Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

人體免疫「軍事重地」:吃對乳酸菌,能「腸」保健康,免疫力再升級!

careonline_96
・2020/06/05 ・2191字 ・閱讀時間約 4 分鐘 ・SR值 590 ・九年級

流感、肺炎疫情在全球蔓延,大家已經養成戴口罩、勤洗手的習慣。在對抗各種病原時,除了外在因子,免疫系統更是重要的人體防線。

日常生活中有許多因子會對人體免疫力產生影響,臺北醫學大學名譽教授謝明哲指出,環境因素、飲食不均衡、抽菸喝酒睡眠不足壓力等都會對我們的抵抗力造成負面影響。

談到免疫系統,往往會先想到抗體、白血球、淋巴結等,隨著愈來愈多的研究,大家發現腸道在免疫功能亦扮演重要角色。

根據研究,我們的腸道中約有 35000 種腸內菌種 1。與人體共生的腸內菌叢可以發揮許多作用,包括營養代謝、免疫調節、協助抵抗病原入侵 2

-----廣告,請繼續往下閱讀-----

謝明哲教授解釋道,人體約有 70% 的免疫細胞在腸道。人體消化道從口腔、食道、胃、小腸、大腸到肛門總長度約 5 公尺,消化道黏膜的表面積約 260-300 平方公尺,和網球場的面積相當,遠遠超過皮膚表面積。因為接觸面積很大,所以腸道在抵抗病原入侵,以及調節免疫功能中具有相當關鍵的角色。如果把免疫系統比喻成人體的軍隊,那遍布於腸道的免疫細胞就像是訓練、養成軍隊的重要基地。

健康、穩定的腸內菌叢可以防止病原體在腸道落腳、繁殖、伺機侵入體內。腸道黏膜能分泌黏液、免疫球蛋白,抑制病原體生長。

與腸道相關的淋巴組織中具有巨噬細胞、樹突細胞、 T 細胞、 B 細胞等,從嬰幼兒時期開始,腸內菌叢便會影響到免疫的發展,並持續調節免疫系統。

哪些原因會改變腸內菌叢生態?

健康的腸內菌叢有助人體維持多種生理功能、調節免疫功能,然而有許多因子會影響或破壞腸內菌叢。謝明哲教授提醒道,腸內菌叢是相當活耀、持續變動的生態,需要好好維護。

-----廣告,請繼續往下閱讀-----

營養均衡對腸內菌叢很重要,不同菌種會有不同的營養需求,當飲食不均衡時,腸內菌叢也將漸漸失衡。高糖、高油的食物亦會影響腸內菌叢。

長期濫用抗生素將破壞腸內菌叢,而衍生出各種併發症,所以抗生素的使用務必依照醫師指示,該用就用、該停就停。部分胃藥能抑制胃酸分泌,有效改善胃炎、胃潰瘍,然而隨著胃酸分泌減少,可能使其他細菌較容易進入腸胃道,干擾原本的腸內菌叢,切勿自行長期服用。其他還有一些藥物,如化學治療、免疫抑制劑,可能影響腸內菌叢,飲酒過量同樣不利於腸內菌叢的生態。

當健康的腸內菌生態被破壞時,可能出現那些問題?

謝明哲教授解釋道,當腸內菌叢被破壞,腸道屏障可能出現破口,細菌、病毒等病原較容易侵入人體,增加感染的風險。

因為腸內菌叢與免疫發展、免疫調節有關,包括過敏、氣喘、異位性皮膚炎、乃至於自體免疫疾病,皆是近年來備受關注的議題 3

-----廣告,請繼續往下閱讀-----

腸道健康,小心呵護

乳酸菌有很多種,大家都很熟悉,謝明哲教授道,活菌有機會進入腸道成為腸內菌叢的一部分,調整腸內菌叢的平衡;至於去活菌也能發揮作用,因為去活菌細胞壁上的多醣體有助調節生理機能。

活菌、去活菌有何不同?

