0

0
0

文字

分享

0
0
0

老窖釀的酒為什麼會有獨特的風味?

陳俊堯
・2014/03/16 ・2282字 ・閱讀時間約 4 分鐘 ・SR值 519 ・六年級

-----廣告,請繼續往下閱讀-----

本文由民視《科學再發現》贊助,泛科學獨立製作

3
瀘州老窖公司網站上說明他們使用的釀酒古法。照片取自這裡

今天在網上閱讀時碰到一個名詞,Chinese Strong-Flavored Liquor。字面上只是氣味濃厚的中國烈酒,認不出是誰。花了點時間細查,知道它又叫 Luzhou flavor liquor,原來指的是四川瀘州產的濃香型白酒。我不懂酒,下面借香港百科裡的文字解釋一下:

“濃香型,又稱瀘香型,以瀘州老窖特曲為代表。濃香型的酒具有芳香濃郁、綿柔甘洌、香味協調、入口甜、落口綿、尾淨餘長等特點,這也是判斷濃香型白酒酒質優劣的主要依據。構成濃香型酒典型風格的主體是己酸乙酯,這種成分含香量較高且香氣突出。”

瀘州老窖酒好像很有名。劍南春、五糧液也都是在老酒窖裡產生的。雖然我沒機會喝過,但從網路上的資料看起來,在這些老酒窖裡釀出來酒的風味,似乎不是年輕酒窖裡有辦法做得到的。

-----廣告,請繼續往下閱讀-----

釀酒要靠微生物。產生酒精要靠酵母菌(它跟香菇一樣是真菌)。但是酒的風味則要靠所有參與酒精發酵過程的各種微生物,特別是細菌。它們利用了植物裡主要是醣類的各種成份,代謝後留下了什麼,這酒就會出現什麼味道。而酒窖裡有什麼微生物,以及酒窖環境的溫濕度等等條件,就成了影響酒裡微生物組成及酒的風味的決定性因素。同樣的原料放在不同酒窖裡會釀出不同味道的酒,那酒窖裡有沒有什麼特殊的細菌,就是個最值得懷疑的地方。如果能取得這些特殊的微生物,或許可能在金屬發酵槽裡重現老窖風味囉(美好夢境)。

先來說明了這酒的釀法:先挖個方型的土坑,土坑內側周圍塗上一層窖泥,再把酒放進去釀。這窖泥是拿老窖泥加新土混合,放在地窖裡擺個一年,等菌相養成了以後才能使用。釀酒的原料是混合麥,高梁和玉米,加大麴酒當微生物種源。接著整個酒窖用泥封存 60 天,再取出蒸餾,就成了白酒。瀘州老窖第 22 代繼承人沈才洪先生說了,“這些窖泥是有生命的,而且活了四百多年,為什麼它們能夠活這麼久,是因為我們幾百年來一直連續使用, 從未間斷”。過去的一篇研究也曾這樣推測,這裡特別的細菌是長期處在酸性低氧氣高酒精濃度下篩選出來的優勝者。因為一直在釀酒,所以細菌一直在這樣的環境下被篩選而留存下來。

002
沈才洪先生站在鋪滿窖泥的土坑裡,可以看出土坑的大小。取自瀘州老窖廣告影片

這次讀到的這篇研究刊載於 2014 年 4 月出刊的《應用與環境微生物》(Applied and Environmental Microbiology)期刊。作者選擇了 1 年,10 年,25 年和 50 年共 20 個酒窖,採集 60 個窖泥樣本,用大量平行定序的技術來檢驗窖泥裡面的細菌組成。 過去雖然也有不少人研究過這個主題,但是當時技術上的限制而一直沒有一個全面性的結論。究竟在這些窖泥樣本裡,是不是能看出歲月留下的痕跡,找出特別的細菌社會呢?

果然不出所料,時間的影響很大。這些窖泥裡的細菌社會組成,可以根據相似程度區分成三大群,而這三大群的區分剛好跟酒窖的年紀有關。第一大群包括 1 年酒窖的樣本,和一個10年的樣本。大部份的 10 年樣本自成第二群,而 25 年和 50 年的樣本加一個 10 年樣本成第三群。在這些細菌社會裡總共找到了 796 種細菌(嚴謹點說是 OTU),多樣性則是從最低的 1 年酒窖樣本隨時間逐漸上升,在 25 及 50 年的樣本裡達到最高。在主要細菌菌群上 1 年酒窖樣本裡有大量乳酸菌(Lactobacillus,62%),10 年後下降到只有一成左右。取而代之的是厭氧型的細菌和古菌(包括 Clostridium,Bacteroidetes 和 Euryarchaeota)。

-----廣告,請繼續往下閱讀-----
liq
原研究中酒窖窖泥細菌組成隨著時間的變動狀況。可以看到25 年後趨於穩定。

整理一下這個研究裡的發現,在 1 年的新酒窖裡,窖泥菌相以乳酸菌為主,泥裡測得的乳酸濃度也很高,環境偏酸。這段時間是馴化期(domestication phase)。接下來進入轉型期(transition phase),乳酸菌隨著時間數量變少,換成厭氧菌。這個過程到了 25 年後才穩定下來,進入菌相成熟期(maturation phase)。在這個時期泥裡測得高量的己酸(caproic acid),剛好可以讓細菌轉化成己酸乙酯(ethyl caproate),而這個分子正是這酒獨特風味的來源。或許窖泥裡的細菌跑進酒桶裡進行相同的反應,或許窖泥裡的己酸乙酯可以經由揮發從空氣進入酒裡。

如果這些細菌的代謝會影響酒的風味,那一個新建的酒窖少說得要先等待個 25 年,才會在自然篩選下擁有適當的菌相,然後在釀出來的酒裡展現歲月的智慧了。釀酒是一項需要大量經驗的藝術,藉由研究的力量,科學家們終於可以慢慢瞭解傳統釀酒法和神秘禁忌背後的生物及化學機制了。

研究原文:

Tao Y, Li J, Rui J, Xu Z, Zhou Y, Hu X, Wang X, Liu M, Li D, Li X. Prokaryotic communities in pit mud from different-aged cellars used for the production of chinese strong-flavored liquor. Appl Environ Microbiol. 2014 Apr;80(7):2254-60.

-----廣告,請繼續往下閱讀-----

—————————–

延伸科學再發現@科技大觀園


更多內容也可以上科技大觀園搜尋「細菌」,或每週六上午8點收看民視53台科學再發現

文章難易度
陳俊堯
109 篇文章 ・ 22 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
1

文字

分享

0
1
1
貓抓感染噬肉菌,澳女存活第一人
胡中行_96
・2023/10/16 ・1937字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

忙喬遷、換盆栽的是她;適應不良、心情毛躁的,卻是貓。澳洲雪梨這名 48 歲的女子,被自己養的貓抓傷雙臂。[1]在噁心、嘔吐 3 天,且右下腹痛 2 天後,[2]她不得不至威爾斯親王醫院(Prince of Wales Hospital)求助,[1]而且就診不久,便開始拉肚子。[2]

氣疽芽孢梭菌

女子的血液培養檢測結果,顯示有氣疽芽孢梭菌(Clostridium chauvoei)[1]──一種通常只會感染牛與綿羊,偶爾也出現在山羊和豬身上的噬肉菌[1, 3]

氣疽芽孢梭菌住在土壤裡,休眠的孢子被牲畜吃進體內,穿越腸道黏膜,隨血液流動,抵達肌肉。[4]當剪毛、閹割或斷尾等行為所致的創傷,降低局部肌肉的氧氣含量,此厭氧細菌便得以活化、增生,[3, 4]並釋放毒素破壞微血管,造成出血、水腫和肌纖維壞死。[4]筋膜、皮下組織,跟這些壞死到深紅似墨的肌肉,不僅充斥氣泡,呈現氣性壞疽(gas gangrene或emphysematous gangrene),[3, 4]還會散發酪酸(丁酸;butyric acid)的餿臭牛油味。[4]然而動物有口難言,不像人類會抱怨身體不適。因此,儘管有臭味、發燒、腫脹、肌群失能等外顯症狀,[3, 4]多半飼主都是在牲畜猝死後,才察覺牠們早就得了肌肉壞死發黑的黑腿病(blackleg)。[1]

黑腿病使牛水腫。圖/Blokhin AA, Toropova NN, Burova OA, et al. (2022) ‘Blackleg in Cattle in the Irkutsk Region’. Frontiers in Veterinary Science, 9:872386.(CC BY 4.0
黑腿病:A. 眼睛流血;B. 肌肉壞死;C. 心臟出血;D. 覆蓋在臟器表面的漿膜出血。圖/Blokhin AA, Toropova NN, Burova OA, et al. (2022) ‘Blackleg in Cattle in the Irkutsk Region’. Frontiers in Veterinary Science, 9:872386.(CC BY 4.0

感染氣疽芽孢梭菌的人類

目前全世界只有3個已知的人類案例:[1]

-----廣告,請繼續往下閱讀-----
  1. 2008 年《臨床微生物學期刊》(Journal of Clinical Microbiology)的論文,指稱日本的 58 歲男性為全球人類首例。這名糖尿病患者於 2006 年 2 月,連 2 日高燒超過 39°C,咳嗽、流鼻水,接著又意外撞上工地的鐵管,肋骨骨折。他隔天早上就診,從醫院返家後,傍晚卻突然在浴室昏倒送醫。右胸腔壁出現氣性壞疽,還有氣體困在血管裡。抵達醫院 2 小時,便宣告死亡。生前從胸部皮下病灶抽取的檢體,培養出氣疽芽孢梭菌 [3]
  2. 2012年《感染期刊》(Journal of Infection)的個案報告,描述美國一名罹患乳癌的 44 歲女性,才開始緩和性化療 10 天,突然腹痛、體虛被送急診。她接受 21 天的抗生素,治療氣疽芽孢梭菌引發的嗜中性白血球缺少性小腸結腸炎(neutropenic enterocolitis),住院 36 天後離世。[5]
  3. 2023 年 9 月的《澳洲醫療期刊》(Medical Journal of Australia)上,這個發生在 2022 年雪梨的個案是史上第 3 例。氣疽芽孢梭菌可能是在女子處理植栽時,經貓咪抓傷處,進入她的血流,導致壞死性小腸結腸炎(necrotising enterocolitis)。根據媒體報導,她的肝、腎等多重器官衰竭,而且血壓極低。剛到院時,醫師見她發燒、腹痛,又有休克的跡象,馬上把人送進加護病房。[1]

人類倖存首例

儘管之前的個案都以死亡收場,威爾斯親王醫院的醫師還是參考雷同感染的前例,用抗生素高壓氧治療(hyperbaric oxygen therapy),試圖控制女子病情。[1]高壓氧治療的特製艙室,具有大氣壓力 1.5 至 3 倍的壓力。傷患在其中呼吸純氧,讓血液灌滿加速癒合所需的氧氣。[6]這招顯然對女子相當有效,她 4 天後便離開加護病房。不過到了第 9 天,女子的腹痛再次發作。電腦斷層掃描影像上,胃壁某區薄如紙片,終致穿孔。醫師馬上進行緊急手術,所幸她復原良好,2 個半禮拜後出院。[1]

人畜共通傳染病?

女子的故事登上期刊後,媒體訪問論文的第一作者,以及與此案無關的感染科醫師。前者表示這不太算人畜共通傳染病,「單純是常見於牲畜的病菌,逮到機會感染了人類宿主」;後者則認為硬要歸類並非不行,但是「情況非常罕見」,毋須擔心人類案例就此增長。[1]

所以,各位讀者若看完本文,頓時杞人憂天,也請別遷怒貓咪,狠心棄養。只要在從事園藝時戴手套,之後記得洗手,就能降低感染風險。[1](延伸閱讀:〈澳洲婦人腦內的蟒蛇寄生蟲〉)

  

-----廣告,請繼續往下閱讀-----

參考資料

  1. May N. (30 SEP 2023) ‘Australian gardener becomes first person to survive deadly flesh-eating bacteria’. The Guardian, Australia.
  2. Ko MS, Gulholm T, Yastrebov K. (2023) ‘Human Clostridium chauvoei necrotising enterocolitis’. Medical Journal of Australia.
  3. Nagano N, Isomine S, Kato H, et al. (2008) ‘Human fulminant gas gangrene caused by Clostridium chauvoei’. Journal of Clinical Microbiology, 46(4):1545-7.
  4. Valentine BA. (2017) ‘Chapter 15 – Skeletal Muscle’. In: Pathologic Basis of Veterinary Disease. (pp. 908-953.e1) Mosby.
  5. Weatherhead JE, Tweardy DJ. (2012) ‘Lethal human neutropenic entercolitis caused by Clostridium chauvoei in the United States: tip of the iceberg?’. Journal of Infection, 64(2):225-7.
  6. Hyperbaric Oxygen Therapy’. Johns Hopkins Medicine, U.S. (Accessed on 03 OCT 2023)
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
4

文字

分享

0
1
4
蓋房子高手?建築業的未來新星:科氏芽孢桿菌——《細菌群像》
麥田出版_96
・2023/03/12 ・1528字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

  • Bacillus cohnii   
  • 科氏芽孢桿菌
  • 形狀:圓
  • 直徑:0.6 至 0.7 微米
  • 前進:使用布滿細胞表面的鞭毛
科氏芽孢桿菌。圖/《細菌群像》。

會產生石灰的細菌

細菌不僅可以用於生產食物或提煉金屬,還可以用來建造橋樑和房屋。

例如科氏芽孢桿菌,這是一種一點都不起眼,但會產生石灰的細菌。它喜歡鹼性的生活環境,像是酸鹼值可達八的馬糞裡。但它也生活在鹼性更強的環境,全世界都有其蹤跡,甚至在歐洲、非洲、南美、土耳其的鹼湖裡,它會利用溶在湖裡的碳酸鹽產生石灰。

此細菌最初是在一九九○年代初期,德國微生物及細胞培養保藏中心的細菌學家在尋找偏好鹼性環境的新菌種時所發現,當時的土壤樣本來自一個鹼性土壤的牧場,裡面還殘留著馬糞。

科氏芽孢桿菌除了能夠忍受酸鹼值超過十二的強鹼,相當於氣味刺鼻的氨水的酸鹼值,還能形成孢子渡過長時間的乾旱期。細菌孢子的特性是具有極強的抵抗力,可以存活數十年或數百年,在特定的條件下甚至超過數百萬年(球形離胺酸芽孢桿菌(→ 78頁)還有發芽的能力。

科氏芽孢桿菌的名字源自於德國細菌學家費迪南.尤利烏斯.科恩(Ferdinand Julius Cohn),細菌學的奠基者,也是一八七二年第一個鑑識出芽孢桿菌屬這種小桿形細菌的學者。

-----廣告,請繼續往下閱讀-----

研發能「自行修復」的混凝土

科氏芽孢桿菌能生活在鹼性環境中,能產生石灰,孢子經過長時間還具有發芽能力。結合這三種特性,令建築業對之產生興趣。一位荷蘭微生物學家專門研究會產生石灰的細菌,並嘗試研發出一種能自行修復的混凝土。

科學家試圖利用科氏芽孢桿菌研發出能自行修復的混凝土。圖/envatoelements

他的做法是將細菌孢子與銨鹽、磷酸鹽及養分混合在一起,封裝於黏土球裡,然後將這粒只有幾公厘大小的顆粒加入強鹼性的混凝土中。混凝土硬化後若一直保持緊密,便無事發生。但如果出現裂縫,開始長時間滲水,細菌孢子就會開始萌發。當細菌繁殖分裂,會消耗添加進去的物質,並不斷產生碳酸鈣填補裂縫。一道幾公釐寬的裂縫,只需數天時間即可修補完畢。

如此一來,科氏芽孢桿菌就可以解決混凝土結構出現裂縫的難題,否則定期必須進行的繁複維修,造成的損失可高達數十億歐元。除此之外,此細菌也能用在保護現存的建築物,在噴塗混凝土或修復液中皆已測試添加此細菌,用在已出現細微裂縫的建築構件上。

不過,此項產品至今尚未成熟,黏土顆粒仍然占據太多空間,進而影響混凝土的穩定性。還有載體材質、養分及混凝土之間的交互作用,以及孢子平均分布與釋放,與石灰形成的速度及過程等等,都還在改良中。如今,研究人員也測試其他能形成石灰的細菌是否適用。不過無論如何,科氏芽孢桿菌可說是混凝土生物修復劑的先鋒。

-----廣告,請繼續往下閱讀-----

科氏芽孢桿菌這類會產生石灰的細菌,現在也運用在其他目的上。一家德國公司利用它來黏走採礦產生的灰塵。方法是將細菌加入培養液裡,灑在布滿灰塵的泥土上,六至四十八小時內就會產生石灰,將灰塵顆粒黏在一起形成砂岩,即固化灰塵。從前為了抑制灰塵,礦業公司必須使用大量的水,如今,藉由細菌的幫忙,就可以省下這些水了。

——本文摘自《細菌群像:50種微小又頑強,帶領人類探索生命奧祕,推動科學前進的迷人生物》,2023 年 3 月,麥田出版,未經同意請勿轉載。

麥田出版_96
24 篇文章 ・ 15 位粉絲
1992,麥田裡播下了種籽…… 耕耘多年,麥田在摸索中成長,然後努力使自己成為一個以人文精神為主軸的出版體。從第一本文學小說到人文、歷史、軍事、生活。麥田繼續生存、繼續成長,希圖得到眾多讀者對麥田出版的堅持認同,並成為讀者閱讀生活裡的一個重要部分。