0

3
0

文字

分享

0
3
0

OpenAI 新突破!為什麼 Sora 可以產出這麼流暢的動畫?你不可錯過的技術文件大解密!

泛科學院_96
・2024/02/26 ・2968字 ・閱讀時間約 6 分鐘

什麼?不需要拍攝團隊與剪輯師,一句話就可以生成短片?!

OpenAI 近來發布的短影片生成器——Sora,能依據各種「咒語」生成難分真偽的流暢影片。

是什麼技術讓它如此強大?讓我們來一探究竟吧!

你被 Sora 了嗎?這幾天 Sora 佔據了各大版面,大家都在說 OpenAI 放大絕,不止 YouTuber,連好萊塢都要崩潰啊啊啊!

但真有這麼神嗎?我認真看了下 Sora 的官方說明以及參考資料,發現這東西,還真的挺神的!這東西根本不是 AI 取代人或單一產業,而是 AI 變成人,根本是通用型人工智慧 AGI 發展的里程碑啊!

別怕,要讓 Sora 為你所用,就先來搞懂到底是什麼神奇的訓練方法讓 Sora 變得那麼神,這就要從官網說明中唯一的斜體字——diffusion transformer 說起了。

這集我們要來回答三個問題,第一,Sora 跟過去我們產圖的 Midjourney、Dall-E,有什麼不同?第二,Diffusion transformer 是啥?第三,為什麼 Diffusion transformer 可以做出這麼絲滑的動畫?

-----廣告,請繼續往下閱讀-----

最後,我想說說我的感想,為什麼我會覺得 Sora 很神,不只是取代坐在我旁邊的剪接師,而是 AI 變人的里程碑。

我們已經很習慣用 Midjourney、Dall-E 這些 Diffusion 模型產圖了,從 logo 到寫真集都能代勞,他的原理我們在泛科學的這裡,有深入的解說,簡單來說就像是逐格放大後,補上圖面細節的過程。不過如果你要讓 Diffusion 產影片,那後果往往是慘不忍睹,就像這個威爾史密斯吃麵的影片,每一格影格的連續性不見得相符,看起來就超級惡趣味。

要影格連續性看來合理……咦?像是 GPT-4 這種 tranformer 模型,不是就很擅長文字接龍,找關聯性嗎?要是讓 transformer 模型來監督 Diffusion 做影片,撒尿蝦加上牛丸,一切不就迎刃而解了嗎?

沒錯,OpenAI 也是這樣想的,因此才把 Sora 模型稱為「Diffusion transformer」,還在網站上用斜體字特別標示起來。

-----廣告,請繼續往下閱讀-----
圖/OpenAI

但說是這樣說啦,但 transformer 就只會讀文本,做文字接龍,看不懂影片啊,看不懂是要怎麼給建議?於是,一個能讓 transformer 看懂圖片的方式——patch 就誕生啦!

ChatGPT 理解內容的最小單位是 token,token 類似單詞的文字語意,ChatGPT 用 token 玩文字接龍,產生有連續性且有意義句子和文章。

那 Patch 呢?其實就是圖片版的 token,讓 ChatGPT 可以用圖片玩接龍,玩出有連貫性的圖片。

Sora 官方提供的訓練說明圖上,最後所形成的那些方塊就是 patch,這些 patch 是包含時間在內的 4D 立體拼圖,可以針對畫面與時間的連續性進行計算。

-----廣告,請繼續往下閱讀-----
圖/OpenAI

那這個 patch 要怎麼做呢?以 Sora 提供的參考文獻 15 來說明會比較容易懂,patch 是將影像切成一樣等大的區塊後,進行編碼、壓縮,產生類似 ChatGPT 能分析的文字語意 token。

有了這些 patch 後,Transformer 就可以計算 patch 之間的關聯性形成序列,例如論文中被分割在中上與右上的兩塊藍天,就會被分類在天空,之後算圖的時候,就會知道這兩塊 patch 是一組的,必須一起算才行。

