1

5
4

文字

分享

1
5
4

料理系動畫神前激戰鯛魚料理!卻沒告訴你吃魚肝會導致維生素 A 中毒?!

Evelyn 食品技師_96
・2022/03/31 ・3694字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/Evelyn 食品技師

《中華一番》小當家與七星刀雷恩為了爭奪傳說中的廚具永靈刀,進行了一場精采的神前刀工對決。雷恩做了 4 道鯛魚料理,分別為「新奇生魚片」以魚背鰭週邊腹筋、尾鰭所做成;「什錦蔬菜紅燒下巴」、「特製清蒸下巴」兩道皆取自魚頭;最後一道則用魚身製成「生魚薄片」,還另外搭配鯛魚高湯 (估計用魚骨熬煮) 做涮涮鍋。

整條魚都沒有浪費任何一個部位,雷恩真是位非常善用食材、減少剩食的優秀廚師。

小當家做的「真鯛大陸圖」一樣也有 4 道料理,分別作出 4 個不同省份的特色,北京使用麵皮包大蔥和魚背肉;四川是採用魚皮包魚身肉油炸,並淋上紅油醬汁;上海是以鯛尾生魚片包蟹黃;廣東則是蠔油時蔬魚肚肉。

不過你注意到了嗎?兩位大廚師都沒有使用到「魚肝」來做料理。

-----廣告,請繼續往下閱讀-----

因為魚肝會累積高量維生素A或其他毒素,不適合食用,我國於 2007 年就曾發生過食用笛鯛魚肝臟,導致急性維生素 A 中毒的案例。

中華一番!。圖/IMDb

吃魚肝、吃營養補充膠囊,都發生過維生素 A 中毒!

該事件是世界第一起吃笛鯛魚肝,導致急性維生素A 中毒的案例。有一名年約 40 歲的男子於基隆八斗子漁港購買一種大型笛鯛——濱鯛 (Etelis carbunculus),是體長可達 127 公分的大型魚類。

該男子想以魚肝湯替 4 歲女兒補眼睛,將魚肝煮湯後與女兒共食,結果食用完魚肝 3 至 4 小時後出現噁心、嘔吐、腹部不適、頭痛、眼窩痛、全身痠痛、臉部脫皮及紅斑等急性維生素 A 中毒症狀,就醫後不適症狀便改善[2]。 

濱鯛 (Etelis carbunculus)。圖/台灣魚資料庫

其實不只魚肝,西元 1943 年有北極探險家吃了北極熊肝臟後,出現嗜睡、頭痛 及嘔吐等,隔天出現皮膚脫落症狀,亦是急性維生素 A 中毒症狀之現象[3]

-----廣告,請繼續往下閱讀-----

此外,不只有急性中毒,慢性維生素 A 中毒的案例其實較常見,例如香港就發生過,一家庭三姐妹從 2000 年開始每日攝取約 8,000,000 IU[註 1] 的魚肝油膠囊長達 8 年,就醫診斷後三姐妹確認罹患肝肺症候群 (hepatopulmonary syndrome; HPS)[註 2] [4]

明明維生素 A 為人類必需營養素之一,為何還會中毒呢?

脂溶性維生素易累積在體內,過多一樣會中毒!

還是老話一句——「劑量決定毒性」。

因維生素 A 是脂溶性化合物,外觀為呈現淡黃到紅黃色的油狀物質,對空氣及光線敏感。雖有維護視覺功能、維持上皮細胞完整性、維持骨骼生長與細胞生長等許多重要的生理功能。

-----廣告,請繼續往下閱讀-----

但其代謝速度慢,不像水溶性維生素可藉由尿液快速代謝排出,所以服用過量很容易累積在體內 (尤其是肝臟),中毒風險便增加。

此外,它並不是一種單一成分,維生素 A (retinoids) 是一個總稱,主要係由視黃醇 (retinol)、視黃醛 (retinal) 與視黃酸 (retinoic acid) 等所構成,為一群具有 β-紫羅蘭酮 (β-ionone) 結構之脂溶性物質,並根據其側鏈終端的官能基的不同而有多種異構型態。

其中「視黃醇」是維生素 A 在食品中為最普遍存在的形式,其分子式為 C20H30O;分子量為 286.46,其他形式的維生素 A 都是透過它經過各種代謝而產生[5]。 

維生素 A 及其衍生物的分子結構圖。圖 / 參考資料 5
維生素 A 於人體中代謝的示意圖,從視黃醇 (retinol) 向右反應,為氧化代謝產生視黃醛 (retinal),視黃醛再氧化代謝成視黃酸 (retinoic acid);從視黃醇 (retinol) 向左反應,為經長鏈脂肪酸酯化產生視黃酯 (retinyl esters),而視黃醛和視黃酯皆可再轉換回視黃醇。圖 / 參考資料 5

而就毒性大小來看,視黃醇、視黃醇酯最具顯著毒性,故一般探討維生素 A 之過量危害、毒性指標,均是指視黃醇、視黃醇酯。

-----廣告,請繼續往下閱讀-----

那麼我們日常應攝取多少劑量?而多少劑量又是過量的呢?

注意維生素 A 上限攝取量,中毒還分急性與慢性

根據我國所訂定的國人膳食營養素參考攝取量及其說明第七版[6],維生素 A 的建議攝取量 (recommended dietary allowance; RDA) 是以視黃醇當量 (retinol equivalent; RE) 表示,1 RE 等於 1 微克視黃醇,也相當於 3.33 IU[註 1]

一般成人建議攝取量為 500~600 RE / 日,成人上限攝取量 (tolerable upper intake levels; UL) 為 3,000 RE / 日 (約等於 10,000 IU),所以前面提到香港三姐妹每天吃的劑量,大約是「上限攝取量」的 800 倍,還整整吃了 8 年…

所以建議消費者在購買維生素 A 營養補充品食用時,一定要先確認清楚食品標示上的使用單位及每日建議攝取量喔!

-----廣告,請繼續往下閱讀-----

另外,這種維生素 A 食用過量所導致的不適症狀,又可稱為維生素 A 過多症 (hypervitaminosis A),依中毒狀況分為急性中毒和慢性中毒:

一、急性中毒

成人短時間內 (數小時或數天內) 攝取維生素 A 超過 500,000 IU 即可能造成急性中毒,幼童則是為攝取超過 100,000 IU。

症狀包括噁心、嘔吐、頭痛、腦脊髓液壓力增大、暈眩、視力模糊及肌肉不協調。

二、慢性中毒

人體每日攝取超過 25,000 IU 持續 6 年以上,或每日攝取 100,000 IU 持續 6 個月以上,即可能導致慢性中毒。

-----廣告,請繼續往下閱讀-----

症狀可能會出現畸胎、肝異常、骨質密度改變、脫皮、指甲脆化、口裂、脫髮、發燒、頭痛、嗜睡、易怒、體重減少及嘔吐等[5]

維生素 A 有「建議攝取量」與「上限攝取量」,中毒還分急性與慢性中毒。圖/Pexels

吃太多紅蘿蔔也會導致維生素 A 中毒?

除了認識維生素 A 過多會造成中毒之外,也需要理解日常生活中,有哪些食物會讓我們攝取到維生素 A,主要是分為動物及植物來源。

一、動物來源

主要以視黃酯如棕櫚酸視黃酯 (retinyl palmitate) 的形式存在於動物體內中,包括肝臟、魚肝油、奶油、起士及蛋黃等,食用後可立刻被人體利用。

二、植物來源

可合成維生素 A 的前驅物 (provitamin A),也就是常聽見的類胡蘿蔔素 (carotenoid) 如 β-胡蘿蔔素 (β-carotene),其在小腸或肝臟被轉化成視黃醛才能被人體利用。

