Loading [MathJax]/extensions/tex2jax.js

1

0
1

文字

分享

1
0
1

拉格(淡)啤酒的酵母之謎

老橘子
・2011/08/29 ・2360字 ・閱讀時間約 4 分鐘 ・SR值 533 ・七年級

歐洲文化史裡常提到修道院的修士在修道院裡釀造含有酒精成份的麥汁,以便補充齋戒日裡不能進食的體力消耗,讓人以為修士每天都是醉醺醺的。到歐洲旅遊,也常常因為酒吧林立,晌午就看到一堆人或坐或站在酒吧裡外喝啤酒。一旦喝到地區性的啤酒或發酵的果實酒,其風味、口感差異之大,不得不讓人思考罐裝啤酒之乏味。當我們以為啤酒是歐洲的產物時,是否也有個失落的環節,如同咖啡、煙草、馬鈴薯等影響西方文明的重要商品,也是靠著舶來品,才拼湊出完整的現代圖像?

雖然我們喝啤酒,可以不論啤酒為何物。但是,當大麥、小麥、玉米、米、啤酒花、水、麥芽等等不同組合,經過發酵之後,就會變成讓人大聲說話、面紅耳赤、稱兄道弟、忽而意氣風發、乍時又黯然落淚的出神飲料。知道一下啤酒跟最新的科學發現之間的偶遇,也是酣暢之際的樂事。

2011 年8月份的Proceedings of the National Academy of Sciences的一份新的研究報告,這個研究的故事就來自一個跨國的研究團隊發現了貝酵母的野生遠親:優貝酵母(尚無中文,筆者暫譯,原文 Saccharomyces eubayanus)。大概是因為啤酒這喝的玩意,跟生活、經濟、產業密切相關,報導這個研究的媒體真是不少,本文綜合Science New, Science Now, Economist, BBC, USAtoday, Wired.co.uk,簡單說明。

啤酒歷史從15世紀開始有了革命性的轉變,巴伐利亞地區的修道院開始採取低溫發酵,以便可以在冬天釀造啤酒。從此之後,拉格(Lager)與愛爾(Ale)的啤酒世界開始大不相同。例如,2008年拉格啤酒的全球銷售額達到2500億美金,而你在台灣的便利商店幾乎找不到愛爾。拉格與愛爾的差別主要在發酵溫度,前者低溫後者稍稍高於室溫,原因乃是酵母不同,愛爾使用的是釀酒酵母( Saccharomyces cerevisiae),拉格使用的則是釀酒酵母和貝酵母( Saccharomyces bayanus)的混株,稱為加士柏酵母( Saccharomyces carsbergensis),也因為生物學家巴斯德的發現與貢獻,也稱巴氏酵母( Saccharomyces pastorianus)。當代的拉格啤酒廠使用的是巴氏酵母的混株,包括歐洲大陸、北美、亞洲地區的流行品牌都是拉格,台灣也不例外;而英國就延續傳統的釀酒法,仍是愛爾、史脫特(Stout)的大本營。

-----廣告,請繼續往下閱讀-----

從15世紀開始,釀酒人經過了好幾個世紀的努力,盡其所能地增加口感或色澤,使生產出來的啤酒容易被接受,他們根據這些受歡迎的特徵製造下一批啤酒。一開始,他們並不知道他們正在影響酵母的演化。

拉格啤酒的關鍵在於其低溫釀造。今日拉格啤酒商所用的酵母,科學家雖然早就知道是典型的釀酒酵母與貝氏酵母混株而成。 因此科學家翻遍歐洲和北美尋找, 但是貝氏酵母的母本卻從未找到,原來他們找錯半球了。

圖:癭

一個由Chris Todd Hittinger率領的國際研究團隊,在巴塔哥尼亞山區找到了拉格酵母的另一半失落的母本:優貝酵母。 因此在山毛櫸樹上,因真菌感染造成的如白桃與氣球般的結構:癭(galls)內找到了優貝酵母。其中包含了優貝酵母和另外一種野生酵母以及發酵的糖分,當癭熟透掉到地面上破裂後,地面會覆蓋一層薄薄的地衣,還有濃濃的乙醇味道。 所以,拉格啤酒源於巴伐利亞,但是主要添加物則是來自半個地球之外。釀造拉格啤酒的酵母來自阿根廷的巴塔哥尼亞山區的山毛櫸森林裡,卻遠渡重洋到歐洲,並溜進了釀啤酒的木桶裡。

當研究者把優貝酵母的基因進行排序,並搜尋其他酵母基因的資料庫後發現,他的近親貝氏酵母,而且非常接近卡士柏酵母。事實上高達99.5%的相似度。與卡氏柏酵母不同之處,在於用於釀造拉格啤酒的酵母,在過去幾個世紀以來,已經突變,並且被馴化,以便用於大量工業生產。

-----廣告,請繼續往下閱讀-----

研究者合理的推論這就是要找的野生酵母。另外一個原因則是:一般來說寒冷的氣候是拉格酵母喜歡的環境,拉格釀造的溫度大多於攝氏4-9度。但是用於製造愛爾、果實酒或其他酒精飲料的釀酒酵母,適溫是攝氏15-25度,因此德國人得以在冬天釀造啤酒,並且避免遭受的夏天霉菌、細菌或者其他東西使啤酒發酵失敗,變得又酸又臭。而巴塔哥尼亞山區的平均溫度大約攝氏6 度。所以人和生長於此的酵母都具有抗寒基因,對於尋找低溫釀造啤酒的釀酒商而言,十分有價值。因為酵母偏好的低溫特性,有助於啤酒工業的擴展。

其中的一位成員Jose’ Paulo Sampaio,葡萄牙坎培拉的Nova de Lisboa大學的微生物學家說,他並不知道到底優貝酵母如何從山毛櫸的樹上移動到歐洲的啤酒釀酒廠。但是可以假設,酵母搭便車在某些動物或生物身上移動。另一位Vanderbilt大學的演化生物學家Antonis Rokas則猜測,優貝酵母可能隨著一片片的木料或山毛櫸製成的桶子,或是依附在水果、甚至果蠅的腹部遷徙。不管如何,最後還是到了歐洲,還找到為他量身打造的棲地和夥伴。這個研究開啟了新視野,也給人們臆測的空間。如USAToday的編輯用了「我們應該感謝哥倫布帶給我們拉格淡啤酒」(We have Columbus to thank for lager beer)。但是經濟學人(Economist)則認為這引發了另外一個謎,因為真菌從巴塔哥尼亞移動到歐洲的唯一可能方法,就是靠人類的運輸。但是歐洲直到15世紀末才開始探索新大陸,直到16世紀,歐洲人尚未抵達巴塔哥尼亞。但是記錄低溫發酵的啤酒的記載,最早始於1420年。計畫主持人 Hittinger 表示,也不排除優貝酵母住在某些被遺忘的舊大陸,顯然我們尚未搜尋整個地球的所有可能的棲息地。

一位研究發酵飲料歷史的費城賓州大學博物館的分子生物考古學家Patrick Mcgovern表示,這個研究發現震驚了歷史學界和考古學界,因為再也沒有比這更真實、更神奇的發酵過程。可見酵母是適應力很強的物種,隨著人類在世界各地移動。

了解野生母本有助科學家們了解拉格酵母混株的形成,並且也了解基因的馴化如何改變酵母,Rokas則說,釀酒商或許也可以為新的啤酒創造出新的混株。

-----廣告,請繼續往下閱讀-----

p.s. 寫完了,來一杯吧。

論文連結:

相關報導:

  1. Lager’s mystery ingredient found
  2. lager-beers-mystery-yeast
  3. The yeast that gave rise to lager is tracked down to South America
  4. We have Columbus to thank for lager beer
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
老橘子
3 篇文章 ・ 0 位粉絲
貓人複合體。成員為黃貓、花貓、虎班貓。東海社會學博士,清華社人所碩士,曾任報社編輯和記者,博士後研究員,流浪博士。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
微酸與麥香兼具 透視酸種麵包的小世界
顯微觀點_96
・2024/12/19 ・2726字 ・閱讀時間約 5 分鐘

本文轉載自顯微觀點

sourdough
圖/顯微觀點

오늘도 아침엔 입에 빵을 물고 똑같이 하루를 시작하고(今天早上,我又嘴裡含著麵包,一如往常地開始了一天)

南韓女子偶像團體 (G)I-DLE 的《Fate》,唱出了麵包是不少忙碌上班族的早餐選擇。但有營養師指出,「酸種麵包」(sourdough)成分單純,較容易被消化不易脹氣,升糖指數也更低,適合減重者或是需要控制血糖的人。

酸種麵包是使用野生乳酸菌和酵母發酵麵團製成的麵包。用料通常非常單純,只採用天然酵母、麵粉、水跟鹽,經過長時間發酵而成,因此天然酵母發酵產生的乳酸會賦予麵包酸味並提高保存品質。

而 2020 年開始席捲全球三年多的新冠肺炎疫情,意外讓烘焙成了全球許多因封城、疫情警戒而坐困在家者的紓壓管道。由於人們對家庭烘焙的興趣增加,導致商店麵包酵母短缺,可在家培養麵團的酸種麵包更是因此風靡全球。

-----廣告,請繼續往下閱讀-----
酸種麵包
酸種麵包是使用野生乳酸菌和酵母發酵麵團製成的麵包,用料通常非常單純。圖/unsplash

酸種麵團可說是歷史悠久,最早可追溯到西元前3000多年的古埃及文明,直到中世紀歐洲使用酸種麵團仍是發酵常用方式。

除了歐洲,其實世界各地都有使用酸種麵團製作麵包的文化,「酸種麵包」的風味也和不同地區的歷史人文息息相關。

例如,義大利普利亞區的經典麵包「阿爾塔穆拉麵包(Pane di Altamura)」;墨西哥將啤酒和雞蛋加入酸種麵團,製作墨西哥傳統麵包「比羅特麵包(Birote)」;日本木村屋( Kimuraya bakery)用酸麵種麵包來製作紅豆麵包,再將八重櫻花瓣醃製後放進麵包中心,提供給日本天皇享用。至於中式「老麵」饅頭,也是所謂的「酸種麵團」。

而在加州淘金熱期間(1848–1855),法國麵包師將酵母技術帶到了北加州,出現了著名的舊金山酸麵包(Sourdough bread):一種白麵包,特徵是具有明顯的酸味。這至今仍然是舊金山文化的一部分,當地美式足球隊-舊金山 49 人隊的吉祥物就是牛仔造型的「Sourdough Sam」(酸麵團山姆)。

-----廣告,請繼續往下閱讀-----

一般市售麵包常使用 19 世紀末巴斯德(Louis Pasteur)發現的麵包酵母(或稱商業用酵母),以高產氣的單一菌種酵母來醒發麵團,通常可在不到兩小時內發酵,醒發時間短而促進量產。

和一般市售麵包不同,酸種麵包是利用原料或空氣中存在的天然微生物群來發酵麵粉,因此需要很長的醒發時間,通常麵團發酵並形成風味需要長達 24 小時。

酸種麵包的靈魂-微生物聚落

酸麵團是麵團和麵包製備的中間產品,含許多代謝活性微生物。發酵中 1 公克的麵團通常超過 108 個單位(CFU)的菌落形成,通常含有乳酸菌(LAB)和酵母,乳酸菌:酵母比例常為 100:1;依據麵包師傅處理方式和不同地區的風土,而有多種乳酸菌和酵母菌株來源。

但傳統酸麵團製程通常不依賴偶然的菌群,而是依賴母麵團的使用。這些母麵團保存很長一段時間,甚至可能持續數十年,為後續麵團做天然微生物接種。

-----廣告,請繼續往下閱讀-----

母麵團的微生物生態取決於內在和外在因素。內在因素主要由麵團的化學和微生物組成決定,外在因素則是溫度和氧化還原電位決定。諸如麵團產量(水活性)、鹽的添加、繁殖步驟的數量以及發酵時間等,都會對酸種麵包風味產生很大的影響。

微生物為酸種麵包帶來個性,但你有想過這些微生物在顯微鏡下的樣子嗎?俄亥俄州立大學電子顯微鏡與分析中心資深研究副工程師丹尼爾‧維蒂(Daniel Veghte)就透過電子顯微鏡觀察酸種麵團微生物群像。

酸種麵包的電子顯微圖像
酸種麵包的電子顯微圖像。圖/The Conversation/Daniel Veghte, CC BY-SA

影像中呈現綠色顆粒、相對較大球狀結構的是麵粉中的澱粉粒,直徑約 8 微米(µm)。

紅色是作為起發氣劑的酵母菌,隨酵母生長會發酵澱粉粒中的糖,並產生二氧化碳和酒精作為副產品,使麵團發酵,大小通常在 2 至 10 微米。這張圖像中的酸種麵團,可以看到兩種不同酵母類型,一種接近圓形,一種則是細長型。

-----廣告,請繼續往下閱讀-----

科學家在酸種麵團中發現了 20 多種酵母。而在不同的麵團中所發現的酵母數量和類型差異,取決於幾個因素,包括麵團水合程度、所用穀物類型、發酵溫度和酸麵團維持溫度。 例如,義大利酸麵團通常使用杜蘭麥粉製作,95% 以上的酵母屬於 C. humilis,且其優勢地位隨時間拉長而穩定。

圖像中藍色的則是細菌,通常是乳酸菌,酸種麵包獨特的風味便是由此而來。影像中細菌呈藥丸狀,大小約為2微米。

乳酸菌(lactic acid bacteria, LAB)是指能利用碳水化合物進行發酵生產大量乳酸的細菌總稱,酸種麵團中常見的 LAB 為乳酸桿菌,特別是在發酵時間較長或溫度較高的麵糊中。

乳酸桿菌占主導地位有幾個因素。首先,它們對碳水化合物的代謝機制非常適合將麵團、麥芽糖和果糖作為主要能量來源。其次,有些乳酸桿菌(如舊金山乳桿菌,L. sanfransiscensis)對溫度和 pH 值的生長需求與酸麵團發酵過程的條件相符。

-----廣告,請繼續往下閱讀-----

第三則是存在於酸種麵團的乳酸桿菌具有多種壓力反應機制來克服酸、高(低)溫、高滲透壓(脫水)、氧化和飢餓。第四是會產生乳酸、醋酸鹽等有機酸和細菌素等抗菌胜肽,可作為防腐劑、提高生存競爭力,並有助於發酵的穩定持久。

基於這些機制,乳酸菌和酸種麵包的風味、質地、陳化和保存期等息息相關,例如 L. sanfransiscensis 和 L. pontis 菌株被證明可以改善麵包的口感和氣味。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
33 篇文章 ・ 6 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

1

1
1

文字

分享

1
1
1
葡萄酒變酸了?這可不能忍!巴斯德揪出「乳酸菌」,成功拯救法國的釀酒業──《厲害了,我的生物》
聚光文創_96
・2022/09/12 ・2154字 ・閱讀時間約 4 分鐘

國安危機!為什麼葡萄酒變酸了?

在上一集中,我們聊到了十七世紀,荷蘭科學家 aka 手作達人雷文霍克,以他那充滿手工溫度的兩百五十臺顯微鏡,以及一百七十二塊鏡片,為世人展示了「微型動物」(微生物)的世界。

然而在雷文霍克之後,除了斯巴蘭札尼神父曾經投以關愛的眼神,做了一些相關的實驗與研究,微生物似乎逐漸被眾人遺忘。

一直到微生物學的奠基者,巴斯德(Louis Pasteur)的出現,微生物的存在終於開始閃閃發光。一開始,巴斯德是打算進行「自然發生說」的相關實驗,沒想到,一個可能動搖國本的問題卻找上了他。

巴斯德(Louis Pasteur)被譽為微生物學的奠基者,也是研發出狂犬病疫苗的科學家。圖/Wikipedia

在浪漫優雅的法國,飲酒文化與釀酒事業同樣歷史悠久,然而,當時的酒商與釀酒廠負責人卻天天急得跳腳,一點也浪漫不起來。

-----廣告,請繼續往下閱讀-----

原來,釀酒這門手藝太過精細,只要一不小心,酒廠生產的酒很可能就會酸化變質,不僅造成商譽與營運的巨大損失,也會影響市場供應的穩定性。

生活不能缺少微醺的感覺,釀酒業的危機,簡直就是國安危機,巴斯德義無反顧的決定伸出援手。

於是,巴斯德拿出科學家的精神,仔細研究了整個釀酒過程,收集、觀察製程中,不同時間的發酵液,並且分析、比較這些酒液的不同。

經過一次一次的培養與試驗,巴斯德終於發現,在顯微鏡下,正常的發酵液中,有一種形狀圓圓的球體小生物(也就是酵母菌);而那些發酵失敗、變酸的酒液中,則可以看見一種又細又長的桿狀小生物(乳酸菌是也)。

-----廣告,請繼續往下閱讀-----
乳酸菌平常也許是不錯的東西,但要是跑到酒裡面可就不好了。圖/envatoelements

抓出讓酒精變質的小小兇手

一八五七年八月,巴斯德發表了他的研究成果,這篇論文,可以說是現代微生物學的開山之作。論文中指出,發酵,是涉及某些特定的細菌、黴菌、酵母菌等微生物的活動。

這些研究不僅拯救了釀酒業,也影響著食品業與醫藥產業。當時的科學界一度認為,發酵與食物腐敗、傷口發炎等現象,是可以畫上等號的,因此啟發了一名外科醫師的抗菌革命之路(這段故事我們後面再聊,先賣個關子)。

回到釀酒業的危機處理之上,雖然揪出了讓酒變酸的凶手,但巴斯德的工作還沒有完成,還得找出一勞永逸的方法,才算是功德圓滿。

經過一番苦思冥想,巴斯德最後採用的是加熱滅菌法,這種方法,如今也被稱為「巴斯德消毒法」(pasteurization)。

-----廣告,請繼續往下閱讀-----

我們都知道,加熱是個有效的滅菌方式,巴斯德將釀好的酒,短暫、而且小心翼翼的加熱,直到攝氏五十至六十度,藉此殺死那些可能讓酒變質的細菌。如此一來,不僅能讓酒長斯保存,也不會犧牲酒的口感,是不是很讚!

感謝巴斯德讓我們今天能喝到沒有壞掉的酒。圖/聚光文創

陷入絕境的養蠶業:蠶寶寶為什麼會生病?

感謝飛天小女警,啊不,是巴斯德的努力,一天又平安的過去了,釀酒業終於恢復了平靜。然而,一八六五年,法國農村再次遭遇危機。

雍容華貴的絲綢,是廣受貴族喜愛的高級布料,養蠶、攪絲、織布,也是當時法國農村的一大主力產業。沒想到,一種傳播快速、並且容易致死的疾病,卻在蠶寶寶界蔓延開來,蠶農們對此束手無策,養蠶業因此陷入絕境。

在昔日師長的建議之下,巴斯德決定投身於蠶病研究,為蠶寶寶尋得一線生機。

-----廣告,請繼續往下閱讀-----

在此之前,他並沒有養過蠶,也缺乏相關知識。於是他動身前往法國南部,花了五年的時間,在第一線的蠶病疫區進行研究。

透過顯微鏡,巴斯德在病蠶的身體裡,發現了一些微小的病原體。

不曉得大家小時候有沒有養過蠶寶寶呢?圖/envatoelements

同樣的,溯源之後還得找出根治方法,巴斯德除了研究鑑定方法,以幫助蠶農辨認染病的蠶寶寶之外,也建議蠶農對病蠶進行隔離。

篩檢與隔離,加上選擇性育種與提高蠶群的清潔度,巴斯德提出的「蠶界防疫新生活」,不但拯救了無數蠶寶寶的性命,也讓瀕臨崩潰的法國絲綢獲得喘息。

-----廣告,請繼續往下閱讀-----

在釀酒業與養蠶業分別取得成功之後,巴斯德於是將目光從經濟產業轉向醫療產業。

這些肉眼看不見的微生物,既然可能讓酒變酸,也可能讓蠶生病,是不是也可能引發人類的疾病?如果真是如此,只要知道如何躲避生物的攻擊,或許就能增加戰勝疾病的可能性。

大家努力待在家防疫的時候也別忘了記得動一動。圖/聚光文創

──本文摘自《厲害了,我的生物》,2022 年 9 月,聚光文創,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
聚光文創_96
6 篇文章 ・ 6 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。