大家常見的的乳酸菌產品有兩種形式,「活菌」和「去活菌」。

「活菌」是活的乳酸菌,在進入腸胃道後,大多數的乳酸菌皆會被消滅,因為胃酸的 pH 值約 1.5-3 ,在如此酸的環境下,乳酸菌不易存活。

「去活菌」是經由熱封處理程序的乳酸菌質,活性成分被封存在細胞壁裡,比較穩定,較容易保存,進入腸胃道後較不會被胃酸、膽鹼破壞。「去活菌」可以搭配飲品、乳品、麥片等食品使用,使用上較為方便。

-----廣告,請繼續往下閱讀-----

備受矚目的熱去活乳酸菌:L-137

乳酸菌百百種,功效大不同。在調整體質方面, L-137 乳酸菌 (Lactobacillus plantarum L-137) 是由米和魚肉的發酵物中所分離的菌株,又被稱為植物乳酸菌,位於細胞壁上的脂磷壁酸 (Lipoteichoic acid, LTA) 為其關鍵成分。

在「免疫調節功能」方面,經動物實驗結果證實,熱去活 L-137 乳酸菌有助於促進吞噬細胞活性以及促進自然殺手細胞活性,並有助於減少 Th2 類型細胞激素分泌之功效。

「吞噬細胞」屬於「非特異性免疫」,當病原體侵入身體時,吞噬細胞會進行吞噬,然後將病原體的抗原呈現在細胞膜上,以活化輔助者 T 細胞與 B 細胞,進一步引發後續的特異性免疫反應。

在「輔助調整過敏體質」方面,經動物實驗結果證實,熱去活 L-137 乳酸菌有助於減緩過敏造成的呼吸道阻力現象及發炎細胞之浸潤、有助於降低過敏反應相關之非特異性 IgE 抗體及 OVA 專一性 IgG1 抗體生成、有助於降低過敏反應相關細胞激素 IL-5 及 IL-13 之分泌量。 IgE 為一種免疫球蛋白,與免疫反應相關。接觸過敏原後,體內的 IgE 濃度便會上升。

-----廣告,請繼續往下閱讀-----

因為熱去活 L-137 乳酸菌可能具有免疫調節功能,罹患自體免疫相關疾病者請先諮詢醫師後,再謹慎食用喔。

  1. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018 Jun 13;361:k2179. doi: 10.1136/bmj.k2179.
  2. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787‐8803. doi:10.3748/wjg.v21.i29.8787
  3. Pascal M, Perez-Gordo M, Caballero T, et al. Microbiome and Allergic Diseases. Front Immunol. 2018;9:1584. Published 2018 Jul 17. doi:10.3389/fimmu.2018.01584
-----廣告,請繼續往下閱讀-----
文章難易度
careonline_96
581 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
微酸與麥香兼具 透視酸種麵包的小世界
顯微觀點_96
・2024/12/19 ・2726字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

sourdough
圖/顯微觀點

오늘도 아침엔 입에 빵을 물고 똑같이 하루를 시작하고(今天早上,我又嘴裡含著麵包,一如往常地開始了一天)

南韓女子偶像團體 (G)I-DLE 的《Fate》,唱出了麵包是不少忙碌上班族的早餐選擇。但有營養師指出,「酸種麵包」(sourdough)成分單純,較容易被消化不易脹氣,升糖指數也更低,適合減重者或是需要控制血糖的人。

酸種麵包是使用野生乳酸菌和酵母發酵麵團製成的麵包。用料通常非常單純,只採用天然酵母、麵粉、水跟鹽,經過長時間發酵而成,因此天然酵母發酵產生的乳酸會賦予麵包酸味並提高保存品質。

而 2020 年開始席捲全球三年多的新冠肺炎疫情,意外讓烘焙成了全球許多因封城、疫情警戒而坐困在家者的紓壓管道。由於人們對家庭烘焙的興趣增加,導致商店麵包酵母短缺,可在家培養麵團的酸種麵包更是因此風靡全球。

-----廣告,請繼續往下閱讀-----
酸種麵包
酸種麵包是使用野生乳酸菌和酵母發酵麵團製成的麵包,用料通常非常單純。圖/unsplash

酸種麵團可說是歷史悠久,最早可追溯到西元前3000多年的古埃及文明,直到中世紀歐洲使用酸種麵團仍是發酵常用方式。

除了歐洲,其實世界各地都有使用酸種麵團製作麵包的文化,「酸種麵包」的風味也和不同地區的歷史人文息息相關。

例如,義大利普利亞區的經典麵包「阿爾塔穆拉麵包(Pane di Altamura)」;墨西哥將啤酒和雞蛋加入酸種麵團,製作墨西哥傳統麵包「比羅特麵包(Birote)」;日本木村屋( Kimuraya bakery)用酸麵種麵包來製作紅豆麵包,再將八重櫻花瓣醃製後放進麵包中心,提供給日本天皇享用。至於中式「老麵」饅頭,也是所謂的「酸種麵團」。

而在加州淘金熱期間(1848–1855),法國麵包師將酵母技術帶到了北加州,出現了著名的舊金山酸麵包(Sourdough bread):一種白麵包,特徵是具有明顯的酸味。這至今仍然是舊金山文化的一部分,當地美式足球隊-舊金山 49 人隊的吉祥物就是牛仔造型的「Sourdough Sam」(酸麵團山姆)。

-----廣告,請繼續往下閱讀-----

一般市售麵包常使用 19 世紀末巴斯德(Louis Pasteur)發現的麵包酵母(或稱商業用酵母),以高產氣的單一菌種酵母來醒發麵團,通常可在不到兩小時內發酵,醒發時間短而促進量產。

和一般市售麵包不同,酸種麵包是利用原料或空氣中存在的天然微生物群來發酵麵粉,因此需要很長的醒發時間,通常麵團發酵並形成風味需要長達 24 小時。

酸種麵包的靈魂-微生物聚落

酸麵團是麵團和麵包製備的中間產品,含許多代謝活性微生物。發酵中 1 公克的麵團通常超過 108 個單位(CFU)的菌落形成,通常含有乳酸菌(LAB)和酵母,乳酸菌:酵母比例常為 100:1;依據麵包師傅處理方式和不同地區的風土,而有多種乳酸菌和酵母菌株來源。

但傳統酸麵團製程通常不依賴偶然的菌群,而是依賴母麵團的使用。這些母麵團保存很長一段時間,甚至可能持續數十年,為後續麵團做天然微生物接種。

-----廣告,請繼續往下閱讀-----

母麵團的微生物生態取決於內在和外在因素。內在因素主要由麵團的化學和微生物組成決定,外在因素則是溫度和氧化還原電位決定。諸如麵團產量(水活性)、鹽的添加、繁殖步驟的數量以及發酵時間等,都會對酸種麵包風味產生很大的影響。

微生物為酸種麵包帶來個性,但你有想過這些微生物在顯微鏡下的樣子嗎?俄亥俄州立大學電子顯微鏡與分析中心資深研究副工程師丹尼爾‧維蒂(Daniel Veghte)就透過電子顯微鏡觀察酸種麵團微生物群像。

酸種麵包的電子顯微圖像
酸種麵包的電子顯微圖像。圖/The Conversation/Daniel Veghte, CC BY-SA

影像中呈現綠色顆粒、相對較大球狀結構的是麵粉中的澱粉粒,直徑約 8 微米(µm)。

紅色是作為起發氣劑的酵母菌,隨酵母生長會發酵澱粉粒中的糖,並產生二氧化碳和酒精作為副產品,使麵團發酵,大小通常在 2 至 10 微米。這張圖像中的酸種麵團,可以看到兩種不同酵母類型,一種接近圓形,一種則是細長型。

-----廣告,請繼續往下閱讀-----

科學家在酸種麵團中發現了 20 多種酵母。而在不同的麵團中所發現的酵母數量和類型差異,取決於幾個因素,包括麵團水合程度、所用穀物類型、發酵溫度和酸麵團維持溫度。 例如,義大利酸麵團通常使用杜蘭麥粉製作,95% 以上的酵母屬於 C. humilis,且其優勢地位隨時間拉長而穩定。

圖像中藍色的則是細菌,通常是乳酸菌,酸種麵包獨特的風味便是由此而來。影像中細菌呈藥丸狀,大小約為2微米。

乳酸菌(lactic acid bacteria, LAB)是指能利用碳水化合物進行發酵生產大量乳酸的細菌總稱,酸種麵團中常見的 LAB 為乳酸桿菌,特別是在發酵時間較長或溫度較高的麵糊中。

乳酸桿菌占主導地位有幾個因素。首先,它們對碳水化合物的代謝機制非常適合將麵團、麥芽糖和果糖作為主要能量來源。其次,有些乳酸桿菌(如舊金山乳桿菌,L. sanfransiscensis)對溫度和 pH 值的生長需求與酸麵團發酵過程的條件相符。

-----廣告,請繼續往下閱讀-----

第三則是存在於酸種麵團的乳酸桿菌具有多種壓力反應機制來克服酸、高(低)溫、高滲透壓(脫水)、氧化和飢餓。第四是會產生乳酸、醋酸鹽等有機酸和細菌素等抗菌胜肽,可作為防腐劑、提高生存競爭力,並有助於發酵的穩定持久。

基於這些機制,乳酸菌和酸種麵包的風味、質地、陳化和保存期等息息相關,例如 L. sanfransiscensis 和 L. pontis 菌株被證明可以改善麵包的口感和氣味。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

1

1
1

文字

分享

1
1
1
葡萄酒變酸了?這可不能忍!巴斯德揪出「乳酸菌」,成功拯救法國的釀酒業──《厲害了,我的生物》
聚光文創_96
・2022/09/12 ・2154字 ・閱讀時間約 4 分鐘

國安危機!為什麼葡萄酒變酸了?

在上一集中,我們聊到了十七世紀,荷蘭科學家 aka 手作達人雷文霍克,以他那充滿手工溫度的兩百五十臺顯微鏡,以及一百七十二塊鏡片,為世人展示了「微型動物」(微生物)的世界。

然而在雷文霍克之後,除了斯巴蘭札尼神父曾經投以關愛的眼神,做了一些相關的實驗與研究,微生物似乎逐漸被眾人遺忘。

一直到微生物學的奠基者,巴斯德(Louis Pasteur)的出現,微生物的存在終於開始閃閃發光。一開始,巴斯德是打算進行「自然發生說」的相關實驗,沒想到,一個可能動搖國本的問題卻找上了他。

巴斯德(Louis Pasteur)被譽為微生物學的奠基者,也是研發出狂犬病疫苗的科學家。圖/Wikipedia

在浪漫優雅的法國,飲酒文化與釀酒事業同樣歷史悠久,然而,當時的酒商與釀酒廠負責人卻天天急得跳腳,一點也浪漫不起來。

-----廣告,請繼續往下閱讀-----

原來,釀酒這門手藝太過精細,只要一不小心,酒廠生產的酒很可能就會酸化變質,不僅造成商譽與營運的巨大損失,也會影響市場供應的穩定性。

生活不能缺少微醺的感覺,釀酒業的危機,簡直就是國安危機,巴斯德義無反顧的決定伸出援手。

於是,巴斯德拿出科學家的精神,仔細研究了整個釀酒過程,收集、觀察製程中,不同時間的發酵液,並且分析、比較這些酒液的不同。

經過一次一次的培養與試驗,巴斯德終於發現,在顯微鏡下,正常的發酵液中,有一種形狀圓圓的球體小生物(也就是酵母菌);而那些發酵失敗、變酸的酒液中,則可以看見一種又細又長的桿狀小生物(乳酸菌是也)。

-----廣告,請繼續往下閱讀-----
乳酸菌平常也許是不錯的東西,但要是跑到酒裡面可就不好了。圖/envatoelements

抓出讓酒精變質的小小兇手

一八五七年八月,巴斯德發表了他的研究成果,這篇論文,可以說是現代微生物學的開山之作。論文中指出,發酵,是涉及某些特定的細菌、黴菌、酵母菌等微生物的活動。

這些研究不僅拯救了釀酒業,也影響著食品業與醫藥產業。當時的科學界一度認為,發酵與食物腐敗、傷口發炎等現象,是可以畫上等號的,因此啟發了一名外科醫師的抗菌革命之路(這段故事我們後面再聊,先賣個關子)。

回到釀酒業的危機處理之上,雖然揪出了讓酒變酸的凶手,但巴斯德的工作還沒有完成,還得找出一勞永逸的方法,才算是功德圓滿。

經過一番苦思冥想,巴斯德最後採用的是加熱滅菌法,這種方法,如今也被稱為「巴斯德消毒法」(pasteurization)。

-----廣告,請繼續往下閱讀-----

我們都知道,加熱是個有效的滅菌方式,巴斯德將釀好的酒,短暫、而且小心翼翼的加熱,直到攝氏五十至六十度,藉此殺死那些可能讓酒變質的細菌。如此一來,不僅能讓酒長斯保存,也不會犧牲酒的口感,是不是很讚!

感謝巴斯德讓我們今天能喝到沒有壞掉的酒。圖/聚光文創

陷入絕境的養蠶業:蠶寶寶為什麼會生病?

感謝飛天小女警,啊不,是巴斯德的努力,一天又平安的過去了,釀酒業終於恢復了平靜。然而,一八六五年,法國農村再次遭遇危機。

雍容華貴的絲綢,是廣受貴族喜愛的高級布料,養蠶、攪絲、織布,也是當時法國農村的一大主力產業。沒想到,一種傳播快速、並且容易致死的疾病,卻在蠶寶寶界蔓延開來,蠶農們對此束手無策,養蠶業因此陷入絕境。

在昔日師長的建議之下,巴斯德決定投身於蠶病研究,為蠶寶寶尋得一線生機。

-----廣告,請繼續往下閱讀-----

在此之前,他並沒有養過蠶,也缺乏相關知識。於是他動身前往法國南部,花了五年的時間,在第一線的蠶病疫區進行研究。

透過顯微鏡,巴斯德在病蠶的身體裡,發現了一些微小的病原體。

不曉得大家小時候有沒有養過蠶寶寶呢?圖/envatoelements

同樣的,溯源之後還得找出根治方法,巴斯德除了研究鑑定方法,以幫助蠶農辨認染病的蠶寶寶之外,也建議蠶農對病蠶進行隔離。

篩檢與隔離,加上選擇性育種與提高蠶群的清潔度,巴斯德提出的「蠶界防疫新生活」,不但拯救了無數蠶寶寶的性命,也讓瀕臨崩潰的法國絲綢獲得喘息。

-----廣告,請繼續往下閱讀-----

在釀酒業與養蠶業分別取得成功之後,巴斯德於是將目光從經濟產業轉向醫療產業。

這些肉眼看不見的微生物,既然可能讓酒變酸,也可能讓蠶生病,是不是也可能引發人類的疾病?如果真是如此,只要知道如何躲避生物的攻擊,或許就能增加戰勝疾病的可能性。

大家努力待在家防疫的時候也別忘了記得動一動。圖/聚光文創

──本文摘自《厲害了,我的生物》,2022 年 9 月,聚光文創,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
聚光文創_96
6 篇文章 ・ 6 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。

0

0
0

文字

分享

0
0
0
人體免疫「軍事重地」:吃對乳酸菌,能「腸」保健康,免疫力再升級!
careonline_96
・2020/06/05 ・2191字 ・閱讀時間約 4 分鐘 ・SR值 590 ・九年級

-----廣告,請繼續往下閱讀-----

流感、肺炎疫情在全球蔓延,大家已經養成戴口罩、勤洗手的習慣。在對抗各種病原時,除了外在因子,免疫系統更是重要的人體防線。

日常生活中有許多因子會對人體免疫力產生影響,臺北醫學大學名譽教授謝明哲指出,環境因素、飲食不均衡、抽菸喝酒睡眠不足壓力等都會對我們的抵抗力造成負面影響。

談到免疫系統,往往會先想到抗體、白血球、淋巴結等,隨著愈來愈多的研究,大家發現腸道在免疫功能亦扮演重要角色。

根據研究,我們的腸道中約有 35000 種腸內菌種 1。與人體共生的腸內菌叢可以發揮許多作用,包括營養代謝、免疫調節、協助抵抗病原入侵 2

-----廣告,請繼續往下閱讀-----

謝明哲教授解釋道,人體約有 70% 的免疫細胞在腸道。人體消化道從口腔、食道、胃、小腸、大腸到肛門總長度約 5 公尺,消化道黏膜的表面積約 260-300 平方公尺,和網球場的面積相當,遠遠超過皮膚表面積。因為接觸面積很大,所以腸道在抵抗病原入侵,以及調節免疫功能中具有相當關鍵的角色。如果把免疫系統比喻成人體的軍隊,那遍布於腸道的免疫細胞就像是訓練、養成軍隊的重要基地。

健康、穩定的腸內菌叢可以防止病原體在腸道落腳、繁殖、伺機侵入體內。腸道黏膜能分泌黏液、免疫球蛋白,抑制病原體生長。

與腸道相關的淋巴組織中具有巨噬細胞、樹突細胞、 T 細胞、 B 細胞等,從嬰幼兒時期開始,腸內菌叢便會影響到免疫的發展,並持續調節免疫系統。

哪些原因會改變腸內菌叢生態?