-----廣告,請繼續往下閱讀-----

類胡蘿蔔素主要存在於深綠色蔬菜、深黃色或橘色之蔬菜及水果當中,如青花菜、菠菜、葡萄柚、胡蘿蔔或南瓜等。

此外,攝取過量的類胡蘿蔔素並不會導致維生素 A 中毒,因為類胡蘿蔔素主要是經小腸內的酵素作用形成視黃醛,不會完全轉化成視黃醇[5]

所以「吃太多紅蘿蔔,會導致維生素 A 中毒」是謠言,短期食用大量動物肝臟,或長期食用高劑量魚肝油、營養補充劑才是造成維生素 A 中毒之主因。

「吃太多紅蘿蔔,會導致維生素 A 中毒」是謠言。圖/Pexels

補充劑服用前應詳閱產品說明,不自行添加劑量

許多人都抱持著多吃維生素,讓身體更健康的觀念,常常服用過量導致不必要的後果。

面對市面上琳琅滿目的營養補充劑,消費者購買前應先瞭解自身所需,並請教專業醫師、藥師或營養師等,完整評估自己的身體狀況,再決定是否要購買。

也要注意不同產品的營養素,會因種類與劑量而有所不同,服用需仔細閱讀產品說明,千萬不要擅自添加劑量。

不過話說回來,幸好雷恩和小當家兩位大廚都沒有料理魚肝給長老評審們吃,不然長老們要是因食物中毒而鬧出人命的話,神前刀工對決直接變成「神前下毒對決」,永靈刀絕對會直接放棄兩位廚師。

註解:

1. 國際單位 (International unit; IU):是用生物活性或生物效價來表示某些維生素、激素、藥物類似的生物活性物質的藥理計量單位。例如食物中含有多種維生素 A 的前驅物 (precursors),在人體內轉化為生物有效性的維生素 A,這些前驅物的活性便可以國際單位表示並比較其效價。

2. 肝肺症候群 (hepatopulmonary syndrome; HPS):診斷的主要三個特徵分別為肝臟疾病、動脈血氧合功能障礙和肺內血管擴張。在肝臟衰竭的患者,其內生性的血管擴張物質增加,進而導致肺血管擴張,氣體交換變差,在臨床上主要表現為呼吸困難和發紺。

參考資料:

1. Muse木棉花,2021。中華一番(舊版小當家) 第31話【囊括四大中華!真鯛大陸圖】

2. 呂曜丞,2012。臺灣大型笛鯛魚之肝臟維生素 A 含量及其肌肉蛋白質電泳分析。國立臺灣海洋大學食品科學所碩士學位論文。基隆。

3. Rodahl, K. and Moore, T. 1943. The vitamin A content and toxicity of bear and seal liver. Journal of Biochemistry 37: 166-168.

4. Lau, V. W. S., Lau, D. C. Y. and Huen, K. F. 2008. Hepatopulmonary syndrome: An unusual presentation of chronic hypervitaminosis A. Hong Kong Journal of Paediatrics 13: 46-52.

5. 黃育琳,2019。以小鼠神經 N2a 細胞模式探討視黃醇之細胞毒性。國立臺灣海洋大學食品科學所碩士學位論文。基隆。

6. 衛生福利部國民健康署,2011。國人膳食營養素參考攝取量修訂第七版 (Dietary Reference Intakes,DRIs)。

文章難易度
所有討論 1
Evelyn 食品技師_96
23 篇文章 ・ 28 位粉絲
一名食品技師兼食品生技研發工程師,個性鬼靈精怪,對嗅覺與味覺特別敏銳,經訓練後居然成為專業品評員(專業吃貨)?!因為對食品科學充滿熱忱,希望能貢獻微薄之力寫些文章,傳達食品科學的正確知識給大家!商業合作請洽:10632015@email.ntou.edu.tw

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
0

文字

分享

0
3
0
OpenAI 新突破!為什麼 Sora 可以產出這麼流暢的動畫?你不可錯過的技術文件大解密!
泛科學院_96
・2024/02/26 ・2968字 ・閱讀時間約 6 分鐘

什麼?不需要拍攝團隊與剪輯師,一句話就可以生成短片?!

OpenAI 近來發布的短影片生成器——Sora,能依據各種「咒語」生成難分真偽的流暢影片。

是什麼技術讓它如此強大?讓我們來一探究竟吧!

你被 Sora 了嗎?這幾天 Sora 佔據了各大版面,大家都在說 OpenAI 放大絕,不止 YouTuber,連好萊塢都要崩潰啊啊啊!

但真有這麼神嗎?我認真看了下 Sora 的官方說明以及參考資料,發現這東西,還真的挺神的!這東西根本不是 AI 取代人或單一產業,而是 AI 變成人,根本是通用型人工智慧 AGI 發展的里程碑啊!

別怕,要讓 Sora 為你所用,就先來搞懂到底是什麼神奇的訓練方法讓 Sora 變得那麼神,這就要從官網說明中唯一的斜體字——diffusion transformer 說起了。

這集我們要來回答三個問題,第一,Sora 跟過去我們產圖的 Midjourney、Dall-E,有什麼不同?第二,Diffusion transformer 是啥?第三,為什麼 Diffusion transformer 可以做出這麼絲滑的動畫?

-----廣告,請繼續往下閱讀-----

最後,我想說說我的感想,為什麼我會覺得 Sora 很神,不只是取代坐在我旁邊的剪接師,而是 AI 變人的里程碑。

我們已經很習慣用 Midjourney、Dall-E 這些 Diffusion 模型產圖了,從 logo 到寫真集都能代勞,他的原理我們在泛科學的這裡,有深入的解說,簡單來說就像是逐格放大後,補上圖面細節的過程。不過如果你要讓 Diffusion 產影片,那後果往往是慘不忍睹,就像這個威爾史密斯吃麵的影片,每一格影格的連續性不見得相符,看起來就超級惡趣味。

要影格連續性看來合理……咦?像是 GPT-4 這種 tranformer 模型,不是就很擅長文字接龍,找關聯性嗎?要是讓 transformer 模型來監督 Diffusion 做影片,撒尿蝦加上牛丸,一切不就迎刃而解了嗎?

沒錯,OpenAI 也是這樣想的,因此才把 Sora 模型稱為「Diffusion transformer」,還在網站上用斜體字特別標示起來。

-----廣告,請繼續往下閱讀-----
圖/OpenAI

但說是這樣說啦,但 transformer 就只會讀文本,做文字接龍,看不懂影片啊,看不懂是要怎麼給建議?於是,一個能讓 transformer 看懂圖片的方式——patch 就誕生啦!

ChatGPT 理解內容的最小單位是 token,token 類似單詞的文字語意,ChatGPT 用 token 玩文字接龍,產生有連續性且有意義句子和文章。

那 Patch 呢?其實就是圖片版的 token,讓 ChatGPT 可以用圖片玩接龍,玩出有連貫性的圖片。

Sora 官方提供的訓練說明圖上,最後所形成的那些方塊就是 patch,這些 patch 是包含時間在內的 4D 立體拼圖,可以針對畫面與時間的連續性進行計算。

-----廣告,請繼續往下閱讀-----
圖/OpenAI

那這個 patch 要怎麼做呢?以 Sora 提供的參考文獻 15 來說明會比較容易懂,patch 是將影像切成一樣等大的區塊後,進行編碼、壓縮,產生類似 ChatGPT 能分析的文字語意 token。

有了這些 patch 後,Transformer 就可以計算 patch 之間的關聯性形成序列,例如論文中被分割在中上與右上的兩塊藍天,就會被分類在天空,之後算圖的時候,就會知道這兩塊 patch 是一組的,必須一起算才行。

也就是說,畫面上的這塊天空已經被鎖定,必須一起動。

雖然這篇論文只提圖片,但影片的處理只要再加上 patch 間的先後順序,這樣就能讓 transformer 理解隨時間改變的演化。

-----廣告,請繼續往下閱讀-----

同樣是上面被鎖定的天空,多了先後順序,就相當於是增加了前一個影格與後一個影格限制條件,讓這塊天空在畫面中移動時,被限縮在一定範圍內,運動軌跡看起來更加合理。

而他的成果,就是在 Sora 官網上看到的驚人影片,那種絲滑的高畫質、毫無遲滯且高度合理、具有空間與時間一致性的動作與運鏡,甚至可以輕易合成跟分割影片。

不過啊,能把 Sora 模型訓練到這個程度,依舊是符合 OpenAI 大力出奇跡的硬道理,肯定是用了非常驚人的訓練量,要是我是 Runway 或 Pika 這兩家小公司的人,現在應該還在咬著牙流著血淚吧。別哭,我相信很多人還是想要看威爾史密斯繼續吃義大利麵的。

在訓練過程中,Sora 從提取影像特徵,到形成有意義的 patch,到最後串聯成序列,如果你接觸過認知心理學,你會發現這其過程就跟認知心理學描述人類處理訊息的過程如出一轍。都是擷取特徵、幫特徵編碼形成意義、最後組合長期記憶形成序列,可以說 Sora 已經接近複製人類認知過程的程度。

-----廣告,請繼續往下閱讀-----

這邊是我的推測,影片中那些逼真的物理效果,不是有特定的物理模型或遊戲引擎在輔助,而是在 patch 的訓練與序列推理中,就讓 Sora 理解到要讓物體這樣動,看起來才會是真實的,這跟 GPT-4 並不需要文法引擎是一樣的,只要玩文字接龍,就能生成流暢又有邏輯的文字跟代碼。但這也是為什麼,GPT 依舊很會胡說八道,產生幻覺。如果不是這樣,我很難想像 Sora 會算出這種影片。

Sora 能理解並產生人類眼睛能接收的視覺影片,同樣的技術若能做出聽覺、觸覺等其他人類感官,這樣我們被 AI 豢養的時刻是不是就越來越近了呢?

後 Sora 時代到底會發生什麼事,老實講我不知道,上面提到的 diffusion transformer 或 patch,都是近一年,甚至是幾個月前才有研究成果的東西。

臉書母公司 Meta 的首席人工智慧科學家 Yann Lecun 也在他自己的臉書公開抨擊 Sora 這種基於像素預測的技術註定失敗,但這篇感覺比較像是對自己的老闆 Zuckerberg 喊話:「欸這沒戲,不要叫我學 Sora,拿寶貴的運算資源去搞你的元宇宙。」是說今年初就有新聞說祖老闆 2024 年預計買超過 35 萬顆 H100 處理器,這明顯就是要搞一波大的吧,這就是我想要的血流成河。

-----廣告,請繼續往下閱讀-----

而且,從去年 ChatGPT 出來開始,我感覺就已經不是討論 AI 會怎麼發展,而是要接受 AI 必定會發展得越來越快,我們要怎麼面對 AI 帶來的機會與衝擊。

我們去年成立泛科學院,就是希望跟大家一起,透過簡單易懂的教學影片,把對 AI 的陌生跟恐慌,變成好奇與駕馭自如。Sora 或類似的模型應該可以協助我把這件事做得更好,可惜的的是目前 OpenAI 僅開放 Sora 給內部的 AI 安全團隊評估工具可能帶來的危害與風險,另外就是與少數外部特定的藝術家、設計師跟電影製片人確保模型用於創意專業領域的實際應用,若有新消息,我會再即時更新。

最後也想問問你,若能用上 Sora,你最想拿來幹嘛呢?歡迎留言跟我們分享。喜歡這支影片的話,也別忘了按讚、訂閱,加入會員,下集再見~掰!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 49 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

0
2

文字

分享

0
0
2
這樣吃安全嗎?用科學去看「劑量」與「食安」
衛生福利部食品藥物管理署_96
・2023/10/06 ・2743字 ・閱讀時間約 5 分鐘

本文轉載自食藥好文網

  • 文/黃育琳 食品技師

你喜歡吃香腸嗎?香腸嚐起來不但鹹甜多汁,飄散出來的香氣更是令人口水直流,是日常的菜色之一。

然而,香腸的內部環境容易滋生肉毒桿菌,並產生對人類最強的毒素「肉毒桿菌毒素(botulinum toxin)」,只需要 1 克便能毒死一百萬人。

為了避免吃香腸出人命,則需要在香腸內添加亞硝酸鹽以抑制肉毒桿菌生長,但亞硝酸鹽碰到二級胺(通常不新鮮的肉類或海鮮因產生發酵作用或腐敗而生成)可能會產生致癌物質亞硝胺(nitrosamines),一種經動物實驗結果顯示會導致腫瘤的致癌物質。

-----廣告,請繼續往下閱讀-----

天啊!聽起來加與不加,兩邊都很不妙,那我們為什麼還繼續吃下去呢?

這裡忽略了一個很重要的資訊,若導致亞硝酸鹽中毒,需要有一定「劑量」。我們應該去思考,人類如何在不會導致中毒的劑量下,有效運用亞硝酸鹽這個物質 [1]

毒理學中最重要的概念「劑量」

亞硝酸鹽是衛生福利部食品藥物管理署正面表列的合法食品添加物,只要按《食品添加物使用範圍及限量暨規格標準》限量添加(劑量遠低於導致中毒的劑量),那它對人體不但沒有危害,反而能讓我們免於受到肉毒桿菌毒素的威脅。

若是選擇完全不使用亞硝酸鹽,那麼肉毒桿菌毒素中毒的風險則會大大增加。相較之下,使用亞硝酸鹽必然安全許多,既然這樣,世界上還有無毒物質的存在嗎?

-----廣告,請繼續往下閱讀-----

毒理學之父 Paracelsus 先生(西元 1493-1541 年)曾說:「所有化學物質都有毒,世界上沒有不毒的化學物質,但依使用劑量的多寡,可區分為毒物或藥物。」這也是毒理學最重要的基礎概念 [註]

所有化學物質都有毒,差別僅在「劑量」。 圖/envato.elements

所以世界上並不存在完全無毒的食品,只要過量都可能會導致中毒甚至致死,單純用致癌物、有害物質來區分所有物質其實並不正確,而是要注意它的「劑量」。

當然,加工食品也是同樣的道理。

加工食品吃了不好?也是由劑量決定

常聽大家說,常吃加工食品會對人體有害,對健康造成負擔,但是真的完全都不能吃嗎?

-----廣告,請繼續往下閱讀-----

適量吃加工食品對身體是不會造危害的,大家所認為天然非加工食品吃太多也一樣會出事。如維繫人體生命的必需物質「水」,這個看似無害的物質,喝太多卻會造成水中毒。

或者是「母乳」這個直接來自人體的物質,也都可能含有微量抗生素、重金屬或塑化劑等,因為人體在長久接觸整個大環境中的污染後,多少會有毒素累積,要完全無毒是不可能的 [2]

許多人說加工食品之所以不好,是因為有部分加工食品,如早餐加糖的穀片、汽水、零食餅乾、罐裝高湯或熱狗等,糖份、鹽份和脂肪含量通常很高,也沒有其它營養價值,吃太多確實會對身體帶來負擔。

另一方面,前面提到的肉毒桿菌毒素,現在已廣泛應用於去除皺紋、瘦臉或瘦腿等醫學美容;人人聞之色變的劇毒「砒霜」,還可以應用在急性前骨髓細胞白血病(APL)的治療 [2]

-----廣告,請繼續往下閱讀-----

只要使用正確的「劑量」,毒藥也可以變仙丹。

要如何判別毒性大小?看半數致死劑量

如此重要的劑量該怎麼看呢?在毒理學觀察物質毒性大小時,有一項很常用的工具——半數致死劑量 LD50

不同用量的化學物質,實驗動物死亡率亦各不相同,通常物質的劑量與實驗動物的死亡率呈現正比。而半數致死劑量(lethal dosage 50%, LD50),指的就是在動物實驗中,使實驗動物產生 50% 死亡率所需要的化學物質之劑量,值愈小表示毒性愈強。

如肉毒桿菌毒素 LD50 約為 100 ng/kg(毒素重量/實驗動物重量),小白鼠的體重為 0.02 公斤,所以只需要 2 奈克(10-9 克),就可以使一半的實驗小白鼠死亡;日常生活中的食鹽(氯化鈉) LD50 約為 40 g/kg,需要 0.8 克才能使一半的實驗小白鼠死亡,兩者的毒性可說是天差地遠 [3]

-----廣告,請繼續往下閱讀-----

不過在日常生活中,若要妥善運用食品添加物、農藥等物質,就先得找出不會導致中毒的劑量,也就是「無明顯不良反應劑量(no-observed-adverse-effect-level, NOAEL)」。

它是指在動物實驗中,統計上未觀察到任何不良反應的最大劑量,在後續制定容許量時,NOAEL 是很重要的參考指標 [1]

化學物質的毒性大小,要看它半致死劑量的多寡。 圖/envato.elements

「每日可接受攝取量」v.s.「最大殘留容許量」或「使用限量」

若是要找出「人」即使長期每天攝取,也不會對健康造成危害的量,科學家們會根據動物實驗,計算出「每日可接受攝取量(acceptable daily intake, ADI),這個數值將作為政府單位作為安全評估的界線,於此界線下會再考量到飲食習慣或田間施藥測試結果,訂定更嚴格的使用限量(如:食品添加物)或最大殘留容許量(maximal residue level, MRL)作為行政執法的依據,超標的廠商將受到懲罰。

但是超標並不代表會中毒,使用限量或 MRL 是依據一般飲食習慣設定,每日的「總曝露量」遠低於 ADI,對人體不會有不良影響。使用限量或 MRL 皆是在科學的基礎下所計算出的管制劑量,對於在管理食品添加物或農藥殘留是非常重要的 [1]

-----廣告,請繼續往下閱讀-----

毒物學所熟知的「劑量」,大眾也應瞭解

有了劑量的觀念即可明白,即使不小心喝到一杯某一農藥殘留超標 MRL 5 倍的茶飲料,雖然聽起來很可怕,但其農藥總暴露量可能仍遠低於 ADI,更低於 NOAEL,故不需為此感到恐慌。

當大眾看到不認識的毒物名稱時,很容易被恐懼帶著走。而食品安全無法僅靠科學去維護,也需要消費者、媒體、政府和食品業界一起努力,才能做好安全把關。

購買時,建議詳閱食品標示。 圖/envato.elements

因此我們應該了解到食品安全資訊,是需要培養深入認知與討論議題的能力,才能避免流於情緒的宣洩或受到媒體的操弄。

註解

原文為 “All substances are poisons; there is none which is not a poison. The right dose differentiates the poison from a remedy.” [3]

-----廣告,請繼續往下閱讀-----

參考資料

  1. 陳亭瑋,2022。這是毒還是藥?先搞懂「每日容許攝取量」和「最大殘留安全容許量」吧!。行政院環境保護署毒物及化學物質局。
  2. 李霜茹,2017。怎麼決定多少「劑量」對人體有害?── 「PanSci TALK:食品安全基本功」──「PanSci。食藥好文網 TFDA。
  3. Shibamoto, T. and Bjeldanes, L. F. 2009. Introduction to food toxicology.
衛生福利部食品藥物管理署_96
65 篇文章 ・ 23 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx