0

0
0

文字

分享

0
0
0

跨越百年障礙 擴張蠅腦的魔術

顯微觀點_96
・2025/06/23 ・1783字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

圖 / 顯微觀點

平價嶄新技術 擴張毫微蠅腦

2023 Taiwan顯微攝影競賽銀獎 Wiring the Brain,題材為果蠅大腦的多巴胺神經網路。蠅腦中比頭髮纖細數千倍的神經纖維與突觸,放大印刷到超過人腦直徑,依然清晰可數。

由於果蠅具有與人類高同源性的基因,也能表現複雜的行為(求偶、覓食、打鬥等),精密解析其腦部構造與整體運作方式,是科學家探索人心智奧秘的重要里程。果蠅的大腦尺寸約為 0.59mm × 0.34mm × 0.12mm,比針尖更細小。其中的神經纖維與突觸更細小數千倍,僅有數百奈米,有時小於光學顯微鏡 200 奈米的繞射極限。即使透過最精密的轉盤式雷射共軛焦顯微鏡,科學家也難窺全像。

到了 21 世紀,在突觸等級分析果蠅大腦仍是相當困難的工程。以掃描式電子顯微鏡(SEM)逐步分析被切成薄片的蠅腦樣本,提供奈米等級解析度的同時,也是侵入性極高,而且可能破壞神經原貌的耗時作法。在AI協助下,2018 年首先問世的立體果蠅全腦圖譜就是由大量平面電子顯微影像重建而成。

-----廣告,請繼續往下閱讀-----

對於持續探索腦神經真實立體結構的科學家,除了鑽研更極致的光學放大效果(如螢光消去顯微術、晶格層光顯微術等足以達到超解析影像,也需要昂貴設備的技術),也有人另闢蹊徑,擴張樣本以浮現原本被繞射極限遮蔽的細節。

果蠅全腦連接體 by Flywire.ai
2023 年 8 月發表的果蠅全腦連接體圖,來自大量電子顯微圖片,由超過 200 位科學家與 AI 合力打造。而果蠅腦部的超解析螢光顯微影像,可以用於協助校正主要由平面電子顯微影像重建的模型,是持續理解果蠅全腦運作機制的重要資源。Courtesy of Flywire Project.

2015 年,麻省理工的波伊登(E. Boyden)提爾貝里(P. W. Tillberg)與陳飛等科學家發表擴張顯微術,以實驗室常見的水凝膠(Hydrogel)、蛋白質水解酶(Protease)等材料,就能將螢光染色的組織均勻(Isotropic, 各方向等量均質)放大,以傳統光學顯微鏡就能觀察原本相距數百奈米的微小構造。

即使有擴張顯微術的幫助,建立果蠅的連接體圖譜仍是一番繁複工程。取出果蠅大腦的顯微手術,需要數周到數月的時間才能熟練。成功擴張的樣本也必然遭遇螢光訊號被稀釋,影像解析度降低的問題。

聚合、分解與吸水 尿布材質推動腦科學

擴張顯微術的基本步驟包含

-----廣告,請繼續往下閱讀-----

錨定 / Anchoring:將樣本浸泡於水凝膠(常用丙烯酸鈉,與尿布吸水部位相同的材料分子),讓水凝膠單體分子滲入樣本,與樣本的蛋白質黏合固定。

聚合 / Polymerization:加入藥劑,讓水凝膠單體間形成聚合並交聯(Cross-link),形成一個緊密滲入、黏合樣本的立體網狀結構。

分解 / Digestion:以蛋白質水解酶分解樣本中的蛋白質骨架,除去擴張時來自樣本的抵抗,但盡量保留螢光蛋白。

擴張 / Expansion:將水凝膠與樣本的結合體加入水中,讓聚合水凝膠吸水擴張,使樣本隨之擴大,每個方向可均勻擴張4到5倍。反覆吸水,各維度最多可擴張近 20 倍。

-----廣告,請繼續往下閱讀-----
擴張顯微術
擴張顯微術示意圖。Courtesy of addgene

2023 Taiwan 顯微攝影競賽銀獎得主劉柏亨分享,其中的「分解」步驟最為關鍵。如何除去樣本內部的拉力,又盡量保持螢光蛋白的訊號,就是實驗的技巧所在。除了使用蛋白質水解酶分解細胞骨架,也能採替代方案,以藥物將蛋白質骨架「變性(Denature)」減少原有的拉力,保留全部螢光蛋白。但是殘存的拉力也會影響擴張過程,使其失去各向同性(Isotropic)的均衡性質,導致樣本扭曲。

他的訣竅是,結合兩種途徑,在過程中不斷調整實驗溫度等變項,並使用「生物素化(Biotinylation)」在擴張前放大螢光訊號;或是使用鍵擊化學(Click Chemistry)在樣本擴張後染上螢光,在每次嘗試中逐步接近理想的解析度與信號強度。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

顯微觀點_96
32 篇文章 ・ 6 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

5
1

文字

分享

0
5
1
在連接體迷宮尋找生命意義——專訪 2023 Taiwan 顯微攝影競賽銀獎得主劉柏亨
顯微觀點_96
・2024/04/29 ・4856字 ・閱讀時間約 10 分鐘

本文轉載自顯微觀點

擴張顯微術、免疫螢光標記搭配雷射共軛焦顯微鏡,果蠅腦部緻密的多巴胺神經網路展開在我們眼前。初看猶如璀璨星雲,接近端詳就能發現神經束繁複清晰,聯繫著綻放光芒的神經元,猶如從太空站觀看的都會夜景。

這張精彩的作品「Wiring the Brain」,是以果蠅大腦探索連接體學,尋找腦部運作奧秘的路線圖之一,由清華大學腦科學中心的博士生劉柏亨拍攝。獲得 2023 Taiwan 顯微攝影競賽銀獎,不僅是劉柏亨在追求科學真相途中的額外收穫,也是他對自己多元興趣的重要實踐。

從材料工程到腦神經 追求變化的躍動旅程

大學時主修材料科學的劉柏亨,從「自修復材料」開始,研究興趣逐漸從工程領域轉向仿生(Bio-inspired)科技。他的碩士班題目是以生物晶片模仿心臟,作為藥物篩選平台。對他自己和指導教授都是嶄新的題目。

-----廣告,請繼續往下閱讀-----
清大腦科學中心是劉柏亨建立神經生物學知識與系統性思考的地方
清大腦科學中心是劉柏亨建立神經生物學知識與系統性思考模式的殿堂,也是每天磨練科學技藝的工作坊。 攝影:楊雅棠

「我是個很好動的人,因此選擇了一個全天都在活動的器官。」

——劉柏亨說,當時雖有學長研究細胞遷移,但對他來說還不夠「動感」,因此選擇團隊中沒有先例的心臟作為研發目標。

以仿生材料模擬心臟的過程中,劉柏亨意識到,「我對細胞、組織的基本原理還不夠了解,容易以工程師的觀念模擬心臟特性,有時會違反真實、整體的生理學。」他因此萌生了建立生醫知識基礎的求知慾。

劉柏亨想要挑戰更複雜的器官,進入江安世院士領導的清華大學腦科學研究中心攻讀博士,將短期具體研究目標放在「腦神經的影像化」,長期的探索方向則是「系統性地理解『生命現象』」。

電子顯微鏡下的果蠅
電子顯微鏡下的果蠅。果蠅的基因與人類同源性高,遺傳工程易於操作,並能呈現複雜多樣的行為,是研究腦科學的關鍵模式生物。Courtesy of Wellcome Collection.

無畏複雜 以系統視野理解生命

劉柏亨說明,上一階段的生命科學著重精準分析特定分子的功能,逐步研究細胞生理的單一面向。但人體不只由數種分子或細胞組成,而是上兆個細胞形成群體、互相影響,才展現出人類個體的生命表現。

系統生物學(Systems Biology)觀念,整合地理解人類生命,是劉柏亨著迷的目標。他說,因為分子與細胞生物學研究充分累積,現今的生醫知識基礎與技術成熟,已形成科學家投入系統生物學的良好時機。

-----廣告,請繼續往下閱讀-----

其中最吸引他的,是呈現腦神經系統的「連接體(Connectome)」及探究其整體運作的「連接體學(Connectomics)」。

連接體學是探究精神官能症狀、神經性疼痛、認知退化等腦部相關疾病的最新路徑。解碼線蟲、果蠅等模式生物較為簡單的神經連接體,將能推動對人類腦部運作方式的理解,也是神經生物學與醫學的關鍵方向。

系統生物學重視聯繫與整合的思維,不僅是劉柏亨追求知識的途徑,也延伸了他對生物學專業與社會的觀點。

這位接連跨足不同領域的博士生說,擷取腦神經影像的程序從前端的生物材料製備,到後端影像系統的工程科技都不可或缺,不是一個人的專業能力能夠包辦。

-----廣告,請繼續往下閱讀-----

他因此體悟,每張顯微影像都結合多種專業,而生物學的每一步進展也是不同領域科學家努力的整體成果,並非一個天才在單一領域獨力鑽研而成。

「許多不同的神經細胞彼此透過突觸聯繫彼此,建構出有神奇功能的腦。就像是人與人建立連結,建構社群與社會。」

——劉柏亨在頒獎典禮現場如此介紹自己獲獎的顯微影像。
果蠅腦連接體
果蠅幼蟲腦連接體的全腦圖譜,終於在 2023 年上旬由霍華.休斯醫學研究所、約翰.霍普金斯大學與劍橋大學的團隊合作完成。加入線蟲、海鞘幼蟲(Ciona intestinalis larva)、沙蠶幼蟲(Platynereis dumerilii larva)等生物的行列,達到突觸等級的完全連接體地圖。 Courtesy of Science

工程師的生物學 如調酒般逐步改良

這張螢光染色的果蠅腦神經多巴胺網路圖,輸出到超過人腦的截面積,依然清楚呈現星羅棋布的迴路與神經元。跨越繞射極限的清晰成像,要歸功於擴張顯微術(Expansion Microscopy)與劉柏亨逐步改良工法的耐心。

劉柏亨解釋,擴張顯微術中「分解」步驟對螢光訊號最為關鍵。蛋白酶能夠有效分解(digest)樣本的蛋白質骨架,讓樣本順利擴張,但是會犧牲不少螢光蛋白與解析度。

替代方法是以藥物促使蛋白質變性(denature)降低張力,維持螢光訊號強度,但是樣本擴張過程會有較多阻撓,導致結構變形。劉柏亨說,

-----廣告,請繼續往下閱讀-----

「結構變形,就不是原本要追求的東西,訊號再強也沒有用。」

劉柏亨與擴張後只有灰塵大小的果蠅腦樣本。
劉柏亨與擴張後依然只有灰塵大小的果蠅腦樣本。 攝影:楊雅棠

他笑稱自己「『像個工程師』地追求實驗最佳化,把兩種分解途徑混成雞尾酒,每一杯都稍微調整改良。」他調和兩種分解概念,嘗試不同藥劑濃度、工序、實驗溫度;或以生物素化(Biotinylation, 在樣本擴張前使用), 鍵擊化學(Click Chemistry, 在樣本擴張後使用)放大螢光訊號。

經過了近四十份的樣本製作與拍攝,終於得到滿意的影像。他敘述製作過程的語氣輕快,其實每一次擴張顯微術的製備與拍攝,都是漫長嚴謹的科學工作。

每一組樣本(大約十顆果蠅腦)的免疫螢光染色工期大約一週,擴張過程耗時三至四天;以轉盤式共軛焦顯微鏡拍攝單顆擴張的果蠅腦樣本,則需要 18 小時左右;接著要花上一整天,等待軟體拼接壓縮上萬張圖片。

獲獎的「Wiring the Brain」就是超過 10 萬張顯微照片的拼接疊合而成,包含將原本立體的影像透過專用軟體壓縮成平面。劉柏亨譬喻,「打開全新的 iPhone15 Pro,按住快門連拍直到記憶體滿載罷工,就是一張果蠅連接體影像需要的容量。」

-----廣告,請繼續往下閱讀-----

繁密的連接體影像,不僅讓劉柏亨在連接體學的迷宮中前進,也能滿足他對美感與藝術的追求。在實驗室外也是攝影愛好者的劉柏亨,本學期正在修習清大科技藝術研究所曹存慧老師的生物藝術課程。

藝術家的生物學實驗室:向外延伸感官 向內反思存在

劉柏亨興奮地分享,他正與組員規劃虛擬展覽「藝術家的生物學實驗室」,模擬一個身懷生物科技的藝術家,會如何規劃他的實驗室。

腦機介面、組織再生、基因工程,是三個劉柏亨想要優先呈現的技術。

從編輯 DNA,改變蛋白質,最後型態出現差異,基因工程是現代生物技術的基礎。組織再生可以展現生物體修復能力與生醫工程的可能性。腦機介面則是最直接觸及心智能力、感官範疇,也結合最多精密工程技術的領域。

-----廣告,請繼續往下閱讀-----

「這個藝術家本身帶有基因或感官的缺陷,試圖用生物科技延伸他的感官。參觀者能體驗生物科技延伸感官、改變身體的能力,並從中反思我們作為個體存在於環境中,與環境互動的關係。」

——劉柏亨解釋藝術計畫的初衷,一如對顯微技術的投入。
劉柏亨善於以日常生活譬喻科學知識。圖為20203顯微攝影競賽作品展覽現場
劉柏亨善於以日常生活譬喻科學知識。圖為 2023顯微攝影競賽作品展覽現場。攝影:林任遠

與藝術學院同學合作的過程中,劉柏亨發現組員們對生物學的知識足夠,較為不同的是,藝術領域的組員對於色彩組合或實驗操作,常常比科學領域的學生更加直覺,帶來浪漫的不確定性及意外的創造性。這種風格能與劉柏亨的藝術追求產生共鳴,但是科學研究必須要求精確,在浪漫與精確之間拿捏,也是他練習的目標。

另一方面,藝術學院的組員也常引導劉柏亨設計出更簡潔的生物學科普展示;或是透過討論,讓他想傳達的科學概念更具體明確。

使新奇成為日常元素 顯微鏡是好奇心泉源

從攝影、腦神經到生物藝術,劉柏亨喜歡讓心智保持活躍與好奇。他形容自己,「每天我都需要新的刺激,我喜歡讓學習新事物成為生活的常態。」他對顯微技術的投入,也是由碩士班期間的好奇心開啟。

當時的實驗室備有共軛焦顯微鏡,劉柏亨並不負責保養,也不須理解光路,但是好奇心驅使他向前來校正的工程師陳正義學習。劉柏亨說「正義哥算是我的顯微技術啟蒙老師,只要他出現在實驗室,我就會站在旁邊追問。」

-----廣告,請繼續往下閱讀-----

現在劉柏亨遇到超越既有能力的顯微技術問題,不僅會和團隊成員討論,也會向其他實驗室的技術人員,甚至教授求教。參與不同團隊合作架設光學系統的過程,讓他深入了解雷射共軛焦顯微技術的原理,並體驗以精密工程逐步實現理論。

劉柏亨認為,顯微技術不僅是延伸感官的工具,更提供理解周遭世界的全新方式。隨著理解方式改變,好奇心與探索的內在動力會源源不絕地湧出。

「顯微鏡其實是激起好奇心的動力引擎。」

——劉柏亨認為從日常生活進入微觀世界,最重要的回饋是對人內在的激勵,不只是外在的觀察。

從機器管家出發 追問生命的意義

對自己的研究目標轉換,劉柏亨說「心臟的細胞運作起來具有高協同性,像是訓練有素的樂儀隊。但腦神經的運作瞬息萬變,隨時變化,更像是社會中的人際連結。」儘管像是越級打怪,他仍想探索更複雜的生命系統。

說到自己對生物學的內在動機,劉柏亨回憶,「我一直記得電影《機器管家》(Bicentennial Man,1999 年上映)。透過機械工程組合無機的零件,可以模擬一個真實的人類,與人建立感情。其中一定需要對生命原理的了解,非常神秘。」

對複雜生命現象進行整合研究,進而建立精密的仿生系統,這個系統不僅可能成為藥品篩選、器官再生平台,在更遠的未來可能成為人的延伸,甚至模仿人的整體生命表現。

機器管家
《機器管家》以晶片使機器得到情感能力的技術令人神往,同時也不斷促使觀眾反思「人」與「生命」的定義。 Courtesy of Wikipedia

這個猶如科幻小說楔子的目標,由劉柏亨敏銳的好奇心與多元的科學技藝積累堆砌而成。他說,

「在理解、實現這個系統的過程中,我會掌握生命的意義。」

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

3
0

文字

分享

0
3
0
采采蠅與寄生蟲,以及空氣中的油膩愛情
寒波_96
・2023/04/04 ・4059字 ・閱讀時間約 8 分鐘

非洲的采采蠅(tsetse fly)以吸血維生,但是它們也時常是錐蟲的宿主,如果吸食人血,便有機會將錐蟲傳染給人類,引發昏睡病,在非洲導致不少問題。

昆蟲常以費洛蒙作為溝通媒介,采采蠅也不例外。2023 年發表的新研究,找到幾款采采蠅使用的費洛蒙,能促進情慾交流;而且又發現感染錐蟲會改變費洛蒙組成,求偶時還會降低身價。

在非洲體驗大自然,務必注意采采蠅!圖/TripSavvy / Nez Riaz 

昆蟲的氣味語言

舌蠅屬(Glossina)旗下有多個物種統稱「采采蠅」,這項研究著重的是 Glossina morsitans,為求簡便,本文之後直接稱之為「采采蠅」。要注意還有不一樣的其他款采采蠅,本文後面會登場一種。

費洛蒙是生物排放到體外,用於溝通的訊號分子,可謂是昆蟲的化學語言。一如人類的花言巧語或暴言各有巧妙,各種昆蟲使用不同費洛蒙,能達到不同效果。

-----廣告,請繼續往下閱讀-----

從前對采采蠅的費洛蒙也不是一無所知,以前知道有一種化學分子 15,19,23-trimethylheptatriacontane,也叫作 morsilure,被采采蠅當作費洛蒙。此分子是主鏈為 37 個碳鍊長,總共有 40 碳的脂肪酸衍生物,而且含量非常多,5 天大的女生超過 4 mg。

有些費洛蒙輕盈,可以揮發;也有的飄不起來,要直接接觸。40 碳的分子體重太胖,只能直接碰觸,可以說是一種接觸式的油膩情慾。

傳宗接代,迅速而持久

新研究的目標是探討:采采蠅是否存在揮發性費洛蒙,又如何作用。比較效果之前,要先了解采采蠅情慾交流的正常狀況。

把沒有性經驗的一男一女擺在一起,20 組幾乎都迅速合體,在 15 秒內開始啪啪啪(請自行腦補音效);而且平均 do 愛 58.5 分鐘之久,持久力一級棒。

-----廣告,請繼續往下閱讀-----
讓一女一男共處一室,紀錄它們的交配過程。所有沒有性經驗的采采蠅,都在幾分鐘內合體,延續超過 55 分鐘。圖/參考資料1

拿來對照的對象,是常被當作實驗動物的黃果蠅(Drosophila melanogaster)。黃果蠅和采采蠅雖然都叫蠅,但是親戚關係比人和猩猩之差還要遠,不是最合適的比較對象,不過是最方便取得的材料。

黃果蠅平均要等 22 分鐘才男女合體,維持 20 分鐘左右,明顯不如采采蠅對性的渴望。然而,采采蠅的實驗,假如一方換成交配過的女生,原本興致高昂的男生竟然會完全不想 do 愛,判若兩蠅。

總之,采采蠅情慾交流的正常狀態是,由男生向女生求偶,女生很快接受。過程中吸引男生辨識的「女蠅味」是哪些費洛蒙呢?

空氣中充滿愛情的味道

采采蠅的費洛蒙是脂肪酸衍伸物,和果蠅、螞蟻一樣,能用有機溶劑己烷(hexane)分離。

-----廣告,請繼續往下閱讀-----

可是一開始實驗,把接觸采采蠅 10 分鐘的己烷塗在棒棒上,結果不論是有或沒有性經驗的男女,4 類原味樣品對男生都毫無吸引力。

做過實驗都知道,沒反應不能寫論文 💔。所以又把搜集費洛蒙的時間延長到 24 小時,這下就對惹 ❤️!

觀察得知,沒有性經驗的處女原味,能吸引 60% 男生;有性經驗的女生則是 27%;男蠅味對男生依然缺乏吸引力。

把采采蠅身上萃取的氣味,塗在棒棒上,觀察是否會吸引采采蠅。圖/參考資料1

「女蠅味」具體是什麼呢?用氣相層析質譜儀(Gas Chromatography Mass Spectrometry,簡稱 GC-MS)分離可得到 6 種化學物質。

-----廣告,請繼續往下閱讀-----

3 種是脂肪酸:16 碳的棕櫚酸、棕櫚油酸,以及 18 碳的油酸。3 種是脂肪酸加上甲基酯(methyl ester)的衍生物:methyl palmitoleate(MPO)、methyl oleate(MO)、methyl palmitate(MP)。

就算是做這一行的,大部分也會覺得那一串名詞彷彿火星文,反正就是好幾種結構略有不同的油。但是以訊號分子來說,重點不是有多油膩,而是這些分子會啟動哪些神經反應,又影響哪些行為。

費洛蒙有時候化學結構只差一點點,意義完全不同,就像人類講話,「我日常生性活潑,想要多交朋友」和「我日常性生活潑,想要多交朋友」意思就很不一樣。

采采蠅身體外,存在感最明顯的 6 種分子,包括 3 種脂肪酸以及 3 種脂肪酸衍生物。圖/參考資料1

饞她身子的味道,油膩的情慾語言

女蠅味 6 種成分逐一測試,女生們完全不為所動。至於男生,3 款脂肪酸都缺乏吸引力,不過 3 款衍生物都有吸引力,尤其是塗抹 MPO 的棒棒,能吸引 87% 男生,效果最強(有人覺得奇怪,比前述實驗 60% 更高嗎?應該是因為濃度更高,效果更強)。

-----廣告,請繼續往下閱讀-----

費洛蒙有具體的收訊器,訊號應該是透過觸角(antenna)上的感覺受器傳達,因為如果把觸角切除,男生也不會起反應。

為了進一步認識費洛蒙的效果,研究者又將費洛蒙塗在近親物種 Glossina fuscipes 身上。正常時這次的主角 Glossina morsitans 采采蠅男生,對異種女生不會有性趣;但是近親女 MPO 上身後,有 60% 男生會撲上來。

可見單單 MPO 這種化學分子,便對男生有強烈的誘惑力。可是這只是單方面的喜歡,近親女依然對異種男生毫無感覺,會把他們馬上踢開。

感受情慾的神經元

不一樣的費洛蒙,會激發不同感覺神經元,就像把某個開關打開。采采蠅的觸角上有許多微小的感覺零件(sensilla),各自配備不同的受器神經元。被激發的 sensilla 上存在兩款神經元 A 與 B,對不同物質起反應。

-----廣告,請繼續往下閱讀-----

MPO 會刺激 B 神經元,而且分隔一段距離,透過氣流傳送便有效果。由此判斷 MPO 是揮發性作用的費洛蒙。

但是同樣的距離,MO 與 MP 都不起反應。不過縮短到距離 1mm 後,MP 就能刺激 B 神經元,MO 則能同時刺激 A 與 B。這兩款費洛蒙僅管結構類似 MPO,卻要近到快直接接觸才有作用。顯然這種事不能看結構鍵盤辦案,要實測才知道。

測試費洛蒙是否可以透過氣流飄送,只有 MPO 能在比較遠的距離起作用。圖/參考資料1

奇妙的是,這些費洛蒙對近親物種 Glossina fuscipes 的神經元,幾乎都不起作用。因此上述費洛蒙與受器的組合,僅限於 Glossina morsitans 這款采采蠅,和其他物種未必有共通語言,近親即使收到也理解不能。

寄生錐蟲降低身價,采采蠅也是受害者

不少采采蠅體內存在錐蟲,吸血時成為傳播媒介。檢驗發現,錐蟲對采采蠅的影響也非常明顯,會大幅影響求偶選擇。

-----廣告,請繼續往下閱讀-----

采采蠅的求偶是男生提出要求,女生決定是否接受。觀察得知,有或沒有感染的兩男,如果和處女共處一室,女生接受兩者的機率差異不多。但是有或沒有感染的兩女,給男生選擇,男生 100% 挑選沒有感染的女生。

這麼看來,有錐蟲寄生的女生,在男生眼中是比較差的對象,但是不知道男生如何分辨。費洛蒙方面,被寄生的采采蠅又會多出 21 種揮發性小分子,也許有所影響,可惜這些氣味的具體作用仍不清楚。

采采蠅感染錐蟲與否,費洛蒙們明顯有別。圖為氣相層析在不同時間點,陸續分離出的分子,感染錐蟲的采采蠅多出許多種分子。圖/參考資料1

上述結果都是實驗室中的測試。采采蠅在野外活動時,或許大部份候選蠅都是感染錐蟲的不理想對象。野生的采采蠅實際上如何擇偶,也許是另一番光景。不過應該能推測,它們也不喜歡錐蟲。

食慾與情慾的開關一同打開,吃飯,順便do愛?

野生的采采蠅,要自己尋找對象。最容易碰到異性的場合是采采蠅餐廳,也就是被吸血的動物周圍。實際觀察到,采采蠅常常在獵物附近順便情慾交流。

動物散發的氣味分子,就像餐廳飄出的香味,吸引采采蠅前來覓食。有趣的是,獵物排放的 4-methylphenol、1-octen-3-ol 兩種揮發性物質,和采采蠅的揮發性費洛蒙 MPO 使用同一套神經受器。

或許采采蠅去吃飯,開啟食慾的同時,也一同釋放情慾的開關。交配和吃飯是兩回事,如果能一次滿足,也很棒。

如果對氣味在各種生物的角色有興趣,可以閱讀科普書你聞到了嗎?:從人類、動植物到機器,看嗅覺與氣味如何影響生物的愛恨、生死與演化》。

延伸閱讀

參考資料

  1. Ebrahim, S. A., Dweck, H. K., Weiss, B. L., & Carlson, J. R. (2023). A volatile sex attractant of tsetse flies. Science, 379(6633), eade1877.
  2. Chemical notes of tsetse fly mating

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1097 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

2

4
2

文字

分享

2
4
2
「科學家也需要 Art!」持續破解果蠅大腦神經迴路的李奇鴻
研之有物│中央研究院_96
・2022/04/11 ・6084字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/歐宇甜、黃曉君、簡克志
  • 美術設計/林洵安、蔡宛潔

神經科學與視覺

我們怎麼「看到」顏色,「察覺」東西在動?大腦如何產生視覺?中央研究院「研之有物」專訪院內細胞與個體生物學研究所所長李奇鴻,他是國際知名的神經科學家,過去長期在美國國家衛生院(National Institutes of Health)做研究,2018 年回到中研院貢獻自己所學。李奇鴻的實驗室主要是以果蠅視覺系統為模型,研究神經元如何在發育過程形成複雜的突觸連結,以及神經迴路如何產生視覺來引導動物行為。

李奇鴻是國際知名的神經科學家,研究神經迴路如何產生視覺來引導動物行為。圖/研之有物

技術帶動神經科學研究

神經系統如何運作?這對以前的科學家來說是黑盒子。由於大腦發生錯誤或出問題時,會直接表現在外在行為上,早期科學家想了解人腦運作機制,只能透過腦部哪裡受傷壞掉或中風等,知道腦部的大概功能區域,但沒辦法進入細胞層次。

「在生物學的發展上,除了需要有智慧的思考,其他都要靠技術去推動。你可能想到一個有趣的題目,但也許要 30 年後,才出現足夠的技術來解決問題。」李奇鴻舉例,從光學顯微鏡、電子顯微鏡、電生理技術、分子生物學到結構生物學發展,每個都在細胞、分子、及系統層次開啟了新的世界。

-----廣告,請繼續往下閱讀-----

隨著顯微技術與遺傳工程日益完備,果蠅成為現今熱門的腦科學研究對象。李奇鴻指出,「果蠅的生長速度快,相較老鼠要幾個月成熟,果蠅只要兩週。果蠅的大腦複雜程度介於人和單細胞生物中間,結構跟人高度相似,成果可應用在人身上。」

因此,近 10 幾年來是神經科學大起飛時代,科學家透過遺傳學方法控制果蠅的神經元活性、觀察行為,藉此了解哪些基因會影響大腦發育和運作,逐漸破解神經迴路的奧祕。

「我在選博士後研究時,想到底要做線蟲、老鼠、魚、果蠅或其他模式生物?最後才選果蠅。回想起來,近年剛好碰到果蠅相關技術蓬勃發展,選果蠅是很正確的決定!」李奇鴻笑道。

李奇鴻引用知名神經科學家 David Marr 的三層假說(tri‐level hypothesis),認為大腦運作有三個層次:

-----廣告,請繼續往下閱讀-----
  1. Computation level(運算):神經系統在做的事,如分辨顏色、觀察東西移動、辨認物體是圓是方、是蘋果或橘子等。
  2. Algorithm level(程序):神經系統的操作方式、程序怎麼做。 
  3. Implementation level(實行):神經系統如何透過神經元、神經網路來達成這個程序。

李奇鴻表示,「過去多數神經科學家都在討論 computation,再探究 algorithm,卻沒辦法解決 implementation 。現在因為具備技術,科學家終於能找出 implementation,再回推上層問題,甚至發現 algorithm 跟原本想的不一樣。」

視網膜感知系統怎麼運算?

關於神經系統的操作方式(Algorithm level),也有因為技術進步而解決爭議的案例。李奇鴻舉例,以前神經科學家在研究視覺系統感受物體運動的機制,曾出現幾種理論,HR 理論認為神經訊號是用乘法,另一派 BL 理論認為是用減法,爭議了很久。

近年科學家發現,原來視網膜感知系統的運算機制是混合的,一共三種,稱為 HR-BL 混合視覺運動偵測器。過去兩派都只對了一半。

關於視網膜感知系統的運算機制,過去 HR 理論和 BL 理論都只猜對其中一種方向(打勾處)。資料來源/Current Biology

Hassenstein-Reichardt(HR)模型:從昆蟲行為研究而來。

-----廣告,請繼續往下閱讀-----
  1. 當有偏好方向(從左到右)的視覺刺激出現,左邊的光感應神經元收到訊號,這個信號會被延遲(時間 τ),接著右邊的光感應神經元收到訊號,兩者的訊號會同時到達下游的神經細胞(X),訊號將會相乘,生成運動訊號。
  2. 當有非偏好方向(從右到左)視覺刺激出現,兩個訊號會在不同的時間到達,不會生成運動訊號。

Barlow-Levick(BL)模型:從兔子電生理研究而來。

  1. 當有偏好方向(從左到右)的視覺刺激出現,左邊的光感應神經元收到訊號,接著右邊的光感應神經元收到訊號,但它為抑制訊號且會被延遲(時間 τ),左邊的訊號會先到達下游的神經細胞,生成運動訊號。
  2. 當非偏好方向(從右到左)視覺刺激出現,左、右兩個光感應神經元的訊號會在相同時間到達,刺激訊號和抑制訊號互相抵銷,不會生成運動訊號。

持續分析果蠅大腦的神經迴路!

