0

0
0

文字

分享

0
0
0

2012年科學回顧

PanSci_96
・2013/02/16 ・6422字 ・閱讀時間約 13 分鐘 ・SR值 582 ・九年級

-----廣告,請繼續往下閱讀-----

2012年是科學界史詩般的一年,許多重要的研究成果都在這年呈現,以下讓我們分段回顧2012年全世界的重要科學研究斬獲。

2012年是科學界史詩般的一年,研究者發現了希格斯玻色子,也有好奇號登上火星。在這飛躍的一年中,兩個最大的突破有賴於驚人的數據量。在過去五年來ENCODE計畫(Encyclopedia of DNA Elements)–由440位科學家組成–已產生15個太位元(Terabyte)的數據,以研究人類DNA序列的功能;而歐洲核子研究組織(CERN)已儲存了26個拍(10的15次方)位元由大型強子對撞機(LHC)所產生的數據,物理學家用它來尋找希格斯玻色子存在的證據。

但如同資料是發現的泉源一般,它也是矛盾的來源,矛盾可能如下:有潛在危險的感冒病毒資訊應不應該被公開?或者資助者、出版社、研究人員討論到底要如何展現資料,還有同儕審查的老問題,以及研究資料的更開放等議題。同時,可疑或偽造的研究成果重新提醒了我們,研究的發現必須得值得信任。

— 最後的希格斯–

掌聲、欣慰、喜悅和淚水。7月,世界上最大的物理實驗正式發現希格斯玻色子PanSci報導)。在物理學家可以自信地宣布他們發現了質量為125千兆電子伏特的新的玻色子PanSci介紹)之前,這項研究使用了位於日內瓦的大型強子撞擊機500兆次的質子撞擊。

-----廣告,請繼續往下閱讀-----

大約50年前,彼得希格斯 (Peter Higgs) 與其他理論物理學家提出了一個理論–一個充滿在宇宙中的量子場賦予了一些粒子質量。

而這個量子場的化身–希格斯玻色子–看起來卻令人失望地普通,它的行為並未超出粒子標準模型所預測的。而LHC也尚未找到超對稱理論所預測的其他粒子,該理論能夠拓展人們對次原子世界的理解並且解開暗物質的神祕面紗。

–奔向極限–

2012年各國歡慶奧運的同時,科學界也締造了多項紀錄:

歷經二十年的鑽探,俄羅斯的工作隊終於在去年二月鑿穿深達3.8公里的南極冰冠,直達孤立了數百萬年的地下水體沃斯托克湖。經過初步檢驗,並未在水體樣本中發現之前許多科學家預測應有的生命跡象。嘗試以高壓熱水柱法探勘南極洲另一個冰下湖—埃爾斯沃斯湖的英國工作隊,則面臨了技術層面的挑戰

-----廣告,請繼續往下閱讀-----

導演詹姆斯. 柯麥隆日前駕駛單人潛水器到達地球的最深處—距海平面下11公里處,馬里亞納海溝的底部,成為全球獨自完成此任務的第一人。

同樣令人感到刺激緊張的是高空跳傘運動員 Felix Baumgartner ,儘管可能在科學上沒那麼有價值,他由美國新墨西哥州上空39,000公尺處一躍而下PanSci報導),打破音速並刷新自1960年來人類最高跳傘高度。

然而,並非所有的紀錄挑戰都是成功的:花費35億美金位於美國加州的「國家點火設施(NIF)」經過六年的不斷嘗試,雖擁有世界上最強大雷射光束,但其「點火」計畫終究未能成功。該實驗若成功,將是人造核融的里程碑:超強雷射光束將施加高溫高壓於一小氫燃料球而啟動核融反應,並產生與輸入的雷射光同等的能量。

–反思能源政策–

福島核災事故(PanSci報導)促使各國能源政策持續調整。日本政府朝向未來零核電目標進行各項規劃(PanSci相關報導)。2012年五月日本關閉最後一座運營中的核電廠以作檢修,同時遭到國內民眾大規模示威抗議,反對重啟任何一座反應爐。儘管如此,其中的兩座仍在七月時恢復運作

-----廣告,請繼續往下閱讀-----

歐盟也為境內核電廠作壓力檢測,發現超過140座反應爐需要全面性的安全升級PanSci 相關報導)。在此同時,美國核能管理委員會批准了一座核電廠以雷射技術提煉濃縮鈾,反對者則擔憂有心人士將暗地裡以此技術製造核彈。

為了供應日常生活所需能源,各國持續探索非傳統的石油及天然氣來源。因應日漸興盛的頁岩氣開採工業,美國對使用水力壓裂法提出了相關規定。頁岩氣的發展,使得美國10%的發電供應由原本的煤炭轉為天然氣。

根據國際能源署估計,2020年美國將成為最大的石油生產國,並有望在2035年自給自足國內能源所需。但過去發生的石油鑽探事故,也為尋找新石油庫存的人們敲了警鐘:由於其鑽井船遇風暴擱淺受損,殼牌將無法如期在北極冰洋實行鑽探計畫;而BP則因其於2010年發生的墨西哥灣鑽油平台「深水地平線」漏油事件遭刑事罰款40億美金。然而,剛起步不久的純淨能源工業也有自己的問題:由於電動車市場規模無法擴大,麻省的鋰電池製造商A123 Systems已於去年十月宣告破產PanSci相關報導)。