健康的腸內菌叢有助人體維持多種生理功能、調節免疫功能,然而有許多因子會影響或破壞腸內菌叢。謝明哲教授提醒道,腸內菌叢是相當活耀、持續變動的生態,需要好好維護。

-----廣告,請繼續往下閱讀-----

營養均衡對腸內菌叢很重要,不同菌種會有不同的營養需求,當飲食不均衡時,腸內菌叢也將漸漸失衡。高糖、高油的食物亦會影響腸內菌叢。

長期濫用抗生素將破壞腸內菌叢,而衍生出各種併發症,所以抗生素的使用務必依照醫師指示,該用就用、該停就停。部分胃藥能抑制胃酸分泌,有效改善胃炎、胃潰瘍,然而隨著胃酸分泌減少,可能使其他細菌較容易進入腸胃道,干擾原本的腸內菌叢,切勿自行長期服用。其他還有一些藥物,如化學治療、免疫抑制劑,可能影響腸內菌叢,飲酒過量同樣不利於腸內菌叢的生態。

當健康的腸內菌生態被破壞時,可能出現那些問題?

謝明哲教授解釋道,當腸內菌叢被破壞,腸道屏障可能出現破口,細菌、病毒等病原較容易侵入人體,增加感染的風險。

因為腸內菌叢與免疫發展、免疫調節有關,包括過敏、氣喘、異位性皮膚炎、乃至於自體免疫疾病,皆是近年來備受關注的議題 3

-----廣告,請繼續往下閱讀-----

腸道健康,小心呵護

乳酸菌有很多種,大家都很熟悉,謝明哲教授道,活菌有機會進入腸道成為腸內菌叢的一部分,調整腸內菌叢的平衡;至於去活菌也能發揮作用,因為去活菌細胞壁上的多醣體有助調節生理機能。

活菌、去活菌有何不同?

大家常見的的乳酸菌產品有兩種形式,「活菌」和「去活菌」。

「活菌」是活的乳酸菌,在進入腸胃道後,大多數的乳酸菌皆會被消滅,因為胃酸的 pH 值約 1.5-3 ,在如此酸的環境下,乳酸菌不易存活。

「去活菌」是經由熱封處理程序的乳酸菌質,活性成分被封存在細胞壁裡,比較穩定,較容易保存,進入腸胃道後較不會被胃酸、膽鹼破壞。「去活菌」可以搭配飲品、乳品、麥片等食品使用,使用上較為方便。

-----廣告,請繼續往下閱讀-----

備受矚目的熱去活乳酸菌:L-137

乳酸菌百百種,功效大不同。在調整體質方面, L-137 乳酸菌 (Lactobacillus plantarum L-137) 是由米和魚肉的發酵物中所分離的菌株,又被稱為植物乳酸菌,位於細胞壁上的脂磷壁酸 (Lipoteichoic acid, LTA) 為其關鍵成分。

在「免疫調節功能」方面,經動物實驗結果證實,熱去活 L-137 乳酸菌有助於促進吞噬細胞活性以及促進自然殺手細胞活性,並有助於減少 Th2 類型細胞激素分泌之功效。

「吞噬細胞」屬於「非特異性免疫」,當病原體侵入身體時,吞噬細胞會進行吞噬,然後將病原體的抗原呈現在細胞膜上,以活化輔助者 T 細胞與 B 細胞,進一步引發後續的特異性免疫反應。

在「輔助調整過敏體質」方面,經動物實驗結果證實,熱去活 L-137 乳酸菌有助於減緩過敏造成的呼吸道阻力現象及發炎細胞之浸潤、有助於降低過敏反應相關之非特異性 IgE 抗體及 OVA 專一性 IgG1 抗體生成、有助於降低過敏反應相關細胞激素 IL-5 及 IL-13 之分泌量。 IgE 為一種免疫球蛋白,與免疫反應相關。接觸過敏原後,體內的 IgE 濃度便會上升。

-----廣告,請繼續往下閱讀-----

因為熱去活 L-137 乳酸菌可能具有免疫調節功能,罹患自體免疫相關疾病者請先諮詢醫師後,再謹慎食用喔。

  1. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018 Jun 13;361:k2179. doi: 10.1136/bmj.k2179.
  2. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787‐8803. doi:10.3748/wjg.v21.i29.8787
  3. Pascal M, Perez-Gordo M, Caballero T, et al. Microbiome and Allergic Diseases. Front Immunol. 2018;9:1584. Published 2018 Jul 17. doi:10.3389/fimmu.2018.01584
-----廣告,請繼續往下閱讀-----
文章難易度
careonline_96
581 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站