也就是說,畫面上的這塊天空已經被鎖定,必須一起動。

雖然這篇論文只提圖片,但影片的處理只要再加上 patch 間的先後順序,這樣就能讓 transformer 理解隨時間改變的演化。

-----廣告,請繼續往下閱讀-----

同樣是上面被鎖定的天空,多了先後順序,就相當於是增加了前一個影格與後一個影格限制條件,讓這塊天空在畫面中移動時,被限縮在一定範圍內,運動軌跡看起來更加合理。

而他的成果,就是在 Sora 官網上看到的驚人影片,那種絲滑的高畫質、毫無遲滯且高度合理、具有空間與時間一致性的動作與運鏡,甚至可以輕易合成跟分割影片。

不過啊,能把 Sora 模型訓練到這個程度,依舊是符合 OpenAI 大力出奇跡的硬道理,肯定是用了非常驚人的訓練量,要是我是 Runway 或 Pika 這兩家小公司的人,現在應該還在咬著牙流著血淚吧。別哭,我相信很多人還是想要看威爾史密斯繼續吃義大利麵的。

在訓練過程中,Sora 從提取影像特徵,到形成有意義的 patch,到最後串聯成序列,如果你接觸過認知心理學,你會發現這其過程就跟認知心理學描述人類處理訊息的過程如出一轍。都是擷取特徵、幫特徵編碼形成意義、最後組合長期記憶形成序列,可以說 Sora 已經接近複製人類認知過程的程度。

-----廣告,請繼續往下閱讀-----

這邊是我的推測,影片中那些逼真的物理效果,不是有特定的物理模型或遊戲引擎在輔助,而是在 patch 的訓練與序列推理中,就讓 Sora 理解到要讓物體這樣動,看起來才會是真實的,這跟 GPT-4 並不需要文法引擎是一樣的,只要玩文字接龍,就能生成流暢又有邏輯的文字跟代碼。但這也是為什麼,GPT 依舊很會胡說八道,產生幻覺。如果不是這樣,我很難想像 Sora 會算出這種影片。

Sora 能理解並產生人類眼睛能接收的視覺影片,同樣的技術若能做出聽覺、觸覺等其他人類感官,這樣我們被 AI 豢養的時刻是不是就越來越近了呢?

後 Sora 時代到底會發生什麼事,老實講我不知道,上面提到的 diffusion transformer 或 patch,都是近一年,甚至是幾個月前才有研究成果的東西。

臉書母公司 Meta 的首席人工智慧科學家 Yann Lecun 也在他自己的臉書公開抨擊 Sora 這種基於像素預測的技術註定失敗,但這篇感覺比較像是對自己的老闆 Zuckerberg 喊話:「欸這沒戲,不要叫我學 Sora,拿寶貴的運算資源去搞你的元宇宙。」是說今年初就有新聞說祖老闆 2024 年預計買超過 35 萬顆 H100 處理器,這明顯就是要搞一波大的吧,這就是我想要的血流成河。

-----廣告,請繼續往下閱讀-----

而且,從去年 ChatGPT 出來開始,我感覺就已經不是討論 AI 會怎麼發展,而是要接受 AI 必定會發展得越來越快,我們要怎麼面對 AI 帶來的機會與衝擊。

我們去年成立泛科學院,就是希望跟大家一起,透過簡單易懂的教學影片,把對 AI 的陌生跟恐慌,變成好奇與駕馭自如。Sora 或類似的模型應該可以協助我把這件事做得更好,可惜的的是目前 OpenAI 僅開放 Sora 給內部的 AI 安全團隊評估工具可能帶來的危害與風險,另外就是與少數外部特定的藝術家、設計師跟電影製片人確保模型用於創意專業領域的實際應用,若有新消息,我會再即時更新。

最後也想問問你,若能用上 Sora,你最想拿來幹嘛呢?歡迎留言跟我們分享。喜歡這支影片的話,也別忘了按讚、訂閱,加入會員,下集再見~掰!

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 52 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
AI 破解生命密碼!AlphaFold 3 揭開蛋白質折疊的終極謎團
PanSci_96
・2024/10/07 ・1619字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

AlphaFold的誕生:人工智慧的奇蹟

2018 年,Google 旗下的 DeepMind 團隊推出了第一代 AlphaFold,這是一款基於深度學習的 AI 模型,專門用於預測蛋白質的三維結構。AlphaFold 的命名取自「fold」一詞,意為折疊,指的是蛋白質在胺基酸鏈構成後迅速摺疊成其功能所需的三維結構。

AlphaFold 的突破在於其能夠預測出蛋白質折疊的可能性,這是一個傳統計算方法無法達到的領域。第一代 AlphaFold 在國際 CASP 比賽中取得了一定的成功,雖然其預測準確度尚未達到實驗室標準,但其潛力讓科學家們充滿期待。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼蛋白質結構預測如此重要?

蛋白質是生命的基石,它們的功能取決於其複雜的三維結構。然而,僅靠實驗技術來解析蛋白質的結構既昂貴又耗時。過去科學家依賴於如 X 光晶體繞射等技術來解析蛋白質的結構,然而這種方法雖然精確,但往往需要數年時間來得出一個結論。

到目前為止,人類已知的蛋白質數據庫中,全球僅解析了大約 22 萬種蛋白質的結構,這遠遠不足以滿足生物學和醫學研究的需求。尤其是人類的許多蛋白質結構仍然未知,這成為阻礙醫學進步的一個主要瓶頸,特別是在藥物開發和疾病治療上,因此如何加速對蛋白質的結構的解析至關重要。

-----廣告,請繼續往下閱讀-----

AlphaFold 2:技術飛躍

2020 年,AlphaFold 2 橫空出世,改進了多項技術,預測準確度大幅,幾乎達到了與實驗結果相媲美的程度。這一成就震驚了全球生物學界,許多科學家開始將 AlphaFold 2 應用於實際研究中。

AlphaFold 2 的成功源自於其三大技術革新:

  • 注意力機制:模仿人類的思維模式,從大局出發,關注蛋白質結構中的每一個細節,進而提高預測的準確性。
  • 多序列比對功能:通過搜尋類似的胺基酸序列,推斷新的蛋白質結構。
  • 端到端預測模式:利用深度學習神經網路,不斷反饋預測結果,持續優化模型。
AlphaFold 2 預測準確度大幅提升。 圖/envato

AlphaFold 3:下一代 AI 的力量

隨著 AlphaFold 2 的成功,DeepMind 並未停止其腳步。2024 年 5 月,AlphaFold 3 正式推出,這標誌著 AI 技術在生物學領域的又一個里程碑。AlphaFold 3 的改進再次吸引了科學界的目光,它強化了注意力機制,並引入了擴散模型,這使其能夠更快且更準確地預測複合蛋白質的結構。

擴散模型是一項關鍵技術,它能夠生成大量的可能蛋白質結構,並快速篩選出最可能的解答。與此同時,AlphaFold 3 還內建了「減幻覺」功能,這讓其在產生結果時能夠避免過多不切實際的預測,提升了結果的可信度。

-----廣告,請繼續往下閱讀-----

AlphaFold 的實際應用:醫學與藥物開發

AlphaFold 3 的誕生,不僅是一個技術突破,還為醫學和藥物開發帶來了巨大的希望。過去,癌症治療中的標靶藥物需要經過漫長的實驗才能確定其作用原理,然而現在,通過 AlphaFold 的預測,科學家可以更加精確地針對癌細胞中的錯誤蛋白質,設計出更有效的藥物。

除此之外,AlphaFold 3 還在抗病毒藥物、抗生素以及阿茲海默症等領域展現了潛力。其能夠預測蛋白質與其他分子(如DNA、RNA)的交互作用,這使得研發新藥的過程大大加速。

AlphaFold 3 的挑戰與未來

儘管 AlphaFold 3 取得了驚人的進展,但其仍然面臨一些挑戰。首先,目前 AlphaFold 3 的模型尚未完全開源,這限制了研究人員對其內部運作的了解。為此,一些科學家已聯名要求 DeepMind 開放其程式碼,以便進行更深入的研究和應用。

不過,隨著 AlphaFold 3的逐步推廣,生物學家相信它將繼續改變生物學研究的方式。未來,這項技術有望在解決更多未解難題中發揮關鍵作用,並為醫學領域帶來更大的突破。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
210 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia