間I2將第二粒沙x2包住,依此類推,我們用10n 長的開區間In來覆蓋第xn粒沙。這樣做的結果就是用來覆蓋S元素的區間總長必定大於x1, x2, x3, …的總和,因為每段In總是把某個xn覆蓋住。

現在我們把所有的In加起來看看占有多少比例,它等於:

-----廣告,請繼續往下閱讀-----

1/10 + 1/102 + 1/103 +… + 1/10n   +… = 1/9

用簡單的等比級數公式就可以得出以上的結果。這個結果令人驚訝,因為我們發現沙粒的總和S頂多只占有區間的1/9,其餘的部分都不屬於S,合理的猜測就是8/9以上的區域屬於無理數的領地。

但更驚爆的事情還在後面,第一個開區間I1的長度1/10是我們任意選取的,我們可以選得更小,比如說1/102同樣可以包住x1,之後的區間長度也是依比例遞減。這樣覆蓋S所有元素的開區間總合就等於:

∑In = 1/102 + 1/103 + 1/104 … + 1/10n   +… = 1/90

-----廣告,請繼續往下閱讀-----

經過這個調整,有理數S所占的比例只剩不到1/90,其餘89/90以上的區域都是無理數。

敏銳的讀者已經發現,我們可以將選取的覆蓋區間不斷縮小,因而有理數集合S所占實數區間(0, 1)的比例也就會依照1/900, 1/9000, 1/90000逐漸下降而最後趨近於0。難怪那麼多沙粒都消失不見,原來與實數相比它們所占的比例是零。

這是甚麼意思呢?這是不可數無限集合最深奧難解的性質之一,雖然同屬於無限集合,但若把有理數全數放到實數堆裡的話,它們將完全被淹沒而看不到蹤影。有理數的「數量」跟實數相比實在太過渺小,幾乎可以忽略不計,這就是整個白沙星球「失蹤」的真正原因。

經由以上的推演,我們不但證明了實數比有理數多,還進一步知道由於它們之間懸殊的比例,導致有理數無法被觀察到而造成失蹤的假象。那麼這種遠遠超出我們直觀經驗的不可數無限集合 R和由全體自然數集合N所形成冪集合 P (N) 是否一樣大呢?我們能找到方法來證明它們誰大誰小嗎?這只有等下回再分解了!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
翁 昌黎
18 篇文章 ・ 7 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。