0

0
0

文字

分享

0
0
0

脂肪會說話:脂肪細胞會用「瓶中信」跟其他器官溝通!

Gilver
・2017/03/29 ・3020字 ・閱讀時間約 6 分鐘 ・SR值 550 ・八年級

-----廣告,請繼續往下閱讀-----

如果腰間的贅肉會說話,它會說些什麼呢?

 

脂肪不是沉默的器官。科學家目前已經了解脂肪細胞會透過釋放脂肪細胞激素(adipokine),來調節身體的新陳代謝。但最近科學家發現,脂肪細胞還會把小分子RNA做成「瓶中信」,再透過血液的循環和彼端的器官溝通。

脂肪組織的卡通示意圖,電子顯微鏡下則是長這樣(連結)。圖/Wellcome Images @Flickr

脂肪是甜蜜的負荷,人們對它是又愛又恨。它是演化的勝利者用來儲存過剩能量的寶庫,但在崇尚窈窕曲線的都市審美觀中卻被汙名化,成了懶散和不知節制的象徵。

事實上,脂肪細胞可不是懶懶得待在你的腰間。成熟的脂肪細胞會分泌各種激素,參與你一生的新陳代謝。當你在找東西吃的時候,脂肪利用瘦體素(leptin)在調整神經內分泌;胰島素在處理血糖的時候,脂聯素(adiponectin)也會湊一咖;和脂肪細胞分化有關的抵抗素(resistin),未來有可能成為減重的基因療法之一。

有趣的是,最近科學家發現脂肪細胞不只會釋放激素,還可能會利用小分子核醣核酸(micro RNA,簡稱miRNA)向遠端的器官傳遞訊息。不過在介紹研究之前,先讓我們了解一下什麼是miRNA吧!

-----廣告,請繼續往下閱讀-----

中心法則:細胞星球的日常

我們的每一個細胞都像是一顆微小的星球。而在星球之中有一座巨大的資料庫,坐落在細胞核裡頭。

每個基因都是一本加密的書,由遺傳物質DNA所構成。這些基因密碼在許多酵素的共同協助下,會先經過「轉錄」、製作一段對應DNA密碼訊息的RNA。它是特別的抄本,能夠被編輯和修改。

接著,RNA記錄的資訊會再經過「轉譯」程序,組出一段胺基酸的長鍊,最後再經過摺疊,變成可以發揮功能的蛋白質。它們有的變成你的血肉和大腦,有的則是既不偉大、也不卑微的在你體內每個角落默默工作。

這個由DNA→RNA→蛋白質的不可逆程序,在分子生物學稱做「中心法則」(central dogma)。

-----廣告,請繼續往下閱讀-----
分子生物學中的中心法則:DNA轉錄成RNA,RNA再轉譯成蛋白質,在我們身體的各處發揮功能。圖片改自Wikimedia Commons

整個由DNA到蛋白質的動態過程,可參照下方連結的影片:

miRNA,短小精幹的抑制者

不過,有些種類的RNA不必變成蛋白質,也能變成細胞繁複工作的調節者。例如短小精幹的miRNA,長度雖然只有19~22個核苷酸,但它不會、也不用被轉譯成蛋白質,就能直接在許多細胞裡擔任轉譯抑制者的角色。

細胞星球中的任何一個傢伙變得太多或太少,都有可能會讓整個細胞星球崩潰,更嚴重的話就是從細胞一路壞到組織、器官層級,最後危及生物個體的性命。miRNA也是如此,科學家目前已經發現特定種類的miRNA的增加與某些疾病有關,例如癌症、糖尿病、肥胖和心血管疾病。

miRNA不只會在細胞內工作,有的還會被包裹在稱作「胞外小體」(exosome)的小囊泡裡面、釋放到血液之中,像是瓶中信一樣,順著循環系統漂向遠方──未來,這個小囊泡將在身體的某處停泊,並且發揮它的功用。

-----廣告,請繼續往下閱讀-----

胞外小體裹著的miRNA,漂向哪兒去了?又去做了什麼?這,就是科學家想要研究的事情了。

某些RNA會包裹在胞外小體之中,像瓶中信一般釋放到細胞外。它將順著血液漂泊,在身體的某處發揮它的功用。圖/擷取自National Institutes of Health影片《Unlocking the Mysteries of Extracellular RNA Communication

脂肪細胞的囊泡物語

來自美國佳斯林糖尿病中心(Joslin Diabetes Center)的研究團隊,以湯瑪斯.湯莫(Thomas Thomou)為第一作者,將他們的研究成果發表在2017年2月的《自然》(Nature)期刊上。這項在脂肪細胞的新發現或許將能發展成新的基因療法,用來治療代謝疾病、癌症、甚至肝臟和其他器官的問題。

研究團隊的實驗先從基因改造的小鼠(mice)著手。這群基改小鼠的脂肪細胞無法正常製造miRNA,科學家們經過檢驗,發現牠們血液中的胞外小體miRNA的量顯著的減少了;若是將正常小鼠的脂肪移植到基改小鼠的身體裡,血液中減少的胞外小體miRNA就回升了。這意味著:血流中的胞外小體miRNA,是來自於脂肪

研究團隊發現,類似的狀況在人類的脂肪失養症(lipodystrophy)也有觀察到。脂肪失養症的患者,可能會因為先天遺傳或者後天疾病,導致喪失脂肪或者失去正常功能,而現在發現他們血液中檢驗出來的胞外小體miRNA,也比正常人來得少。

-----廣告,請繼續往下閱讀-----

「這些由脂肪產生的miRNA,或許能應用於診斷代謝狀況,例如肥胖、第二型糖尿病和脂肪肝。」本篇研究的作者之一羅納度.卡恩(Ronald Kahn)說。

科學家們更進一步好奇,這些miRNA是否也會轉移到其他組織裡,並且調控它們的基因表現呢?如果可以知道這些,或許就能夠用於治療。

脂肪在跟誰說話?可能是肝臟,還有其他

這些脂肪有缺陷的改造小鼠不只血液中的miRNA量少,科學家們也注意到牠們其他的器官也連帶受到影響,這包括了心臟和肝臟。因此,湯莫等人想知道脂肪是否會利用miRNA來跟身體的其他部位溝通。

他們設計了一套方法、兩組小鼠,用來跨越人與鼠實驗之間的鴻溝。第一組基改小鼠,牠們的棕色脂肪能夠製造人類的miRNA,並且將其包裹在胞外小體內運送;第二組基改小鼠,牠們的肝臟有著特別的螢光標記,如果遇上了科學家送進去的人類miRNA,螢光就會變得黯淡。

科學家們將第一組小鼠的胞外小體注射到第二組的小鼠體內,發現肝臟細胞的螢光劇烈減少,因此確認了脂肪組織能夠透過胞外小體,與肝臟溝通。此外,他們也發現來自棕色脂肪的胞外小體miRNA還能夠調節肝臟細胞一個重要代謝基因(其名為Fgf21)的表現。

-----廣告,請繼續往下閱讀-----
來自身體各處的脂肪組織釋放miRNA到血液循環中,藉此遠端調控肝臟及其他組織。箭頭(→)表示促進,平頭箭頭(–|)表示抑制。本圖改自研究原文Thomou et al. (2017)之圖表。

「我們展示了在小鼠體內,這些血液中的胞外小體miRNA能夠調控基因表現,至少在肝臟,或許還有其他組織。」卡恩說。他們下一步將會檢驗這套miRNA作用機制是否也能在其他組織運作,例如肌肉和腦細胞。

改造脂肪帶來治療新曙光

湯莫等人不僅找出了脂肪組織除了激素以外與身體其他部位溝通的方式,也提供了治療疾病的新途徑,像是代謝疾病、甚至是癌症。

作者之一的卡恩認為脂肪容易取得,是它作為基因療法很大的好處;若以此作為脂肪肝的基因療法,可能會比改造肝細胞來得安全又有效。

「只要用簡單的針頭穿刺活體組織(needle biopsy)取出患者的皮下脂肪,再改造脂肪細胞、讓它製造我們想要的miRNA,最後移植回患者身體,可能就能把不正常的基因調節回來。」卡恩說。

-----廣告,請繼續往下閱讀-----

在胞外小體之中,是否還藏著其他秘密呢?比如說,來自不同組織的胞外小體是否會裝著特定種類的miRNA?除了miRNA,還有沒有其他因子也被包在胞外小體裡面運送?湯莫和其他科學家將繼續追蹤,也許有一天,我們就能知道脂肪組織究竟在說些什麼了。

胞外小體的運送。 圖/Giphy

 

參考資料

原文研究

-----廣告,請繼續往下閱讀-----
文章難易度
Gilver
28 篇文章 ・ 3 位粉絲
畢業於人人唱衰的生科系,但堅信生命會自己找出路,走過的路都是養份,重要的是過程。

0

1
0

文字

分享

0
1
0
有效減重三部曲!快來量身製訂你的減肥計畫——《大自然就是要你胖!》
天下文化_96
・2024/06/27 ・3334字 ・閱讀時間約 6 分鐘

可持之以恆的減重計畫

有效減重的第一步是刺激脂肪燃燒。由於我們只在需要額外能量時才會燃燒脂肪,因此需要減少來自飲食的能量。所有以減重為目標的飲食法都會限制熱量,然而,最成功的飲食法必須也能關閉生存開關,因為這能減少覓食反應,有助於緩和飢餓感。正是因為如此,主要著重在熱量限制、但允許糖類和高升糖碳水化合物的飲食法,一旦結束熱量限制,就會注定失敗。也因為如此,飲食中即使沒有特別限制熱量,僅限制糖和高升糖碳水化合物的攝取,也有減輕體重的效果。這樣的飲食法是透過微調生存開關,減少飢餓感,讓人自然而然限制熱量的攝取。此外,調低開關可更有效的燃燒脂肪,因為正如前面所提的,生存開關的作用之一,就是阻止脂肪燃燒(請參閱第三章)。

第二步是阻止新陳代謝速率變慢。當體重減輕時,身體會降低新陳代謝速率做為補償,以維持現有體重。正如前面提過的,長期超重者的能量工廠運作效率會降低,因為身體將超重視為新的常態。在這種情況下,身體會降低新陳代謝來因應體重減輕,因此原本可保持穩定體重的攝食量,這時卻會導致體重增加。這幾乎是所有節食法功敗垂成的主因。

為了克服這個問題,我們必須調整生存開關,避免能量工廠遭受進一步的傷害,同時刺激新的能量工廠建立,增加能量產出。

目前,建立新能量工廠的最佳方法是運動,而且正如前面所提的,是特定類型的運動。這裡的運動主要是為了刺激能量工廠,而不是燃燒熱量。雖然運動也能燃燒熱量,帶來好處,但想要燃燒脂肪,最好的方法還是透過飲食限制、減少可用熱量。的確,如果生存開關一直處於活躍狀態,運動時燃燒掉的熱量,很容易因為休息時新陳代謝變慢而補償回來。這是飢餓的動物補償覓食時能量損耗的方式,也是哈扎人可以走上一整天尋找食物,卻不會增加整體能量消耗的原因,因為透過食用大量蜂蜜啟動生存開關後,他們的身體會在休息時減少能量消耗,補償活動耗去的能量。

-----廣告,請繼續往下閱讀-----
想要燃燒脂肪,最好的方法還是透過飲食限制、減少可用熱量。圖/envato

低醣飲食、生酮飲食有助於減肥嗎?

若希望維持減重後的體重,我建議最好從低醣飲食或生酮飲食開始。原因是這些飲食嚴格限制添加糖,而添加糖是飲食中主要的果糖來源;另外也限制高升糖碳水化合物,這是飲食中主要的葡萄糖來源,身體會將葡萄糖轉化為果糖。

這些飲食法可減弱生存開關,讓飢餓感自然降低,而原本受生存開關保護的脂肪,也會變得可以燃燒。這樣的飲食也能讓你的身體系統「重新開機」,擺脫過去慣於吃高果糖食物的狀態,不再快速吸收和代謝果糖(參見第八章)。偶爾吃點甜食時,也更能抵抗糖的作用。

這樣的飲食還能減少肝醣儲存。之前提過,身體會同時儲存脂肪和碳水化合物,其中碳水化合物是以肝醣的形式儲存。在斷食期間,身體首先燃燒的是肝醣,因為身體偏好以葡萄糖做為燃料。如果我們成天吃碳水化合物,腹部儲存的脂肪會繼續保留。但若減少攝取碳水化合物,尤其是高升糖或含有果糖的碳水化合物,就可減少儲存的肝醣,進而增加脂肪燃燒。因此限制碳水化合物,對於減重十分有效。

睡飽也可以幫助減肥?

身體對肝醣的偏好,也有助於解釋為什麼睡眠八小時以上有很大的幫助,以及為什麼早上運動(早餐前)比晚上運動更能有效減肥。睡覺時,大部分的肝醣儲備會燃燒掉,因此我們醒來,是處於脂肪燃燒模式。若是在晚上運動,燃燒的主要是白天累積的肝醣。

-----廣告,請繼續往下閱讀-----
睡覺時,大部分的儲備肝醣會燃燒掉,因此睡飽八小時對減重大有幫助。圖/envato

低醣飲食控制血壓、血糖

最後,正如我們在低果糖和低鹽飲食研究中發現的,低醣飲食可能促進粒線體生長。實行低醣和生酮飲食有些注意事項。首先,這會增加低血糖的風險。如果感到出汗或頭暈,可能需要檢查血糖或吃一塊水果(儘管這是一種碳水化合物)。

其次,低醣飲食中的某些食物仍會啟動生存開關,例如含鹽量高和富含鮮味的食物(如紅肉和帶殼海鮮)。前面提過,含鹽量高的食物會刺激葡萄糖轉化為果糖,進而啟動生存開關。但採行低醣飲食時,可轉化為果糖的葡萄糖相對較少,因此即使攝取高鹽食物,也不太可能產生果糖,不致於因此增加體重。然而,鮮味豐富的食物仍然很有可能導致體重增加。另外,要考慮減少或戒除飲酒,因為酒精也能活化生存開關。

低醣飲食也能降低血壓,因為生存開關變弱了。若是正在服用降血壓藥物,必須仔細監測血壓,因為可能需要減少劑量。

同時減少鹽和碳水化合物的攝取,也可能導致低血壓,若是感到頭暈,除了檢查血糖,可能還得檢查血壓。因此,我建議在實施低醣飲食幾週後,再開始減少每天攝取的鹹味食物及其他可活化生存開關的食物。

-----廣告,請繼續往下閱讀-----

此外,我建議每天至少喝八杯水,確保身體獲得足夠的水分,還要監測有害的低密度脂蛋白膽固醇濃度,以及血液中的尿酸濃度。低醣飲食有時會導致低密度脂蛋白膽固醇顯著增加,若出現這種情況,必須減少飽和脂肪的攝取量。如前一章提過的,生酮飲食也可能導致尿酸濃度升高,而目前還不清楚尿酸增加的生理效應,不過這可能是身體為了維持血糖濃度(尿酸會激發胰島素抗性)和血壓的補償作用。然而,高尿酸也會對能量工廠造成氧化壓力,若是尿酸濃度大幅上升(例如高於八毫克/分升),可能需要與醫師討論,權衡治療的風險和潛在益處(請參閱上一章)。

減肥時也需要適時補充水分。圖/envato

雖然有些人可以長年維持低醣飲食,但對大多數人來說,這種飲食法很難持續超過幾個月。部分原因是,我們天生就渴望飲食中有較多的碳水化合物。因此,我建議採用其他的替代方案來減肥。

若是不想採行低醣飲食,可以考慮地中海飲食法,或是我的開關飲食法,但必須更嚴格的限制會活化生存開關的食物,也就是嚴格限制高升糖碳水化合物的攝取,特別是白米飯、馬鈴薯、麵包、薯條和早餐麥片。如果這還是太具挑戰性,可以稍作調整,每天有一餐可吃高升糖碳水化合物(也許是半份),記得要細嚼慢嚥,花一個小時用餐。其他餐飲中則只能攝取低升糖碳水化合物,並完全限制會啟動生存開關的食物,例如高鹽或鮮味豐富的食物和酒。你可以挑幾天進行 168 斷食法,透過間歇性斷食加強熱量限制,同時刺激能量工廠生長。(這裡有個重點:有證據顯示禁食會損害日常表現,尤其是兒童。無論如何我都不建議孩子採行間歇性斷食,請牢記在心。)開關飲食法的減重效果較慢,但對許多人來說,可能比較容易忍受。

無論你選擇哪一種飲食法,每週有三、四天必須運動,每次至少持續一小時,重點是保持在第二區運動。(世界衛生組織等團體建議,除了輕度運動,每週進行 75 至 150 分鐘的高強度鍛鍊,可能帶來額外的好處。不過就我們的目的而言,這是附加選項,因為第二區運動對於能量工廠的增加和脂肪燃燒,具有最好的效果。)此外,可以考慮記錄你的步行距離和時間,觀察自己的自然步態是否改善,這意味著體內的能量工廠變得更健康。最後,如上一章我對開關飲食法的建議,每天要喝大量的水,並吃一盎司(約 30 公克)黑巧克力。

-----廣告,請繼續往下閱讀-----

最後一點:我不建議透過長期禁食來減肥(雖然我認為這是大自然的現象,所以我也可能是錯的)。前面曾提過巴比里禁食了一年,雖然如此,巴比里開始禁食幾個月後,實驗室檢驗發現他的血糖濃度非常低,只有約 30 毫克/分升,有時會降至 20 毫克/分升。這樣低的葡萄糖濃度如果突然發生在你我身上,我們會陷入昏迷,而且有永久性腦損傷或死亡的風險。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
脂肪會說話:脂肪細胞會用「瓶中信」跟其他器官溝通!
Gilver
・2017/03/29 ・3020字 ・閱讀時間約 6 分鐘 ・SR值 550 ・八年級

-----廣告,請繼續往下閱讀-----

如果腰間的贅肉會說話,它會說些什麼呢?

 

脂肪不是沉默的器官。科學家目前已經了解脂肪細胞會透過釋放脂肪細胞激素(adipokine),來調節身體的新陳代謝。但最近科學家發現,脂肪細胞還會把小分子RNA做成「瓶中信」,再透過血液的循環和彼端的器官溝通。

脂肪組織的卡通示意圖,電子顯微鏡下則是長這樣(連結)。圖/Wellcome Images @Flickr

脂肪是甜蜜的負荷,人們對它是又愛又恨。它是演化的勝利者用來儲存過剩能量的寶庫,但在崇尚窈窕曲線的都市審美觀中卻被汙名化,成了懶散和不知節制的象徵。

事實上,脂肪細胞可不是懶懶得待在你的腰間。成熟的脂肪細胞會分泌各種激素,參與你一生的新陳代謝。當你在找東西吃的時候,脂肪利用瘦體素(leptin)在調整神經內分泌;胰島素在處理血糖的時候,脂聯素(adiponectin)也會湊一咖;和脂肪細胞分化有關的抵抗素(resistin),未來有可能成為減重的基因療法之一。

-----廣告,請繼續往下閱讀-----

有趣的是,最近科學家發現脂肪細胞不只會釋放激素,還可能會利用小分子核醣核酸(micro RNA,簡稱miRNA)向遠端的器官傳遞訊息。不過在介紹研究之前,先讓我們了解一下什麼是miRNA吧!

中心法則:細胞星球的日常

我們的每一個細胞都像是一顆微小的星球。而在星球之中有一座巨大的資料庫,坐落在細胞核裡頭。

每個基因都是一本加密的書,由遺傳物質DNA所構成。這些基因密碼在許多酵素的共同協助下,會先經過「轉錄」、製作一段對應DNA密碼訊息的RNA。它是特別的抄本,能夠被編輯和修改。

接著,RNA記錄的資訊會再經過「轉譯」程序,組出一段胺基酸的長鍊,最後再經過摺疊,變成可以發揮功能的蛋白質。它們有的變成你的血肉和大腦,有的則是既不偉大、也不卑微的在你體內每個角落默默工作。

-----廣告,請繼續往下閱讀-----

這個由DNA→RNA→蛋白質的不可逆程序,在分子生物學稱做「中心法則」(central dogma)。

分子生物學中的中心法則:DNA轉錄成RNA,RNA再轉譯成蛋白質,在我們身體的各處發揮功能。圖片改自Wikimedia Commons

整個由DNA到蛋白質的動態過程,可參照下方連結的影片:

miRNA,短小精幹的抑制者

不過,有些種類的RNA不必變成蛋白質,也能變成細胞繁複工作的調節者。例如短小精幹的miRNA,長度雖然只有19~22個核苷酸,但它不會、也不用被轉譯成蛋白質,就能直接在許多細胞裡擔任轉譯抑制者的角色。

-----廣告,請繼續往下閱讀-----

細胞星球中的任何一個傢伙變得太多或太少,都有可能會讓整個細胞星球崩潰,更嚴重的話就是從細胞一路壞到組織、器官層級,最後危及生物個體的性命。miRNA也是如此,科學家目前已經發現特定種類的miRNA的增加與某些疾病有關,例如癌症、糖尿病、肥胖和心血管疾病。

miRNA不只會在細胞內工作,有的還會被包裹在稱作「胞外小體」(exosome)的小囊泡裡面、釋放到血液之中,像是瓶中信一樣,順著循環系統漂向遠方──未來,這個小囊泡將在身體的某處停泊,並且發揮它的功用。

胞外小體裹著的miRNA,漂向哪兒去了?又去做了什麼?這,就是科學家想要研究的事情了。

某些RNA會包裹在胞外小體之中,像瓶中信一般釋放到細胞外。它將順著血液漂泊,在身體的某處發揮它的功用。圖/擷取自National Institutes of Health影片《Unlocking the Mysteries of Extracellular RNA Communication

-----廣告,請繼續往下閱讀-----

脂肪細胞的囊泡物語

來自美國佳斯林糖尿病中心(Joslin Diabetes Center)的研究團隊,以湯瑪斯.湯莫(Thomas Thomou)為第一作者,將他們的研究成果發表在2017年2月的《自然》(Nature)期刊上。這項在脂肪細胞的新發現或許將能發展成新的基因療法,用來治療代謝疾病、癌症、甚至肝臟和其他器官的問題。

研究團隊的實驗先從基因改造的小鼠(mice)著手。這群基改小鼠的脂肪細胞無法正常製造miRNA,科學家們經過檢驗,發現牠們血液中的胞外小體miRNA的量顯著的減少了;若是將正常小鼠的脂肪移植到基改小鼠的身體裡,血液中減少的胞外小體miRNA就回升了。這意味著:血流中的胞外小體miRNA,是來自於脂肪

研究團隊發現,類似的狀況在人類的脂肪失養症(lipodystrophy)也有觀察到。脂肪失養症的患者,可能會因為先天遺傳或者後天疾病,導致喪失脂肪或者失去正常功能,而現在發現他們血液中檢驗出來的胞外小體miRNA,也比正常人來得少。

「這些由脂肪產生的miRNA,或許能應用於診斷代謝狀況,例如肥胖、第二型糖尿病和脂肪肝。」本篇研究的作者之一羅納度.卡恩(Ronald Kahn)說。

科學家們更進一步好奇,這些miRNA是否也會轉移到其他組織裡,並且調控它們的基因表現呢?如果可以知道這些,或許就能夠用於治療。

-----廣告,請繼續往下閱讀-----

脂肪在跟誰說話?可能是肝臟,還有其他

這些脂肪有缺陷的改造小鼠不只血液中的miRNA量少,科學家們也注意到牠們其他的器官也連帶受到影響,這包括了心臟和肝臟。因此,湯莫等人想知道脂肪是否會利用miRNA來跟身體的其他部位溝通。

他們設計了一套方法、兩組小鼠,用來跨越人與鼠實驗之間的鴻溝。第一組基改小鼠,牠們的棕色脂肪能夠製造人類的miRNA,並且將其包裹在胞外小體內運送;第二組基改小鼠,牠們的肝臟有著特別的螢光標記,如果遇上了科學家送進去的人類miRNA,螢光就會變得黯淡。

科學家們將第一組小鼠的胞外小體注射到第二組的小鼠體內,發現肝臟細胞的螢光劇烈減少,因此確認了脂肪組織能夠透過胞外小體,與肝臟溝通。此外,他們也發現來自棕色脂肪的胞外小體miRNA還能夠調節肝臟細胞一個重要代謝基因(其名為Fgf21)的表現。

來自身體各處的脂肪組織釋放miRNA到血液循環中,藉此遠端調控肝臟及其他組織。箭頭(→)表示促進,平頭箭頭(–|)表示抑制。本圖改自研究原文Thomou et al. (2017)之圖表。

-----廣告,請繼續往下閱讀-----

「我們展示了在小鼠體內,這些血液中的胞外小體miRNA能夠調控基因表現,至少在肝臟,或許還有其他組織。」卡恩說。他們下一步將會檢驗這套miRNA作用機制是否也能在其他組織運作,例如肌肉和腦細胞。

改造脂肪帶來治療新曙光

湯莫等人不僅找出了脂肪組織除了激素以外與身體其他部位溝通的方式,也提供了治療疾病的新途徑,像是代謝疾病、甚至是癌症。

作者之一的卡恩認為脂肪容易取得,是它作為基因療法很大的好處;若以此作為脂肪肝的基因療法,可能會比改造肝細胞來得安全又有效。

「只要用簡單的針頭穿刺活體組織(needle biopsy)取出患者的皮下脂肪,再改造脂肪細胞、讓它製造我們想要的miRNA,最後移植回患者身體,可能就能把不正常的基因調節回來。」卡恩說。

-----廣告,請繼續往下閱讀-----

在胞外小體之中,是否還藏著其他秘密呢?比如說,來自不同組織的胞外小體是否會裝著特定種類的miRNA?除了miRNA,還有沒有其他因子也被包在胞外小體裡面運送?湯莫和其他科學家將繼續追蹤,也許有一天,我們就能知道脂肪組織究竟在說些什麼了。

胞外小體的運送。 圖/Giphy

 

參考資料

原文研究

-----廣告,請繼續往下閱讀-----
文章難易度
Gilver
28 篇文章 ・ 3 位粉絲
畢業於人人唱衰的生科系,但堅信生命會自己找出路,走過的路都是養份,重要的是過程。

0

1
0

文字

分享

0
1
0
喝糖比吃糖更肥?飲料慢慢喝比較不會胖!——《大自然就是要你胖!》
天下文化_96
・2024/06/25 ・1953字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

飲料中的添加糖和食物中的添加糖,造成的影響有所不同嗎?

如果生存開關的啟動只與熱量有關,無論是吃軟糖,還是喝汽水,高果糖玉米糖漿所產生的作用理當一樣。但事實並非如此,喝糖通常比吃糖更糟得多。為什麼會這樣?生存開關是由於肝臟中的 ATP 濃度下降所觸發,因此關鍵在於有多少果糖到達肝臟。如果肝臟接收到大量果糖,則 ATP 會大幅下降,刺激生存開關強烈反應。倘若只有少量果糖到達肝臟,果糖代謝效應會比較溫和。這意味著,儘管我們在談論生存開關時,一直將它簡化為一種按鈕,可控制為開或關,但實際狀況比較像是可調整強度的旋轉鈕,會根據狀況產生強弱不同的反應。

換句話說,肝臟的反應是依據接收到的果糖濃度,而不是果糖量。比起果糖一次全部進入的狀況,當果糖緩慢進入時,肝臟接觸到的果糖濃度會比較低。也因為如此,軟性飲料比固體糖類更容易啟動生存開關。軟性飲料含有大量的糖分(以 600 毫升的汽水為例,當中含有約 17 茶匙的高果糖玉米糖漿,其中約 9 茶匙是果糖),通常幾分鐘即可喝完,而且由於是液體,不需要消化,這會讓肝臟中迅速充滿果糖和葡萄糖。相較之下,固體食物必須經過消化,需要更長的時間才能到達肝臟。(這也是完整水果較不易啟動生存開關的原因,因為水果纖維有助於減緩吸收。)因此,固體食物中的果糖到達肝臟的速度較慢,不會讓生存開關一下子轉到最強狀態。

營養學家兼遺傳學家斯皮克曼(John Speakman)進行的實驗證實了這一點,他發現餵食液體糖的小鼠,比餵食固體糖的更肥胖。人體臨床研究也比較食用液體糖(來自軟性飲料或其他飲料)和固體糖(來自糖果和甜點)的差別,所有證據都指向同一個結果:液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。在一項研究中,將年輕受試者隨機分成兩組,一組每天喝一杯 240 毫升的軟性飲料,一組吃下含糖量相等的軟糖,持續四週,然後恢復正常飲食,也持續四週,並在這段「淨化」期之後,讓兩組受試者交換,原本喝軟性飲料的改吃軟糖,反之亦然,再持續四週。試驗結束時,研究人員發現,受試者在「喝糖」期間攝取的總熱量,比「吃糖」期間多了約 17%。在喝了四週的軟性飲料後,受試者的體重增加,脂肪也增加。相較之下,吃軟糖的四週內,他們的體重並未增加。

液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。圖/envato

液體糖比固體糖更容易導致肥胖,而且喝液體糖的速度也會造成影響。為了證明這一點,我們在伊斯坦堡科曲大學的合作夥伴坎貝,提供蘋果汁給志願的受試者,這些蘋果汁內的果糖含量與軟性飲料相似。坎貝讓一半的人在 5 分鐘內喝下 500 毫升果汁,另一半則是每隔 15 分鐘喝下 125 毫升,用一小時喝完 500 毫升的果汁。一小時結束時,雖然兩組人喝下的蘋果汁分量一樣,但兩組間的差異卻非常驚人。5 分鐘內喝完蘋果汁的人,體內的尿酸和血管加壓素(肥胖荷爾蒙)快速增加。相較之下,花一小時喝完蘋果汁的受試者,尿酸和血管加壓素的變化比較緩和。由於尿酸和血管加壓素升高相當於生存開關活化的證據,這表示如果一定要喝軟性飲料,慢慢享用會比大口豪飲來得安全。

-----廣告,請繼續往下閱讀-----
含糖飲料慢慢喝會比大口豪飲來得安全。圖/envato

幾年前,曾有人基於軟性飲料含糖量高,提議紐約市政府對軟性飲料課稅。軟性飲料業者指出其他食品也含有大量的糖,專挑軟性飲料課稅並不公平。基於這項爭議,再加上其他因素,飲料稅法案最後沒有通過。但根據前面提到的研究,軟性飲料業界的論點其實有誤。

根據液體糖和固體糖的研究,還可以得到一個結論:「魚與熊掌或許可以兼得」。也就是說,享用富含糖類的甜點時,如果吃得夠慢,或許可能避免觸發生存開關。這時蛋糕就只是熱量而已。問題是,要慢慢的吃甜點幾乎是不可能的事!

喝軟性飲料時不能大口暢飲,而得用一小時的時間慢慢啜飲完畢,也同樣不容易。另外,與其單獨飲用軟性飲料,不如在用餐之間慢慢喝,畢竟邊吃邊喝,讓液體中的糖與食物混合,可減慢吸收速度。

重點

液體糖比固體糖更有害,大口喝下軟性飲料是啟動生存開關最有效的方法。含糖軟性飲料、能量飲料、果汁、含糖的茶和咖啡,全都應該避免。如果偶爾想放縱一下,請放慢飲用速度,並一定要與食物搭配。

-----廣告,請繼續往下閱讀-----

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
縮短發炎期、促進癒合?健保給付糖尿病足潰瘍新式乳膏,遠離截肢風險!
careonline_96
・2024/05/31 ・2446字 ・閱讀時間約 5 分鐘

糖尿病足潰瘍治療對於經濟負擔極大,若患者未能及早發現、儘速治療將一步步走向截肢的結局。

「那是一位 50 多歲的糖尿病患者,走進診間一跛一跛地,相當吃力。」衛生福利部臺北醫院整形外科主任劉明偉醫師表示,「根據患者的描述,一開始是大腳趾頭上出現小傷口,但遲遲沒有癒合。由於缺乏良好的傷口照護,患者的腳便逐漸紅腫,傷口流出滲液,連走路都不方便。」

後續由於感染很嚴重,患者只好接受手術清創,並截掉兩根腳趾。劉明偉醫師表示:「其實,如果患者在發現傷口時便立刻就醫,好好接受治療,應該有機會讓傷口早點癒合,不用面臨截肢的狀況。」但因為患者是弱勢群體,加上步行不便,每一次的回診對於沒有家庭支持的患者來說真的是舉步艱難,後續即使有社工的介入,該名患者依舊未能有效控制傷口潰瘍的進程,往後更可能面臨再次截肢的命運。

在台灣,糖尿病是相當普遍的問題,劉明偉醫師說,糖尿病會造成血管病變與神經病變,而漸漸演變為糖尿病足,約有 25% 的糖尿病患者會有足部潰瘍問題。血管病變會使血管狹窄、阻塞,而影響足部血液循環,可能產生潰瘍、壞疽;神經病變會讓患者感覺遲鈍,容易在無意間受傷、燙傷,因為不覺得疼痛,患者常常會輕忽傷口,容易遭到感染,進展為蜂窩性組織炎、壞死性筋膜炎,而需要動手術清創,甚至截肢。

-----廣告,請繼續往下閱讀-----

「糖尿病足潰瘍患者常常會因為感染而反覆住院、接受清創手術,甚至截肢。」劉明偉醫師說,「研究指出,糖尿病足患者因為感染而再次住院的比例高達 40%,其中每 6 名患者就有 1 人在感染 1 年後死亡。若是不幸截肢,更有高達 5 成患者會在截肢後 5 年內死亡。」

導致糖尿病足患者面臨截肢的原因很多,劉明偉醫師說,常見原因包括傷口照護不良、誤信偏方、使用不明藥膏塗抹傷口,這些藥膏非但沒有治療效果,還可能加速傷口感染、惡化;患者可能完全不曉得足部有傷口,等到足部腫脹、滲液、化膿、發臭才發現;即使知道足部有傷口、潰瘍,患者可能因為不覺得疼痛,而延誤就醫。血糖控制不佳對糖尿病足潰瘍也有負面影響,除了讓足部血液循環惡化、傷口難以癒合、也會增加傷口感染的機會。

糖尿病的併發症相當多,倘若糖尿病足潰瘍惡化、截肢,可能導致行動不便,又會衍生出更多棘手的問題。劉明偉醫師說,糖尿病友平時要儘量避免足部出現潰瘍,而在出現潰瘍之後,一定要及早就醫,接受正確的治療,讓潰瘍儘快癒合。

清創後糖尿病足傷口新式乳膏助糖尿病足傷口早日癒合

在過去,糖尿病足潰瘍的照護大多使用抗生素藥膏。劉明偉醫師說,使用抗生素藥膏的主要目的是預防感染,避免進展為蜂窩性組織炎、骨髓炎等狀況。

-----廣告,請繼續往下閱讀-----

根據中華民國心臟學會與台灣整形外科醫學會於 2024 年公布的「糖尿病足潰瘍治療共識」中建議,若患者周邊血管變病與阻塞已處理完成、傷口也完成清創後,建議下一步可以使用糖尿病足傷口新式乳膏治療,可以幫助傷口快速癒合,降低截肢風險。劉明偉醫師補充,糖尿病足傷口新式乳膏的作用是調控影響傷口癒合的微環境,抑制傷口中會增加發炎的 M1 巨噬細胞,增加促進癒合的 M2 巨噬細胞,促使血管新生、傷口修復。幫助縮短傷口發炎期,進入增生期,促進傷口癒合。

糖尿病足傷口新式乳膏是照護患者傷口的利器,根據臨床使用經驗,確實有助於縮短傷口癒合的時間。劉明偉醫師補充,有些情況患者可能還會搭配高壓氧治療、手術,並利用各種醫材來幫助傷口癒合。

目前糖尿病足傷口新式乳膏已納入健保給付,只要符合條件,醫師便會協助申請使用,健保給付條件如下:

糖尿病足部潰瘍常見分級(Wagner System)為 2 級,清創後最大傷口面積 ≦ 5 平方公分,且符合以下所有條件:

-----廣告,請繼續往下閱讀-----
  1. 傷口深及肌肉層且經抗生素藥膏或燙傷藥膏治療及使用傷口敷料 12 週後,傷口癒合面積 < 50 %。
  2. 檢測糖化血色素 < 8.5 %、白蛋白 ≧ 3.0 g/dL。
  3. 治療前上下肢血壓比值ABI(Ankle Brachial Index)≧0.9。

「現在健保規定的使用條件比較嚴苛,清創後傷口面積要小於 5 平方公分,且需先治療 12 週,傷口癒合面積 < 50 %,還要搭配抽血檢查的數值。」由於目前現行健保給付條件下,患者要等候三個月進行傷口對照後,才能使用,對於是否可能影響患者截肢機率,劉明偉醫師分享,「如果能夠及早使用,對患者應該會有幫助。讓傷口早日癒合不但可以降低截肢風險、避免失能、維持生活品質,還可以節省後續回診、住院、手術的醫療花費。」

貼心小提醒

糖尿病足潰瘍問題很多,糖友們平時要穿著合腳的鞋襪,不可赤腳走路。劉明偉醫師說,請每天檢查雙腳,如果發現龜裂、擦傷、水泡、潰瘍等狀況,務必及早就醫,利用正確的方法照顧傷口。跨專科團隊會運用各種方法來穩定血糖、恢復血液循環、控制感染、促進傷口癒合,幫助患者維持生活品質,遠離截肢的威脅!

-----廣告,請繼續往下閱讀-----