近代電腦的所有運算都能用 and、or、Xor 三個邏輯閘表達,科學家想知道,大腦裡有沒有類似但更高階的神經迴路運作方式?「從感官到行為比較容易觀察和操作,目前在視覺運動方面的神經迴路運作,我們知道的最多。」

李奇鴻近年在做昆蟲視覺與行為研究,發現昆蟲在感受顏色,如綠光和紫外光時,感光細胞的處理方式是先將紫外光跟綠光的強度做比較,把兩個光的強度相減,讓原本兩個訊號變成一個訊號,所謂的「顏色拮抗」。

「這種神經迴路能解析、比較兩個顏色強度的差異性,因為大部分在視覺上最重要的正是對比。拮抗運算模組能在一片訊號裡找出哪裡最強、其他較弱。其他感官機制也一樣,像觸摸物品時有凸出來的部分較重要,聽覺上要找出哪個聲音特別高等,讓最重要的訊號能凸顯出來。」李奇鴻補充道。

-----廣告,請繼續往下閱讀-----

2021 年李奇鴻的團隊首次發現果蠅視覺系統堆疊了多套拮抗運算模組,以達成顏色及空間接受域雙拮抗的效果,成果發表在《Current Biology》。這樣的神經迴路可以比較相鄰的顏色,產生色彩區間對比感。「沒這樣的功能,我們就看不出紅配綠很悲劇了!」李奇鴻笑道。

科學家們正努力鑽研果蠅大腦的神經運算迴路,希望逐步整理出基本運算模組。或許有一天,看似複雜的大腦功能,都可能用基礎的迴路來破解!

李奇鴻實驗室所發現的顏色及空間接受域雙拮抗神經迴路。R1-R6 是吸收頻率範圍較廣的光接收器(輸出刺激訊號),R7 是吸收紫外光的光接收器(輸出抑制訊號),R8 是吸收綠光或藍光的光接收器(輸出刺激訊號)。從 R1-R8 接收光,輸出到神經細胞 Dm8 之後,會形成顏色拮抗效果。此外,相鄰的 Dm8 之間透過特殊的氯離子通道 GluClα 中介,會產生側向抑制作用(Lateral inhibition),形成空間拮抗效果。資料來源/Current Biology

老師是怎麼走上研究大腦神經科學這條路呢?

「我滿晚才走上科學研究的道路。我對電腦有興趣、喜歡寫程式,大學上中國醫藥學院醫學系,家裡也希望我當醫生。不過在實習時,我發現自己對治療病人沒興趣,反而對問題或疾病本身更有興趣。跟幾個老師談過之後,我決定不當醫生,跑去清華大學讀生命科學,後來就到中研院。」

因為有醫學背景,一開始比較想做能立刻解決問題的研究,像是用蛋白質跟毒素的綜合體來治療癌症。但後來了解,如果沒有深刻了解致病機制、沒有鑽進基礎科學研究,很難有突破。

-----廣告,請繼續往下閱讀-----

後來去美國洛克斐勒大學攻讀博士,在洛克斐勒讀書期間,大家常互相交流,對我有很大的啟發。那時我在鑽研結構生物學,希望了解疾病真正的生理過程,曾解開愛滋病病毒跟人體信號傳遞有關的蛋白質結構。

博士畢業前,我接觸到神經科學,感到很有興趣,就去加州大學洛杉磯分校(UCLA)讀博士後,學神經科學裡的發育學,想了解大腦在發育過程是如何用不同分子在細胞間傳遞訊息。那時我待在很大的實驗室,老師不太管學生,要自己想辦法或跟旁邊的人學習,很多人素質都很高,學習環境很好。

之後我進入美國國家衛生院(National Institutes of Health,NIH)開始開實驗室帶自己的團隊,待了 16 年,算是真正進入神經科學領域,直到現在依然在做相關研究。

每個人的人生選擇,都被以前的經歷主導,如果沒有醫學背景,恐怕我不會去學結構生物學或走入大腦神經科學領域。

-----廣告,請繼續往下閱讀-----

老師在美國的研究很順利,那是什麼契機才決定回臺灣呢?回來後是否有不適應之處呢?

「我 26 歲出國,在美國也待 26 年,幾乎完全融入美國生活,實驗室運作得蠻好,連太太也是美國人。但在美國很多年後,內心出現一個很深感覺:我在臺灣待過這麼久,臺灣是我進入科學的起點,也許該回來教教臺灣的子弟。」

剛開始有些想法,曾受邀回臺演講幾次,但沒有下決心。後來出現一個重要轉捩點。中研院分子生物研究所 30 週年慶時邀我回來演講,那時有機會跟歷任所長聊天,這些所長中許多是我過去在中研院碰過的老師。聊了後感觸很深,發現每任所長都要面對分生所的成長或各種問題,每個所長都有獨到的見解和重要貢獻。

我看到分生所運作得很好,覺得非常感動, 內心想:也許我回來能效法他們,也許對中研院細胞與個體生物學研究所的發展能有一點點實質貢獻。

雖然如果待在美國國家衛生院,我也會有這樣一個機會,但還是想帶自己的子弟,把力氣用在自家子弟身上,讓自己的國家和組織進步。我想將在美國國家衛生院學到的經驗,像哪些組織可以運作、哪些不行,嘗試帶回臺灣。

-----廣告,請繼續往下閱讀-----

我很清楚可能碰到的問題,像科學研究會受影響,要重新花幾年時間建立實驗室,但那次契機讓我徹底下定信心。我曾跟廖俊智院長開玩笑,就算不給我錢,我大概也會回來。因為真的覺得這是一個很好的機會,自己能為中研院、為臺灣做些事。畢竟中研院也一直都像我的家!

不過,畢竟過去在美國實驗室和家裡都是講英文,只有打電話給媽媽會說臺灣話,因此, 2018 年剛回臺灣時,國語講得不太流利,臺灣話反而比較流利。

老師覺得美國的研究環境有哪些優點?希望將什麼樣的新觀念、新風氣帶進臺灣呢?

「國外最大特點是學術交流很頻繁,雖然國內也蠻頻繁,但他們交流層次更深入。也就是說,我跟參與的老師交流之後,常能改變想法、做事方法或方向,且是正向的改變。」

國外老師受邀演講,會很積極在幾小時內一直談,在一天中完全沉浸其中,不單講出自己在做的東西,也要求聽眾給予批評或建議等,彼此有深度交流,我每次參加都覺得收穫很多並產生合作可能性。

國內我的經驗是,演講結束後比較缺乏機會跟其他老師深度溝通,領完演講費就屁股拍拍坐高鐵回來。這可能是國內的慣有模式,我覺得需要改變。現在所內我也要求大家,既然花錢請老師來,一定要做深度交流,請對方給予建議。

重要的不是形式或邀到諾貝爾獎得主之類,而是在演講結束後、這個人走出我的辦公室、這些人離開後,對我做的事或做事方法,是不是有什麼實質的改變?在其他科學家交談中是否能得到啟發,改變自己的思考或做實驗方式?或聽聽別人告訴你,你還有哪些沒想到的地方?

分享,也是一種很重要的技術,在交流過程中,當我們可以把一件事講清楚,自己也會茅塞頓開,知道問題在哪。

現在所裡的計畫是把老師分成各種不同興趣小組,組內做交流或有跨組活動。其餘像寫計劃、申請經費、經營實驗室或撰寫並發表文章,這些是基本技術問題。

做任何工作,一個是基本的核心技術,如果沒有「技」就無法生存;另一個是 「藝」(Art) , 可以驅動你一直做下去。訓練人才時,除了培養技術,還要訓練 Art。

老師提到工作上需要 Art,科學家的 Art 是指哪些部分?可以說明得更詳細嗎?

「我想在科學裡面,Art 有很多面向。例如,你怎麼選擇一個問題,怎麼找切入點,如何把一個大問題拆成幾個可攻破的部分,一步步去解開,這是一種 Art。尤其在選擇問題和切入點上,要有獨特的見解或洞燭先機才能成功。」

科學家必須創造有用的知識。什麼叫有用的知識呢?就是聽到學到後,會改變你想事情的方向或做事的方法。很多東西都可以研究,只要科學方法夠嚴謹,都可以得到一些知識。但到底要選擇什麼題目呢?什麼叫做有趣的問題呢?評斷這些就是科學的 Art 。

如果說在人類前面是一個黑暗深淵,知識像光照亮我們前面的路,科學家就像站在最前面,要知道如何踏出那一步?怎麼踏出去?這是 Art。

當科學家看到一個問題、問題成形後,最重要的關鍵是如何選擇一個核心問題去解決。就像玩拼圖時,要放下去最核心、最重要的那塊拼圖。

我回到臺灣後,覺得這裡的研究環境很好,儀器不輸人家,老師很優秀。但可能我們多半只是關注自己的研究,沒有花時間認真去思考,最重要的一塊拼圖在哪裡?當我們有更深度的交流,才能找到最核心的那一塊,做出最重要的貢獻。

李奇鴻說,科學家必須創造有用的知識,也就是會改變做事和想事情方法的知識。至於要選擇創造什麼知識,需要用 Art 來判斷。圖/研之有物

老師在國外的實驗室時是如何帶領研究團隊呢?對年輕的科學家有什麼樣的期待嗎?

「在碩士、博士訓練中最重要的關鍵,是從「讀」科學變成真正「做」科學。我們攤開一本教科書,看到裡面講這個、那個,只是讀人家的科學。即使去念了原始文章,仍然是看著科學怎麼被別人做出來而已。」

自己真正做研究才知道,教科書上每一頁、每一句,背後都可能有數千篇文章支持,那時才知道自己很渺小,懂得謙虛,了解自己一生能做的有限。

所以,每次要跨出一小步,要想該怎麼跨最有效率、得到最大效果。我認為,在碩士班或博士班,最重要的就是了解這種感覺。

有些學生可能覺得,反正我很渺小,世界這麼大,即使做一輩子,即使最成功的科學家,也不過是得到教科書上面的一句話而已,我怎麼做都沒關係啊。 但我們必須帶領學生了解,這個計畫不是老師叫你做才做,而是讓學生覺得這個計畫是自己的,有前進和發展的空間,就像自己的小孩,必須負責。

以前在碩、博士班,剛開始學會技術、實驗做出結果,或能像人家一樣發表文章,會很高興,但這很短暫,真正的轉捩點是我知道有什麼事,是全世界任何人都不知道的那種驕傲,才是真的能支持很久的。我還記得在某一天做到早上五點,從實驗室走出來,知道有個東西全世界只有我知道的喜悅!

當學生曾感受這種發現真實的快樂,你不用規定他早上幾點來、晚上幾點走,他自己就有動機做。

當一個人想這東西應該是怎樣,想辦法做實驗證明出來時,那真的是一種快樂。我想,這是任何其他行業都沒辦法比較的!

學生是要培養成未來的科學家、獨當一面,應該讓他自己走。即使在你看得到的地方,也要讓他自己走出來,而且,他自己想到的,比你告訴他來的有用。

其實,我當老師最興奮時,是學生告訴我那些我不知道的事,會覺得很喜悅,學生想到我沒想到的東西,表示他們有進步,比我還厲害,這很棒!

延伸閱讀

-----廣告,請繼續往下閱讀-----
所有討論 2
研之有物│中央研究院_96
296 篇文章 ・ 3670 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook