0

5
0

文字

分享

0
5
0

藻華爆發、稻米凋黃、狒狒偷菜、扇貝被吃光……這些「生態癌症」的背後有什麼共通點呢?——《生命的法則》

八旗文化_96
・2018/02/05 ・4997字 ・閱讀時間約 10 分鐘 ・SR值 535 ・七年級

當癌症在身體中散播時,會入侵並破壞維持身體恆定的器官。當癌症襲擊骨髓或肺臟時,身體便會缺乏氧氣。當癌症入侵消化器官,身體就無法得到足夠的營養。當癌症進入骨骼和肝臟,血液中重要化學物質的精細平衡就會遭受破壞。

同樣地,大量藻類會因為阻礙了湖泊的重要功能,而使得許多生物死亡。那些毒素對魚類和其他野生動物而言非常地毒,使得食物鏈變得一團混亂。藻類死亡後會沉到湖底,細菌分解這些藻類屍體時,會用掉湖水中的氧氣,讓魚類和其他生物窒息,從而造成水中化學成分變異、不適合生物棲息的「死區」(dead zone)。

美國俄亥俄州伊利湖(Lake Erie)不是唯一陷入這種緊急狀況的大型水域,類似的地方很多,像是加拿大的溫尼伯湖(Lake Winnipeg)、中國的太湖,以及荷蘭的紐瓦湖(Lake Nieuwe Meer)。因為某些生物過多而受損的生態系還不只這些,這種癌症有各種形式,出現在生物圈中的各個部位。我將會多說明幾個例子,然後才提出疑問:是哪些法則遭受破壞,才使得這些湖泊、田野、海灣和莽原生了病。

美國伊利湖正面臨藻類大量增生、生態失衡的危機。圖/Tom Archer

灑了農藥,怎麼害蟲更多了?

如果曾經搭飛機經過或實際前往過亞洲的熱帶地區,就很清楚當地居民所吃的食物。從印度到印尼到處都是稻田,山坡谷地也開發成梯田。以柬埔寨來說,所有的耕地中稻田就占了九成。人類有一半以這種穀物為主食。在亞洲,人們攝取的熱量中三成是由稻米供應的。在孟加拉、越南和柬埔寨,稻米提供了每天六成的熱量。

-----廣告,請繼續往下閱讀-----

稻米在亞洲栽種的歷史已超過六千年,但現在的翠綠稻田是 1960 年代綠色革命下的產物。為了因應可能因為乾旱、欠收和人口爆炸所造成的飢荒,人們透過遺傳方法改良出新的稻米品種,並且引入可提高產量的農耕方式,包括定期使用肥料和農藥。在十年中,有四分之一的農地栽種了新的稻米品種,亞洲許多農夫的稻米收成倍增。

亞洲熱帶的主食作物為稻米,圖為泰國清邁的稻田。圖/MaxPixel

但是到了 1970 年代中期,在菲律賓、印度、斯里蘭卡和亞洲熱帶其他國家的綠色稻田,開始轉黃並且枯萎。1976 年,印尼發生大災難,超過百萬英畝的稻田受到病害。在此地,農民完全倚靠稻作維持一家終年所需,稻米是一年當中人們絕大部分的收入來源,因此狀況十分危急。

造成病害的是一種稱為褐飛蝨(brown planthopper)的小型昆蟲。褐飛蝨雖然只有幾公釐長,但是光一隻雌蟲在每株植物上就可以產下數百顆卵。孵出的若蟲飢腸轆轆,就靠生長中的稻株為生(圖 8-2)。牠們會吸食稻株的汁液,導致稻株的葉子變黃、乾燥,最後整株死亡,這種現象稱為「蝨燒」(hopperburn)。在溫暖又潮濕的熱帶地區,水稻成長結穀所需的時間,可以讓褐飛蝨繁殖三代。褐飛蝨數量會爆增,席捲整片農田,從一個稻株上只有一隻褐飛蝨,激增到五百到一千隻。

農民在農田中看到了褐飛蝨,很自然的第一反應就是噴灑大量農藥。在印尼,農民從空中噴灑農藥,但是災情持續蔓延,絲毫未減。整整損失了三十五萬公噸的稻米,這個數字足以餵飽三百萬人一年。許多農民變得一貧如洗,印尼被迫成為世界上最大的稻米進口國。

-----廣告,請繼續往下閱讀-----

1970 年代之前,這種昆蟲只被當成不重要的水稻害蟲。到底是什麼原因導致褐飛蝨成為恐怖威脅?牠又是如何抵抗成噸的農藥轟炸?

造成「蝨燒」的褐飛蝨。圖/WikimediaCommons

科學家仔細研究農夫稻田和實驗稻田的褐飛蝨生長情形之後,發現了一件驚人的事:經噴灑農藥過的稻株,其上的蟲卵、若蟲和成蟲數量,和沒有噴灑的稻株不同:不是減少,而是數量反而更多。事實上,農藥讓褐飛蝨的密度增加了八百倍,這意味著農藥抑制蝨燒,而是引起了蝨燒。

怎麼會這樣呢?

許多因素都造成影響。首先,褐飛蝨演化出抵抗常用農藥(例如二嗪磷)的能力,但這僅僅是讓農藥沒有效用而已,讓褐飛蝨大量繁殖另有他因,事實也的確如此。第二,讓人更驚訝的是,科學家發現殺蟲劑會讓褐飛蝨產出的卵增加大約兩倍半。還有第三個因素,不過我暫時把這個因素按下不表,先來介紹其他更多的生態癌症,因為調節稻田的規則在其他地方也受到破壞了,最後再來說明第三個因素。在非洲西部,有些農田受到更大型動物的侵襲。

-----廣告,請繼續往下閱讀-----

野生的鄰居來偷菜啦:狒狒來襲

在迦納西北部的莽原上,有個叫做拉拉邦加(Larabanga)的村子,夜幕低垂,村民就感到惶惶不安。這個鄉下社區有 3800 人,距離莫爾國家公園(Mole National Park)僅數公里。公園中棲息著各種哺乳動物,包括河馬、大象、水牛、羚羊和靈長類動物,還有各種貓科動物,像是藪貓、花豹和獅子。村民很習慣遇到野生動物,但現在讓村民在晚上提高警覺的,並不是獅子。

許多村民在共有土地上栽種玉米、甘薯、木薯,並且飼養小型牲畜,賴以維生。但在最近幾年,有些非常大膽的四足小偷,會在夜色掩護之下,成群結隊地溜進農田中掠奪農作,這些小偷是東非狒狒(olive baboon)。十幾二十頭的東非狒狒,在幾分鐘之內,就能搶走多排作物,並且嚴重破壞其他作物,然後才溜走或是被憤怒的農民趕走。

入侵拉拉邦加村的東非狒狒。本圖為示意圖。圖/kashin1234@Flickr

狒狒已經變得非常大膽,敢在光天化日之下來農田偵察,甚至趁機掠奪。對農民而言,需要時時警覺防備才行,因此要求兒童來守備這些重要作物,可是兒童應該在學校上課才對。這些到處犯案的靈長類動物,對於經濟和社會都造成了嚴重的影響,成為突發的危機。

在非洲,人類和狒狒比鄰而居由來已久,那麼狒狒為何會在迦納引發問題?原因是什麼呢?

這個問題的部分解答,在於迦納撤銷了國內數個地區的動物保留區和國家公園。迦納野生動物署(Ghana Wildlife Division)自 1968 年起,開始仔細調查境內四十一種哺乳動物的數量。每個月,在六個保留區的六十三個工作站的巡察人員,會步行十到十五公里,計算看到的動物數量或是每種動物留下的痕跡。數十年來的調查,能指出大小不同的保護區中哺乳動物的數量變化。這些保護區最小的是只有五十八平方公里大的賽山自然保護區(Shai Hills Resource Reserve),最大的則是占地四千八百四十平方公里的莫爾國家公園。

-----廣告,請繼續往下閱讀-----

調查顯示,在這四十一種哺乳動物中,只有一種在 1968 到 2004 年這三十六年當中,於保護區內數量不減反增,並且在最小的保護區中數量增加得更快。哪一種呢?你猜到了,就是東非狒狒,牠們的數量增加了 365%。除此之外,牠們在國家公園中的分布範圍增加了 500%。

我要再描述另一個生態癌症的例子,然後才回來說明狒狒暴增的原因。這個例子使得美國大西洋海岸的珍貴漁場封閉了。

鮮食危機:北美東岸干貝荒

海灣扇貝曾一直是北美文化的一部分,遠在歐洲的殖民者抵達之前,美國東岸的原住民就採集扇貝,取食貝中數公分大的白色閉殼肌(譯注:就是干貝)。從 1870 年代到 1980 年代中期,在麻州、紐約州和北卡羅萊納州,都有大規模的扇貝商業漁撈。1928 年,北卡羅萊納州撈捕到的扇貝肉高達一百四十萬磅,高居全國首位。對於該州的許多漁民而言,初冬時節的扇貝是其他漁季之間的重要收入來源。

對於北卡羅萊納州的許多漁民而言,初冬時節的扇貝是其他漁季之間的重要收入來源。圖/Alex Proimos@Flickr

但是在 2004 年,全部的扇貝魚貨量卻不到一百五十磅。百年多來的漁場宣告「廢棄」,接下來的幾年幾乎完全封閉,包括 2014 年。漁民、州主管單位和科學家都在問:發生了什麼事?

-----廣告,請繼續往下閱讀-----

首先,漁民注意到在拖網和定置漁網中,捕獲到大量牛鼻魟(cownose ray)。這種約一公尺大小的魚,秋天時會沿著美國東海岸南下,然後纏住漁網,使得漁網遭到破壞。牠們的刺有毒,且沒有市場價值。對漁民來說,魟魚是擾人的東西。

漁民對北卡羅萊納大學的海洋生物學家彼得森(Charles “Pete” Peterson)抱怨,因為他一直在研究東海岸牛鼻魟捕食海灣扇貝的事情。他和北卡羅萊納大學與達豪士大學的同事,合作研究這個問題。他們發現,在過去十六到三十五年來,大西洋海岸中的牛鼻魟增加了十倍,總數可能有四千萬條。彼得森之前也觀察到,牛鼻魟在某些海岸會把扇貝全部吃光光。牛鼻魟數量暴增,似乎能解釋為何北卡羅萊納州大部分海域中扇貝全都消失了。但是牛鼻魟的數量為什麼會暴增呢?現在是揭露這些癌症背後秘密的時候了。

揭開造成災荒的面紗

微囊藻、褐飛蝨、狒狒和牛鼻魟等生物數量的暴增,到底是什麼規則受到破壞之後的結果?

要回答這個問題,我們先得思考:調節牠們數量的因素是什麼?艾爾頓強調,如果想要瞭解一個生物群聚的運作方式,就得追查其食物鏈。這些生物的數量之所以增加,是因為食物增加的關係嗎?

在微囊藻的案例中,這似乎是個正解。磷這種元素是藻類生長的限制因子。當有大量的磷(以無機磷的形式)出現,就馬上會刺激藻華爆發。那些流入伊利湖的磷,來自春夏時分的農場以及其他地方。在伊利湖的食物鏈中,磷對於藻類的生長有從下往上調節的效應。

-----廣告,請繼續往下閱讀-----

但是對其他的環境癌症來說,食物增加並非答案。每片稻田中都有許多稻子可當成褐飛蝨的食物,但是這些蟲子通常不會侵襲這麼多的稻田。食物增加也無法解釋為何農藥會讓褐飛蝨大增。同樣地,食物增加也無法解釋,在迦納的公園中其他哺乳動物減少,而只有狒狒增加了。牛鼻魟增加也不是因為有了更多扇貝。如果不是食物,那麼是什麼因素調節了這些生物的數量呢?

或許我們不該往下看,而是該往食物鏈上方尋找。

牛鼻魟數量暴增,似乎能解釋為何北卡羅萊納州大部分海域中扇貝全都消失了。圖/WikimediaCommons

彼得森和同事就是這樣研究牛鼻魟的。鯊魚會吃魟魚。科學家研究美國東岸的鯊魚數量紀錄,結果發現有五種鯊魚從1972年起數量大減,鉛灰真鯊(sandbar shark)減少了 87%,黑邊鰭真鯊(blacktip shark)減少了 93%,雙髻鯊(hammerhead shark)、低鰭真鯊(bull shark)和灰色真鯊(dusky shark)則減少了 97~99%。鯊魚也會吃其他動物。如果牛鼻魟數量大增是因為鯊魚減少,那麼鯊魚的其他獵物數量也應該會增加。的確如此。科學家發現除了牛鼻魟之外,其他十三種鯊魚的獵物,包括各種小型的軟骨魚,數量都大幅增加了。

類似事件也能解釋迦納狒狒成災的情形。獅子和花豹會獵捕狒狒,但在迦納的國家公園中,牠們的數量大幅減少。1986 年,六座國家公園當中有三座裡面的獅子和花豹完全消失了。當這些公園沒有了獅子與花豹,狒狒便大肆繁衍了(圖 8-3)。

-----廣告,請繼續往下閱讀-----
迦納一些地區的獅子與花豹消失了讓東非狒狒的數量增加了。illustration based on Brashares et al. 2010, redrawn by Leanne Olds.

那麼褐飛蝨呢?為什麼在噴灑農藥的稻田中暴增呢?褐飛蝨的天敵是蜘蛛和一些其他昆蟲,狼蛛(wolf spider)和幼蛛會吃掉很多褐飛蝨和若蟲。然而,農藥殺死了蜘蛛和其他褐飛蝨的天敵,使得褐飛蝨的數量不受控制地成長。在噴灑農藥的農田中,沒有了掠食者,能抵抗農藥的獵物便大肆繁衍了。

環境失去掠食者,獵物瘋狂增加

從這三個不同的環境癌症中得到的結果非常簡單:只要殺了掠食者,獵物就會瘋狂增加。這些生態癌症背後的道理很熟悉。掠食者是對抗族群增加的負向調控因子,牠們就像癌症抑制子,能夠阻礙增殖。當把食物鏈中這些重要的環節剔除了,其獵物的生長便如脫韁野馬,下游的營養級串聯效應也會如此。上面說明的每種生態癌症,都肇因於最頂層的生物消失了,使得原來的三階層串聯變成二階層(圖 8-4)。

鯊魚、蜘蛛和大型貓科動物消失後,產生了創連效應。失去了控制之後,牛鼻魟、褐飛蝨和狒狒增加,各自使得扇貝、稻米和其他重要作物減少。illustration by Leanne Olds.

從扇貝漁民、稻農或是迦納的家庭(以及在具備完整雙重負向調節的串聯)的角度看,鯊魚、蜘蛛和獅子是他們的同盟者,不該被剔除。每個案例都一再證明了那句古老的諺語:「敵人的敵人就是朋友。」

伊利湖的狀況可能也是某個營養層級消失後產生的。在健康的淡水湖中,小型的浮游生物會控制藻類的生長,像是小型甲殼動物會吃藻類。當藻華發生時,這樣的調節方式來不及對應,或是那些生物被藻類的毒素給殺死了。這時就在來自下方的營養太多(油門踩死了)、上方的調節不足(煞車削弱)兩者同時出現之下,產生了藻類癌症的結果。

 

本文摘自《生命的法則:在賽倫蓋蒂草原,看見大自然如何運作》,八旗文化出版。

 

 

文章難易度
八旗文化_96
34 篇文章 ・ 19 位粉絲
外部視野,在地思索, 在分眾人文領域,和你一起定義、詮釋和對話。

0

2
2

文字

分享

0
2
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

2

1
0

文字

分享

2
1
0
越南兩千年古早味咖哩?香料的食慾流動
寒波_96
・2023/09/06 ・3133字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

大多數台灣人對東南亞、南亞風格的香料不陌生,甚至有些常見的香料,不特別查詢還不知道起源於東南亞。

一項 2023 年問世的研究,調查將近兩千年前,越南南部的遺址,見到多款香料植物的蹤跡。證實那個時候已經有多款香料,從南亞或東南亞外海的島嶼,傳播到東南亞大陸。

很多香料,搭配是魔法。圖/參考資料3

越南兩千年古早味咖哩?

讀者們對咖哩(curry)想必都很熟悉,不過還是要先解釋一下。現今咖哩的定義範疇很廣,南亞、東南亞等地存在風味各異的香料混合料理,都能算是「咖哩」。此一名詞的讀音轉化自印度南部的泰米爾語,源自大英帝國對南亞的殖民,不過混合使用香料的料理,歷史當然更加悠久。

由澳洲國立大學的洪曉純率領的考古調查,地點位於越南南部的喔㕭(Oc Eo)遺址。這兒在公元一到七世紀,是「扶南國」的重要城市。這個政權以湄公河三角洲為中心,統治東南亞大陸的南部;柬埔寨的吳哥波雷(Angkor Borei)與喔㕭,為扶南國最重要的兩處遺址。

-----廣告,請繼續往下閱讀-----
東南亞大陸南部的喔㕭,與延伸的地理格局。圖/參考資料1

喔㕭地處湄公河三角洲的西南部,離海 25 公里。這兒一到八世紀有過不少人活動,四到六世紀最興盛。遺址中出土的 12 件工具,外型看來相當類似年代更早,南亞用於處理食物的工具。

進一步分析發現,工具上總共保存著 717 個澱粉顆粒,大部分年代可能介於距今 1600 到 1900 年左右的數百年間。不同植物產生的澱粉形狀有別,有時候可以用於識別物種,近年常用於考古學。

喔㕭遺址出土的研磨工具。圖/參考資料1

這批澱粉中有 604 個可以分辨物種,作為糧食的稻以外,還有八種常用於香料的植物,以薑科植物(Zingiberaceae)的存在感最高,包括五種:薑黃、薑、高良薑、凹唇薑、山奈;還有今日依然常見的丁香、肉豆蔻、肉桂。

解讀這些材料時必需注意,出土工具上能見到的澱粉,只是當年的一小部分,不能直接代表古代使用的比例,只能證明確實有過那些種類。

-----廣告,請繼續往下閱讀-----
越南南部,曾經相當繁榮的喔㕭遺址遠眺。圖/參考資料1

來自亞洲大陸:薑黃、薑、高良薑、凹唇姜、山奈

喔㕭遺址中出土數目最多的是薑黃(turmeric,學名 Curcuma longa)。薑黃的家鄉應該在南亞,早於四千年前的哈拉帕遺址中已經存在;後來薑黃向各地傳播,遠渡至地中海地區。這項發現則是東南亞大陸最早的紀錄。

台灣人大概對薑(ginger,學名 Zingiber officinale)更熟悉,薑可能起源於東亞與南亞,一路向西傳到歐洲。台灣飲食習慣中,薑不只是特定用途的香料,從海鮮湯中的薑絲,到餃子肉餡的蔥薑水與薑末,可謂無所不在的添加物(對!薑默默躲在很多食物中)。

另外三種比較少見的薑科植物,如今東南亞都有種植,包括高良薑(galangal,學名 Alpinia galanga)、凹唇姜(fingerroot,學名 Boesenbergia rotunda)、山奈(sand ginger,學名 Kaempferia galanga,也叫沙薑)。

香料考古的世界觀。圖/參考資料1

來自亞洲海島:丁香、肉豆蔻、肉桂

三種不屬於薑科的香料,如今台灣也都不陌生。肉豆蔻(nutmeg,學名 Myristica fragrans)原產於摩鹿加群島南部的班達群島。摩鹿加群島就是大航海時代歐洲人稱呼的「香料群島」,雖然算是東南亞外海的島嶼,不過靠近新幾內亞,和東南亞大陸有相當距離。

-----廣告,請繼續往下閱讀-----

丁香(clove,學名 Syzygium aromaticum)也原產於摩鹿加群島,早在公元前便已經傳播到歐亞大陸。越南南部的丁香應該是進口產品,不過無法判斷原本種在哪兒,是摩鹿加群島或更西邊的爪哇。

肉桂(cinnamon,學名 Cinnamomum sp.)可能源自好幾個物種,這回光靠澱粉無法準確判斷。不過從其餘植物遺骸看,喔㕭人使用的肉桂,大概是原產於斯里蘭卡,印度外海島嶼上的錫蘭肉桂(Ceylon cinnamon,學名 Cinnamomum verum)。

跨越空間,貫穿時間,香料的食慾流動

喔㕭出土的研磨器具上,除了澱粉還有另一種植物遺骸:植物矽酸體(phytolith),根據型態差異,也能用於植物的分門別類。棕梠、香蕉屬(Musa)植物的矽酸體,見證當時利用的植物種類相當多樣。

公元 1870 年,印度南部泰米爾的留影。 越南南部出土的工具,與她們使用的極為相似。圖/參考資料1

儘管缺乏直接證據,不過以常理推敲,東南亞大陸南部的喔㕭人,使用源於南亞的道具,研磨多款外地引進到當地種植,或是直接進口的香料植物,可能的一項目的,就是製作混合香料的咖哩料理。

-----廣告,請繼續往下閱讀-----

喔㕭遺址也保存許多稻米的碳化穀粒遺骸,稻米飯應該是當時菜單中的重要組成。我猜,當時的人會吃咖哩飯。

越南等地,香料搭配的魔法,顯然將近兩千年前已經存在惹。時至今日,和出土古物超過 87% 相似的研磨器具,依然有人使用。食慾流動的慾望,跨越空間,貫穿時間。

延伸閱讀

參考資料

  1. Wang, W., Nguyen, K. T. K., Zhao, C., & Hung, H. C. (2023). Earliest curry in Southeast Asia and the global spice trade 2000 years ago. Science Advances, 9(29), eadh5517.
  2. Researchers find evidence of a 2,000-year-old curry, the oldest ever found in Southeast Asia
  3. Curry may have landed in Southeast Asia 2000 years ago

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 2
寒波_96
193 篇文章 ・ 1059 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

3
0

文字

分享

0
3
0
狒狒之死,動物園的哪個環節出問題?
科學月刊_96
・2023/06/20 ・3099字 ・閱讀時間約 6 分鐘

  • 作者/林翰佐
    • 本刊總編輯,主修動物學
  • Take Home Message
    • 今(2023)年3月,一隻東非狒狒突然現身桃園地區,在混亂的捕捉行動後,狒狒中彈身亡。
    • 除了讓民眾休憩,動物園更具備自然保育教育的使命。不過由於園區管理困難,動物脫逃事件比你想像得多。
    • 若是動物園的存在仍具社會意義,動物脫逃又難以避免,社會應負起責任,以更人道的方式處理這類事件。

變調的暖心劇

春暖花開的3月,臺灣上演著一齣「動物星球」般的實境連續劇:一隻來源不明的東非狒狒(Papio anubis)在桃園地區突然現蹤,在社會上引起一陣漣漪。隨著目擊者們在網路上的分享,狒狒活動的消息開始在臺灣社群蔓延,甚至有熱心的網友繪製牠行蹤路線圖供民眾參考。農政單位也利用媒體提出警告,稱狒狒屬於兇猛的靈長類生物,呼籲狒狒活動區域中的居民需要多加留意,並提供民眾遭遇狒狒時的基本指引:

遇到狒狒時手中不要有食物,避免吸引其覓食接近…務必放下食物遠離牠,以避免遭受攻擊,確保自身安全。

實際與狒狒近距離遭遇的群眾,緊張之餘似乎也帶著一點興奮之情。據目擊者稱,這隻謎之狒狒並非想像中那般窮凶惡極,不僅會主動避開人群,也具有良好的生活紀律,在進食後還會將果皮整齊地擺放後離去。整個系列新聞宛如臺灣版《狗狗猩猩大冒險》(パン&ジェームズのおつかい大挑戦!),而狒狒屢次逃脫搜捕的劇情又有如《湯姆貓與傑利鼠》(Tom and Jerry)般的曲折,在忙碌的塵世生活中平添一些清新。

在狒狒現蹤後的第 18 天,編制混雜的搜捕隊終於發現了狒狒藏身處,一陣警匪對峙般的攻堅行動中狒狒胸部中彈身亡,一齣暖心劇最終以血腥收場。


狒狒是什麼樣的動物?

狒狒屬於猴科(Cercopithecidae),在物種分類關係上,相較於紅毛猩猩,牠與臺灣獼猴(Macaca cyclopis)的血緣更近一些。世界現生的狒狒大約可以分為五種,分布在非洲與阿拉伯半島東側的紅海之濱,大多落腳於草原、稀樹草原或灌木叢區,和大多選擇森林作為棲所的靈長目動物大相逕庭。科學家相信,狒狒因此發展出與其他靈長類動物不同的外貌,包括長得像犬科動物般突出的口鼻部、鋒利的犬齒、近距離的雙眼、厚重的皮毛、短短的尾巴等。現今學界認為的靈長類演化方向是口鼻部的扁平化,兩眼由側面調整至前方,以換取較好的立體視覺,作為森林間擺盪、穿梭時對距離有更好的掌握,狒狒的這番操作有些背道而馳。

-----廣告,請繼續往下閱讀-----

狒狒是猴科中最為剽悍的一支,牠們生活在天敵環伺的草原及疏林,缺乏森林的保護,因此洪荒之力是生存唯一的支撐。據信早年英國探險隊在非洲初見雄性狒狒力抗花豹,相互撕咬的景象相當震驚。狒狒通常為群體生活,由一隻雄性、數隻雌性及幼體組成一個基本家庭單元,然後由數個家庭組成更為大型的「部隊」(troop)集體行動,一支部隊的總個體數約 50~250 隻,但也有更小或更大的族群。狒狒是雜食性的機會主義者,幾乎什麼都吃,破壞性極強,在當地居民的眼中應該不是什麼善類。不過在古埃及,阿拉伯狒狒(Papio hamadryas)被視為是月神托特(Thoth)的化身,有趣的是,在古埃及諸神化的動物之中(豺狼、河馬等),只有阿拉伯狒狒並不是埃及原生的物種。

東非狒狒(Papio anubis)。圖/wikipedia

所以儘管狒狒的外貌並不出眾,其實還是一種相當有故事性的物種。


動物園的社會定位

動物園幾乎是絕大多數人的童年回憶,不過很少人會認真思考它在社會中的定位。如果有一群動物需要以終生監禁為代價,以近乎全年無休的犧牲成就大眾人生中的美好,我們似乎應該負責任地為牠們找個好理由。

從歷史的角度來看,動物園的形成與馬戲團有相當深厚的影響。事實上臺北動物園據信最早就是由馬戲團演變而來。早年的動物園以提供民眾休憩、活動為主要目的,除了展示來自世界各地的奇珍異獸之外,也推出動物表演秀等節目娛樂大眾。當時代更迭,動物保護意識抬頭,動物園的本質產生相當大的轉變;設計籠舍時開始考量動物的各項生理需求,除了空間與配置,也會控制溫度與光週期,盡量讓這些住客有家的感覺。動物園的使命也從單純的休憩娛樂,轉而成為教育及保育的平臺。

-----廣告,請繼續往下閱讀-----

現今的文明世界需不需要動物園?支持者或許認為動物園的存在仍然具備相當的自然科學教育意涵。但其實現代社會資訊發達,透過拍攝生物在原生棲地生活的影像資料,常常能提供更為正確而鮮活的認知。只是因為想看看這些動物就必須將牠們終生監禁,不知道動物們能否接受這樣的理由?

這裡想要表達的重點是,即便到了 21 世紀,動物園仍繼承著人類對動物好奇的各種欲望需求,不論是教育目的還是休憩。這些動物大使們有如漢朝蘇武持節般遠渡重洋,遭受無限期的拘留,為人類及其自身種族之間搭起一條相知的橋樑,這樣的犧牲是否應該值得我們這個社會給予更高規格的尊重?

動物脫逃事件其實比你想像的多

筆者大學時期主修動物學,並在年輕歲月時擔任臺北市立動物園義工達三年之久,對動物園的實務運作有所了解,也在服務期間聽了很多的鄉野傳奇故事。雖說都是豢養動物,但想要管好動物園,挑戰比一般農場複雜許多。

動物園管理有如電影中某國聯邦的重刑犯監所,裡面收容的「大哥角頭」各異:兇猛的、高智商的,或者兩者兼備的都有,比起農場裡那些「傻白甜」的家禽和家畜,管理難度完全不是同一級別。即便是「臺灣第一」的臺北市立動物園,動物脫逃的故事還是有如《一千零一夜》(One Thousand and One Nights)中的童話故事般豐富。「緝捕歸案」其實是這些故事裡主角最好的結局,不過依照臺北市立動物園的公開新聞訊息,動物脫逃處理 SOP 中的第一條便是取槍——麻醉槍及上膛的獵槍都要。為了避免困獸傷人,「滅口」永遠是一個選項。

-----廣告,請繼續往下閱讀-----

動物園該負整體事件全權責任嗎?

猴命鬧上新聞了,自然要追究事件的責任。謎之狒狒最後確定為六福村動物園所有,動物園因此公開坦承疏失,並果斷地執行人事懲處。新竹縣政府農業局身為主管機關,也以「未妥善管理導致脫逃,在狒狒脫逃後又並未主動通報」的理由,依現行的《野生動物保育法》第 37 條規定,祭出罰鍰五萬元的最嚴重處罰。由於民憤難平,所以中央主管機關農委會林務局適時地提出《野生動物保育法》修正草案:「逸失保育類野生動物未通報,罰鍰自一萬至五萬元,上修為三萬至十五萬元,並由飼主負擔圍捕費用⋯⋯」。

綜觀整件事件的善後,弦外之音有著「猴子是你家跑的,簍子是你捅的,所以罰你」的傳統直線邏輯,彷彿只要猴子不跑,世界便一片靜好。如果說動物園的存在仍然具備一些社會意義,而動物脫逃也難以完全避免,這個社會是否應該負起更大的道義責任,以更為人道的方式處理這類的事件?例如由中央協助跨縣市動物園間整合野生動物獸醫資源、透過工作坊精進各種野生動物誘捕回籠的技巧、組建可以相互支援、快速部署的反應小組等。

狒狒已死。筆者希望的是更多動物保護意識的喚起,進而化為行動,讓住在臺灣的這些動物大使有更為人道的對待——不論是住在裡頭,還是基於野性呼喚偶爾的外出放風。

  • 〈本文選自《科學月刊》2023 年 6 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。