–資料展現–

科學聲譽卓著之處就在於能自我修正。三月時, 科學家確定地反駁前一年所提出的–微中子可能跑得比光速快PanSci報導其他報導)。同時,許多實驗也反駁了2010年所聲稱的某種細菌的DNA中有「砷」相關報導)。

-----廣告,請繼續往下閱讀-----

但修正總不是每次都來得這麼快:當研究不是那麼容易重複,偏見和錯誤就可以存在數年。日本麻醉學學者Yoshitaka Fujii 營養學學者 Eric Smart 數十年的研究瀆職到最近才雙雙被發現而遭受譴責。諸多關於資料數據操弄的指控使心理學門遭遇特別嚴厲的指責,許多重量級人事因此辭職下台。科學家更廣泛地擔心無法重複的結果,為此,科學社群推動「可重複實驗倡議」,設置了獨立實驗室去重複重要研究成果的研究。

在今年,科學家應該多溝通且資料應該更公開的想法也獲得了重視(相關文章)。基於這個想法,兩個線上開放期刊 eLife 和PeerJ 啟動了,同時,開放進用研究論文的行動在英國有所突破,政府與私人研究贊助者在2012年七月時表示將會為期刊開放上線使用的政策付款,從2013四月份開始。

— 好奇號登陸火星–

「就是那個輪子!就是那個輪子!」,NASA的科學家們看著「好奇號」像在天空中盤旋的鶴一般優雅地登陸火星表面PanSci報導)時這樣歡呼著。好奇號在八月登陸火星表面的蓋爾撞擊坑(Gale Crater)後,就開始提供火星表面與大氣初步的影像與分析,但尚未發現任何甲烷或其他有機分子等與生命現象相關的跡象。

在太陽系外,克卜勒太空望遠鏡(Kepler Space Telescope)已經發現許多新的行星,大約蒐集到了三千個有潛力的新世界。而地面望遠鏡同樣也是搜尋系外行星工作的主力,近來已經在太陽系周遭4.4光年遠的人馬座α處發現一顆跟地球大小差不多的系外行星PanSci報導)。

-----廣告,請繼續往下閱讀-----

另外其他的太空斬獲如黎明號(Dawn)發現了灶神星(Vesta)上面存在水的證據PanSci報導),中國送出他們第一位女性太空人劉洋上太空

不過,今年的頭條並不是來自於政府,而是一間私人企業,SpaceX是間位在美國加州霍桑的太空運輸公司,在十月成功地送出第一發私人太空艙Capsule Dragon至國際太空站完成商業補給的任務PanSci相關報導),據說這家公司正在考慮是否也進行火星之旅

–地球有壓力–

夏天北極戲劇性的海冰融化破了氣候模型預測上的記錄PanSci相關報導),美國也面臨近半世紀以來最嚴峻的乾旱(PanSci相關報導),不過對於許多居住東岸的美國人來說,2012年十月的超級颶風珊迪PanSci報導、另一則報導)恐怕才真讓人對若有似無的全球暖化危機有感。這場造成500億美金損失的風暴也將話題導向究竟該如何適應可能性不斷攀升的極端天氣,而非該如何避免氣候變遷。

全球性的環境話題總蒙上經濟顧慮。六月的里約聯合國地球高峰會PanSci相關報導另一則報導)中,發展中國家認為不該限制他們的成長,而先進國家則不願意承諾對其發展的協助。即使代表團在十二月的杜哈氣候大會上同意將弱化版本的京都議定書延伸到2020,但相似的政治慣性依然發生

-----廣告,請繼續往下閱讀-----

個別國家自己對此有較大的處理空間,例如墨西哥在四月立法減排。雖然巴西在十月通過一項可能弱化森林保護的爭議性法案,但其亞馬遜雨林遭砍伐的速率已在2012年達歷史新低。澳洲則在六月發表一個世界最大的海洋保護區網絡計畫,不過這個環南極洲三大水域的國際保存計畫卻在十一月被打了回票。

加拉巴哥群島的最後一隻明星陸生巨龜寂寞喬治(Lonesome George)於六月辭世,他是他所屬亞種中的最後一隻,而他的辭世也喚起全世界對於瀕臨絕種物種遭受困境的注意。(PanSci相關報導

–科學家發聲–

過去當科學研究具有社會爭議時,科學家通常選擇沉默。但現在有越多的科學家選擇反擊,捍衛研究的價值。2012年五月,英國科學家們公開捍衛在小麥基因改造上的研究成果,原因在於一反基改團體「Take The Flour Back」揚言摧毀這些成果。

十月也有跨國的科學家共同聲援義大利研究團隊,該團隊被義大利法院判決六年徒刑,罪刑是誤判2009年拉奎拉(L’Aquila)地震的嚴重性。輿論也批評這項判決將會使得科學家不敢發聲、提供專業意見。(PanSci報導:123

-----廣告,請繼續往下閱讀-----

然而,有些議題,科學家依然保持沉默。緩慢但確定地,動物權行動者在2012年成功阻止多家貨運業者運輸實驗用動物,並且未遭遇有效的阻礙。

–人類百科全書–

人類基因組的3億個DNA鹼基中只有少於1%,也就是約2萬個基因參與蛋白質的編碼。不過大量的非編碼序列區域仍有其至關重要的功能,如在不同細胞類型中影響基因組的裝配、調節與解讀方式。

一個由440位科學家組成的ENCODE計畫(Encyclopedia of DNA Elements)團隊在九月發表30篇論文(PanSci相關報導),估計至少有20%的基因組可以影響基因表現。其他極具野心壓縮大量生物數據的計畫包括老鼠全腦的迴路圖譜的初步研究結果,及追蹤人腦內約900個解剖區內的基因活動

在細胞層次上,幹細胞的可塑性依然讓人驚艷。美國研究人員發現女性卵巢內的幹細胞似乎可以再生新的卵子,這違反了傳統教條所認為的女性出生就註定了他們一生配子的數量。而日本科學家則示範如何從老鼠身上取出幹細胞轉化成可繁殖的卵子,受精後再植入任代理孕母的母鼠身上,並且產生健康的後代。

–病毒研究的衝突–

兩篇研究報告顯示,高致病性的H5N1變異病毒可以在雪貂間互相傳染(PanSci相關報導)。這項結果造成國際緊張,部分認為這些報告提供了恐怖分子製作H5N1生化武器的可能性,或者因意外而使得這些可在哺乳類之間傳染的病毒外流(PanSci相關報導)。

2011年底,美國國家生化安全委員會(NSABB)建議這些研究不應該全文公開;然而有人批評這樣的審查制度將會阻礙科學研究的討論性,影響抗病毒藥物的研究。NSABB於2012年三月一改先前的態度,而兩篇報告也在五月六月相繼被發表(PanSci相關報導)。

然而爭議性仍持續著,政治人物批評美國政府太過輕率即讓研究發表;部分科學家則批評NSABB花太多時間做出決定。而現在美國立法部門也考慮加強限制這些病毒類的研究工作。美國國家過敏與傳染疾病研究所(NIAID)便提倡「自主性暫停」流感相關研究,同時也觸怒了渴望持續相關研究的科學家。(PanSci相關報導

–勒緊褲帶的一年–

2012年,富國紛紛裁減了公共支出,許多國家也緊縮研究預算。加拿大對其環境削減開支:關閉一系列研究計畫,包含已運作40年、著名的實驗湖泊區—安大略省的58個偏僻的淡水湖泊, 這個實驗湖泊區曾提供科學家們進行操作以研究汙染物輸入湖泊造成的影響。

延續去年刪減25%的研究經費,西班牙2013年的預算案,將邁入第四年持續刪減

在美國,去年科學家們擔心計畫經費將在2013年一個全面性的刪減中遭砍,NASA行星科學家為此舉辦了杯子蛋糕特賣會以凸顯航太領域收到日益減少的支持。

由歐盟提出、將於2014-20年間實行的大型科學研究計畫 “Horizon 2020″,其所提出的800億歐元預算案在11月遭駁回,並將於2013年繼續進行討論。

而即使在研究預算一年比一年高的印度,也感受到國內通貨膨脹的警訊,減緩了2012-13年的預算成長

但也不是每個國家的科研都面臨財政吃緊的窘境:中國政府在新的一年將多花近12.5%在科學研究預算上;採樽節措施的法國,仍想辦法調高了比去年多2.2%的經費給科學研究;德國聯邦政府撥更多款項給大學 (例如在柏林設立一所大型健康科學研究中心);美國的生技業也因公共市場投資者的參與而見到復興的曙光

–醫藥的發展–

美國食品藥物監督管理局(FDA), 自1999年以來, 第一次核準了兩款減重藥物上市,BelviqQsymia。也核准了Truvada,Truvada為第一款可預防愛滋病毒(HIV)感染的上市藥物。然而兩款抗阿茲海默症的抗體bapineuzumab和solanezumab,並未通過臨床試驗,雖然,某些試驗結果顯示solanezuma能減緩認知喪失的症狀。研究人員認為預防阿茲海默症於病之初可能是較為有效的策略,並冀望能於2013年建立早期偵測試驗。 2012年有許多重要的商業交易,

中國生化公司BGI以1億1千8百萬美元買下美國基因測序公司Complete Genomics,擊敗了競爭對手Illumina;美國生化大廠Amgen將以4億1千5百萬美元購買冰島生化公司deCODE Genetics;美國醫藥公司BMS(Bristol-Myers Squibb)和阿斯利康製藥(AstraZeneca)以53億美元共同收購生化公司Amylin;以及英國製藥公司GlaxoSmithKline以36億美元買下基因公司Human Genome Sciences。另外,許多製藥公司在美國被判決創下歷年紀錄的罰款

 

原文:366 days: 2012 in review-Nature News

Nature 492, 324–327 (doi:10.1038/492324a

譯文整理編輯自Taiwan EU Watch(1,2,3,4,5,6)

文章難易度
PanSci_96
1214 篇文章 ・ 2072 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
0

文字

分享

0
4
0
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
193 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

13
4

文字

分享

1
13
4
核融合發電有望實現?從美國 NIF 的最新研究看未來發展——《科學月刊》
科學月刊_96
・2023/05/13 ・3291字 ・閱讀時間約 6 分鐘

  • 張博宇/目前專研於高能高密度電漿、電漿推進、核融合等領域。

Take Home Message

  • 美國國家點火設施(NIF)在去年使用慣性控制核融合,首次在可控的核融合反應中,令能量的輸出大於輸入,朝核融合產能邁進了一大步。
  • NIF 將 2.05 百萬焦耳(MJ)的雷射能量注入靶材,經過核融合反應產生了 3.15 MJ 的能量,靶材增益為 1.5。但若將產生雷射能量的耗能考慮進去,則並沒有真正的能量輸出。
  • 臺灣各學校的物理系、核工系、電漿所其實都有學者針對核融合投入理論、模擬、實驗的研究,期望這次NIF的成果能推動相關領域進展。

去(2022)年 12 月,美國能源部(Department of Energy, DOE)、DOE 所屬的國家核安全管理局(National Nuclear Security Administration, NNSA)、勞倫斯利佛摩國家實驗室(Lawrence Livermore National Laboratory, LLNL),以及 LLNL 所屬的國家點火設施(National Ignition Facility, NIF)召開了一場記者會。

在記者會中,他們共同宣布在實驗中實現增益值(gain)大於一的結果,意即實現了第一次在可控的核融合(controlled nuclear fusion)反應中,輸出的能量大於輸入的能量,朝核融合產能邁進了一大步。然而,這項結果是否代表著核融合發電即將被實現?

產生能量的核融合反應

在核融合反應中,若兩個較輕的原子核可以融合成一個較重的原子核,且反應之後的總質量減少,那麼根據愛因斯坦(Albert Einstein)質能互換的關係(E = mc2),減少的質量將會轉換成能量。

-----廣告,請繼續往下閱讀-----

最容易產生的核融合反應是將氫(1H)的兩個同位素氘(2H,或稱為 D)及氚(3H,或稱為 T)的原子核融合,產生一個 α 粒子(即氦原子核,4He)加一個中子(neutron, n),同時產生 17.6 百萬電子伏特(MeV)的能量:

D+ T+ α2+ n ——公式一

在公式一的核融合反應中,兩個帶有正電的原子核必須互相靠近才能融合在一起。然而,兩個帶正電的粒子互相具有排斥力,而且愈靠近排斥力就愈大。因此,除非這兩個粒子互相靠近的速度快到排斥力無法阻止它們相撞,核融合才能發生。除此之外,還必須要考量到庫倫散射(Coulomb’s scattering)的現象——若兩個帶正電的原子核沒有正面對撞,則兩者會因為排斥力的原因轉向——更增加了兩者靠近的難度。

因此,只能把氘與氚氣體加熱到高溫,長時間侷限這些高溫的燃料,讓極少數高速的原子核有機會互相靠近並發生核融合反應、產生能量。但即便是最容易發生的氘加氚核融合反應,也需要將燃料加熱到 50 千電子伏特(keV,約為 5.8 億 ℃)才能有最高的反應速率。

-----廣告,請繼續往下閱讀-----

有什麼方法可以將燃料加熱到所需要的溫度呢?看回公式一,氘與氚的核融合產物中具有能量為 14.1 MeV 的中子,及 3.5 MeV 的 α 粒子。我們可以讓高能的中子將能量攜出後再轉換為電能,但讓帶有較少能量的 α 粒子保留在系統中加熱燃料。因此普遍實現核融合產能的系統,目標都是將燃料加熱到溫度約 10 keV(約為 1 億 ℃),讓核融合產生的 α 粒子能繼續加熱燃料。

帶來重大進展的核融合研究

目前國際間研究的核融合反應主要可分為磁場控制核融合(magnetic confinement fusion)與慣性控制核融合(inertial confinement fusion),NIF 去年的實驗便是使用間接驅動(indirect-drive)的慣性控制核融合。

在這次的實驗中,當 2.05 百萬焦耳(megajoule, MJ)的雷射能量注入環空器(hohlraum)1並加熱中間的球殼靶材後,經過核融合反應產生 3.15 MJ 的能量,意即靶材增益(target gain)約為 3.15 / 2.05 = 1.5,是人類首次在可控的核融合反應中,輸出的能量大於輸入的能量。

然而,若將產生 2.05 MJ 的雷射能量考慮進去,需要耗掉的能量約為 300 MJ;換言之,這次實驗的真正能量增益(energy gain)約為 3.15 / 300 ≈ 0.01,並沒有真正的能量輸出。

-----廣告,請繼續往下閱讀-----

不過,NIF 使用的是 90 年代的雷射技術,它的建造目的是為了國防研究所需,因此並不是最適合核融合的研究場域,在雷射技術上還有很大的進步空間。再者,回顧 NIF 從 2011 年開始進行的核融合實驗,歷經了超過十年終於第一次實現靶材產生的能量超過了雷射的能量,對 NIF 而言可說是向前邁進了一大步。

更重要的是,在去年的實驗中,靶材都進入了 α 粒子能夠繼續加熱燃料的燃燒電漿(burning plasma)範圍,是過去核融合研究從未達到的條件,只要稍微最佳化實驗條件便能讓輸出能量有顯著的提升。因此,這次的重大突破顯示了核融合的可行性並非天方夜譚。

臺灣的核融合相關研究發展

核融合研究本身是一個複雜的系統,在科學上及工程上都有許多的挑戰,許多名字上並沒有「核融合」的研究,其實也都間接與核融合相關。以這次的慣性控制核融合為例,相關的研究就包含了雷射技術、靶材製作技術、粒子量測技術、高速攝影技術等。

若以磁場控制核融合來說,也包含了高溫超導、微波技術、高壓脈衝技術、粒子加速器等科技。當然,最重要的就是電漿科學、電漿加熱、電漿量測技術等研究,因為任何材料在高溫的條件下,都會變成電漿態。 

-----廣告,請繼續往下閱讀-----

在臺灣各個學校的物理系、核工系、電漿所分別都有 1~2 位老師在研究電漿相關的領域,尤其成功大學的太空與電漿科學研究所,更有針對核融合投入理論、模擬、實驗的研究。然而,相較於國外蓬勃發展核融合的環境相比,臺灣投入核融合研究的人數仍然明顯不足。

期盼這次NIF的實驗成果,能夠吸引更多臺灣的學生及研究人員投入核融合的相關研究,更刺激政府、民間團體投入更多的資源在核融合研究上。

兩種不同的核融合方式

當物質被加熱到 1 億 ℃ 時,原子內部帶負電的電子便會脫離帶正電的原子核,形成帶負電的電子及帶正電的原子核混合在一起的狀態,稱為電漿(plasma)。我們可以利用帶電粒子的特性侷限高溫的電漿,目前廣泛被研究的核融合反應可分為磁場控制核融合與慣性控制核融合,它們的原理有哪些不同?

磁場控制核融合

-----廣告,請繼續往下閱讀-----
熱核融合反應器。圖/科學月刊。

其中一種方式便是藉由稱為「托卡馬克」(tokamak)的環形容器產生核融合。透過環磁場線圈及延著環形方向的電漿電流(plasma electric current),在環磁場線圈的內部形成一個扭曲但繞著環磁場線圈的螺旋磁力線(helical magnetic field),讓電漿不斷延著螺旋磁力線移動,被侷限在環磁場線圈形狀的真空腔中但不與真空腔的腔壁接觸。

最後,再將電漿加熱到 10 keV的溫度。此核融合的方式能透過磁場將低密度(接近真空)的電漿侷限在真空腔中上百秒或更久的時間,讓高溫的氘、氚原子核有機會互相靠近並發生核融合反應。

慣性控制核融合

慣性控制核融合是利用電漿本身的「慣性」來侷限電漿。由於粒子本身的質量不等於零,所以離開系統需要時間,只要燃料在離開系統前反應完畢,那是否被持續侷限就不重要了。

因此,慣性控制核融合必須將氘與氚的燃料加熱到近 10 keV,並壓縮到高壓力(約千兆大氣壓,gigabar)及高密度,讓粒子間碰撞的頻率在極高的密度下大幅度提升,增加核融合發生的頻率。因此僅需要將系統維持/侷限在奈秒(ns)內,同樣能將燃料燒完。

-----廣告,請繼續往下閱讀-----

慣性控制核融合可分為直接(direct drive)或間接驅動,不過兩種驅動方式都是為了快速加熱球殼外層。當球殼中心的氘及氚溫度達到 10 keV 時,核融合反應便會從中心開始發生,產生的能量可以由內而外藉由核融合反應燃燒球殼。

因為球殼本身的慣性向外推,因此產生能量。圖/科學月刊。

球殼內部在前述的過程中因為壓縮產生高壓,外部的雷射也會停止使得外部的壓力減少,因此球殼又會被向外推。然而,因為球殼本身的慣性,被向外推較為耗時,因此只要向外燃燒球殼的速度大於球殼被向外推的速度,便能將整個球殼再被外推前燃燒殆盡,產生能量。

註解

  • 〔註 1〕環空器是一種腔壁與腔內達到輻射熱平衡的空腔,在慣性控制核融合實驗中燃料球會被放入環空器,再於環空器兩端孔洞射入雷射提供能量。
  • 〈本文選自《科學月刊》2023 年 4 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 1
科學月刊_96
249 篇文章 ・ 3352 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

11
4

文字

分享

1
11
4
希格斯玻色子發現十週年
PanSci_96
・2023/03/27 ・7603字 ・閱讀時間約 15 分鐘

-----廣告,請繼續往下閱讀-----

作者︱黎偉健

2012 年 7 月 4 日,位於歐洲核子研究中心(CERN)的大型強子對撞機(Large Hadron  Collider(LHC))的 ATLAS 和 CMS 實驗團隊宣佈了希格斯玻色子的發現,轟動了整個物理學界。提出希格斯玻色子的希格斯(P. Higgs)、恩格勒(F. Englert)和布勞特(R. Brout)迅速在翌年獲頒諾貝爾物理學獎。

在粒子物理的標準模型裡,希格斯玻色子關係到基本粒子質量的來源,具有重大意義。此外,由於希格斯玻色子很可能與一些未知的物理有關,以後對該粒子的進一步研究很可能有助解開現今物理學的一些謎團。藉著希格斯玻色子發現十週年,讓我們回顧一下希格斯玻色子的研究在過去十年的進展,並前瞻未來對它的更深入探測與其蘊含的意義。

粒子物理標準模型

現代物理學的一項輝煌成就,是認識到物質皆由基本粒子(elementary particle)組成,而一切已知的物理現象可歸結為基本粒子之間基本交互作用(fundamental interaction)的結果。例如水,它由水分子組成,而水分子由氫原子和氧原子組成;原子則由電子和原子核組成,而原子核由質子和中子組成;質子和中子則由夸克組成。

從此可見,電子和夸克組成了我們日常接觸到的所有物質。它們是「基本」粒子,因為至今物理學家並未發現到它們有內在結構。基於夸克之間存在強交互作用,夸克能組成質子和中子,質子和中子能組成原子核;基於電子和夸克之間存在電磁交互作用,電子和原子核能組成原子,原子能組成分子。

-----廣告,請繼續往下閱讀-----

基本交互作用有四種:重力交互作用(gravitational interaction)、電磁交互作用(electromagnetic  interaction)、強交互作用(strong interaction)和弱交互作用(weak interaction)。重力交互作用即萬有引力,它主宰著如星體的形成及運行等天文尺度的物理現象,由廣義相對論描述【註 1】;電磁交互作用、強交互作用和弱交互作用主宰著微觀世界的物理現象,由粒子物理的標準模型(Standard Model)描述。

圖一:標準模型中的基本粒子。

圖一列出了標準模型中的基本粒子,它們分為三類:費米子(fermion)、規範玻色子(gauge boson)和希格斯玻色子(Higgs boson)。費米子分為兩種:夸克(quark)和輕子(lepton),有三個世代(圖一中左邊的首三列)。第一世代的費米子為最常見,上夸克、下夸克和電子組成了原子,從而組成了我們日常接觸到的物質。規範玻色子是傳遞基本交互作用的粒子,其中光子傳遞電磁交互作用,W Z 玻色子傳遞弱交互作用,膠子傳遞強交互作用。希格斯玻色子是希格斯場(Higgs field)的激發。希格斯場與其他粒子的交互作用使得這些粒子具有質量,而希格斯玻色子會與帶有質量的基本粒子發生直接交互作用。

圖二:基本粒子的交互作用。

圖二顯示了標準模型中基本粒子的直接交互作用情況,其中藍線兩端的粒子會發生直接交互作用。例如光子(γ)和電子(e),它們之間有一藍線連接,即具有直接交互作用。粒子之間的交互作用可以形像地用費曼圖(Feynman diagram)表示。例如電子和電子之間的靜電排斥現象,可看作散射過程 eeee,其費曼圖如圖三,其中縱向代表空間,横向代表時間,時間流逝方向從左到右,左端為初態,右端為終態,實綫代表電子,波浪綫代表光子,而綫的交點(稱為頂點(vertex),圖中有兩個)代表電子和光子之間的直接交互作用。直接交互作用顯示為一頂點,即交互作用發生在某時空點上。

圖三:以費曼圖表示電子之間的靜電排斥現象。

根據圖三的圖像,我們可以把電子和電子之間的遙距靜電排斥現象理解為一顆電子釋放出一顆光子,然後該顆光子被另一顆電子吸收,從中光子把能量和動量從一顆電子攜帶到另一顆電子,因此我們說光子傳遞電磁交互作用;這好比兩個籃球員在傳球,籃球員是電子,籃球是光子,而籃球員在拋球和接球時之所以感受到對籃球施了力,正是因為籃球傳遞了動量。

-----廣告,請繼續往下閱讀-----

從這角度看,世上並沒有遙距的力,一切基本交互作用都發生在某時空點上,即費曼圖中的頂點。這種交互作用的局域性(locality)是現代粒子物理學的特點,它是狹義相對論和量子力學結合——量子場論——的結果。類似地,圖二中的每條藍線都有對應的費曼圖頂點。

希格斯場與希格斯玻色子

根據量子場論,粒子是場的激發。這就是為什麼每顆電子都相同,因為它們都是同一個場——電子場——的激發。在量子場論中,真空被定義為能量最低的態。對於一般的場,它的值在真空中為零。例如,由於電磁場由光子組成,帶正能量,因此電磁場非零的態能量必定比電磁場為零的態高,所以真空中電磁場必為零。希格斯場則不同,它在真空中的值由一個勢能函數取極小值決定,該勢能函數對希格斯場 ϕ 的依賴形式如圖四中的紅線。

圖四:勢能函數 V(ϕ)對希格斯場 ϕ 的依賴形式,黑色粗體的區段是我們目前能觀測到的,紅線為標準模型的預言,藍線是某個其他模型的預言。(本圖出自參考文獻1)

從圖四可見,勢能在希格斯場為一非零值時取最小值,即希格斯場的真空期望值(vacuum expectation value(vev))為非零【註 2】。也就是說,真空中充滿著希格斯場,而任何粒子在任何地方任何時間原則上都有可能與其發生交互作用。

在標準模型裡,只有特定幾種粒子能與希格斯場發生交互作用。這些粒子包括夸克、帶電輕子(e, μ,τ)以及 W Z 玻色子。這些粒子因為與真空中的希格斯場發生交互作用,從而獲得質量。對於這些粒子,它們與希格斯場的耦合強度與它們自身的質量成正比。所謂的希格斯玻色子,其實就是希格斯場在其真空值背景上的激發。

-----廣告,請繼續往下閱讀-----

因此,只有帶質量的粒子才能與希格斯玻色子發生直接交互作用(如圖二中與希格斯玻色子有藍線連結的粒子),而這些粒子與希格斯玻色子的耦合強度也正比於他們自身的質量【註 3】。值得注意的是,希格斯玻色子能與自身發生直接交互作用(見圖二)。

基本粒子的質量直接影響著宇宙中物質存在的形式。例如,我們知道,上夸克比下夸克輕,而質子由兩顆上夸克和一顆下夸克組成,中子則由一顆上夸克和兩顆下夸克組成【註 4】,因此質子比中子輕,從而質子是穩定粒子,這使得氫原子的組成變成可能。如果下夸克比上夸克輕,那麼質子會衰變成中子,即氫原子不穩定,宇宙便不可以如已知的含大量氫。又例如,原子的大小與電子的質量成反比,而原子的能階與電子的質量成正比,因此電子的質量直接影響著物質的化學特性。再例如,太陽中心核反應的其中一環取決於弱交互作用,其發生的機率正比於 1/mw4,其中 mwW 玻色子的質量。可見,希格斯場作為基本粒子質量之源,對物質的存在形式扮演著決定性角色。 

希格斯玻色子於 2012 年在位於歐洲核子研究中心(CERN)的大型強子對撞機(LHC)中被發現,是標準模型中最後一顆被發現的基本粒子。

對希格斯玻色子的最新認識

我們對希格斯玻色子的認識源自大型強子對撞機(LHC)的實驗數據。在 LHC 中,兩束質子互相對撞,質子裡的夸克或膠子會發生散射,有可能從中產生希格斯玻色子。由於希格斯坡色子的壽命很短,只有约 10  -22 s 秒,被產生的希格斯玻色子在到達粒子探測器前已衰變成較穩定的粒子。

-----廣告,請繼續往下閱讀-----
圖五 a:LHC 中產生希格斯玻色子的典型過程費曼圖 (本圖出自參考文獻1)

圖五 a 顯示了一個 LHC 中產生希格斯玻色子的典型過程的費曼圖。該過程的初態是兩顆來自質子的膠子(gluon),這兩顆膠子互相碰撞,產生了一對正反頂夸克,而由於頂夸克質量很大,從而與希格斯玻色子的耦合也很大,因而很有可能產生一顆希格斯玻色子,而該顆希格斯玻色子稍後衰變成兩顆 Z 玻色子,而這兩顆 Z 玻色子又各自衰變成一對正反帶電輕子(e+eμ+μ),粒子探測器會探測到終態的四顆帶電輕子。

圖五 b:實驗中探測到的四顆帶電輕子的質心系總能量 m4l 分佈。(本圖出自參考文獻1)

圖五 b 顯示了實驗中探測到的四顆帶電輕子的質心系總能量 m4l 分佈。藍色的部分顯示了非希格斯玻色子產生過程的供獻,而紅色部分即為產生希格斯玻色子所致,其峰位於希格斯玻色子的質量(125 GeV)。 

當然,在 LHC 中,希格斯玻色子的產生和衰變不是只有如圖五 a 的過程,所有可能的產生和衰變過程的費曼圖如圖六。

圖六:希格斯玻色子在LHC實驗中的產生和衰變過程。 (本圖出自參考文獻 3)

在圖六中,(a)至(f)是產生一顆希格斯玻色子的過程,(g)至(j)是希格斯玻色子的衰變模式,(k)至 (o)是產生兩顆希格斯玻色子的過程。在這些圖中,粒子的記號如圖一,而 q 代表夸克,V 代表 W 或 Z,f 則代表質量非零的費米子,粒子 X 與希格斯玻色子的歸一化耦合強度記為 κX【註 5】(標準模型對應 κ=1)。值得注意的是,希格斯玻色子可以透過因量子漲落而產生的粒子迴圈與質量為零的膠子和光子發生間接交互作用(見圖六(a)、(i)和 (j))。產生過程(a)至(d)以及衰變過程(g)至(j)都已被實驗證實。我們可以從這些眾多的過程所獲得的數據推斷出粒子與希格斯玻色子的歸一化耦合強度 κ

-----廣告,請繼續往下閱讀-----
圖七 a:從實驗數據中得到的 κ 值,紅色直線代表標準模型的預測值。(本圖出自參考文獻2)

圖七 a 中的點顯示了從實驗數據中抽取出來的 κ 的值,紅色直線則表示了標準模型的預測。從圖可見,對於 W 玻色子、Z 玻色子、頂夸克(t)、底夸克 (b)和濤子(τ),它們與希格斯玻色子的耦合強度已被精確量度,並且其值與標準模型預測一致。 

圖七 b:κf和 κV的量度精確度,中間黃色菱形為標準模型的預測值,越靠近黃色菱形表示實驗數據越符合理論值。(本圖出自參考文獻3)

圖七 b 顯示了 κfκV 的量度精確度在過去十年內的改善。紅色的圈表示 2012 年剛發現希格斯玻色子時的數據,藍色表示至 2015 年的數據,而黑色表示至 2018 年的數據。從圖可見,耦合強度的精確度在過往十年被大幅改善,並且其值與標準模型預測(κ=1)一致。 

未來對希格斯玻色子的探測 

圖八:基本粒子與希格斯玻色子的耦合强度量度進度及未來展望。(本圖出自參考文獻1)

圖八總結了至今對不同基本粒子與希格斯玻色子的耦合強度的量度進度以及未來展望。正如以上所述,我們已確定 WZ 玻色子,以及第三世代費米子與希格斯玻色子的耦合強度與標準模型一致。對於第二世代費米子,由於它們比第三世代費米子輕很多,因此與希格斯玻色子的耦合強度也小很多,所需的數據也多很多。

對於緲子,我們預計在未來五至十年間能確定它與希格斯玻色子的耦合強度是否與標準模型一致。在將來 15 至 20 年間,在升級後的高亮度 LHC(HL-LHC)中,圖六中未被觀察到的過程都會被觀察到,如同時兩顆希格斯玻色子的產生。可是,這都不足以測量出希格斯玻色子的自耦合強度。要量度魅夸克與希格斯玻色子的耦合強度,或希格斯玻色子的自耦合強度,我們需要 LHC 以外的新一代對撞機。

-----廣告,請繼續往下閱讀-----

對於奇夸克和第一世代夸克,由於它們非常輕,現時並沒有確切方法探測它們與希格斯玻色子的耦合強度。未來的正反電子對撞機或有機會探測到電子和奇夸克與希格斯玻色子的耦合強度。對於上夸克和下夸克,我們可能需要對撞機以外的方法,如對原子物理的精確量度,但這都只處於討論階段。 

有助解開的物理學謎團

我們對希格斯玻色子的進一步認識很可能有助解開一些現今粒子物理學和宇宙學的謎團,這些未解問題可大概歸為以下五個主要問題:

1. 層級問題

在標準模型裡,弱交互作用比重力交互作用強 1032 倍。為何重力這麼弱?這問題稱為層級問題(hierarchy  problem)【註 6】。基於重力如此弱的事實,可以在理論上證明,如果在弱電尺度(~200 GeV)附近沒有標準模型以外的新物理的話,在未知的終極理論裡的基本參數須被準確微調至 32 個小數位。很多物理學家把這種基本參數的精確微調視為不自然,從而推斷在弱電尺度附近必定有新物理。

因此,林林總總的新物理理論被提出,如一派理論提出希格斯玻色子並非基本粒子,而是由更基本的粒子組成的複合粒子;另一派理論提出在高能量尺度下存在超對稱【註 7】;還有一派理論提出宇宙存在額外維度。希格斯玻色子的發現以及至今對它特性的量度,排除了很大部分這些新物理理論。現今的理論家提出新理論時需要更謹慎,使得新理論與有關於希格斯玻色子的實驗數據吻合。

-----廣告,請繼續往下閱讀-----

2. 正反物質不對稱

在我們身處的宇宙中,物質都由正物質組成。可是,根據量子場論,一切粒子皆有其對應的反粒子【註 8】,而反粒子可組成反物質。那麼,為什麼宇宙中的物質只有正物質,沒有反物質呢?從理論推斷所知,在宇宙初期的高溫情況下,正反物質數量大致相同。現在我們所見到的正物質,是在宇宙因膨脹而冷卻後,正反物質互相湮滅後剩餘的。也就是說,宇宙很早期的時候正反物質數量存在些微不對稱,導致現今宇宙中只有正物質。

正反物質不對稱的大小依賴於宇宙早期弱電相變的細節。相變現象在日常隨處可見,如水蒸氣遇冷時凝結成液態水,或天然磁鐵遇熱時喪失磁性。在宇宙初期,溫度極高,希格斯場得到連續激烈的激發,因而其值不會停留在勢能(圖四)的最低點,而是作大幅度擺動,導致其平均值(即統計期望值)為零。隨著宇宙膨脹,溫度下降,希格斯場的擺動減小,直到某臨界溫度以下時,希格斯場的期望值取勢能的最小值處。希格斯場的期望值從零變為非零,這是一個相變過程,稱為弱電相變(electroweak phase transition)。

在標準模型裡,希格斯勢能導致的弱電相變為一連續相變(即所謂的二階相變),其結果是所造成的正反物質數量不對稱太小,不足以解釋所觀察到的不對稱值。因此,物理學家提出了一些新理論,這些理論涉及到新粒子的引入,而這些新引入的粒子會與希格斯場發生交互作用,從而改變希格斯場的勢能形式(如圖四中的藍線),使弱電相變變得不連續(一階相變),這也順帶的改變了希格斯玻色子的自耦合強度。所以,未來實驗對希格斯玻色子的自耦合強度的量度將有助解開正反物質不對稱之謎。

3. 暗物質

我們從天文觀察中得知,宇宙中存在著大量暗物質,其總質量約為普通物質的五倍。可以肯定,暗物質並非由標準模型粒子組成。因此,很多新的粒子理論被提出,當中引入了新的粒子。一個很自然的問題是,既然希格斯場負責給予標準模型粒子質量,它會不會也負責給予暗物質粒子質量呢?如果真的是這樣,那麼這些新的粒子會以量子迴圈的方式改變希格斯玻色子的壽命和自耦合強度,或者希格斯玻色子會衰變成這些新粒子,而這些都有機會在未來被測量到。

4. 費米子質量問題

在標準模型裡,費米子分為三個世代,三個世代的質量截然不同:第二世代比第一世代重,而第三世代比第二世代重(見圖一)。標準模型並不能對此作解釋。為此,物理學家提出一些新理論,而在這些新理論中希格斯玻色子具有一些標準模型不允許的衰變模式,如 Hμ+τ。如果這些新的希格斯玻色子衰變模式存在的話,有可能在未來被實驗探測到。

此外,在標準模型裡,微中子沒有質量。可是,我們從近年的微中子振蕩實驗中得知,微中子具有微小質量。希格斯場有可能在賦予微中子質量上扮演重要各式。

5. 宇宙暴脹之源

我知道,希格斯場的真空期望值取決於它的勢能形式,這是希格斯場與其他場截然不同的特點。有趣的是,根據現時所知的希格斯玻色子質量,我們可以推斷現今的希格斯場真空期望值只是勢能的局部最小值(又稱為錯真空(false vacuum)),而不是全局最小值(即真真空(true vacuum))。也就是說,我們所處於的真空並非最低能量態,而且不穩定,有機會衰變成更低能的最低能量態。

可是,這個錯真空衰變的機率極小,導致錯真空的壽命遠長於宇宙年齡,即我們所在的真空處於一種亞穩定狀態。我們知道,在宇宙的極早期曾經發生過暴脹,即宇宙以指數式急速膨脹,而這導致了現今宇宙在大尺度下的平均性。我們很自然會問,是甚麼導致暴脹呢?理論上,類似於希格斯場的錯真空衰變現象很可能就是暴脹的原因。究竟希格斯場與宇宙早期的暴脹有關嗎?物理學家對此仍未有答案。

結語

希格斯玻色子的發現為粒子物理學研究展開了新一頁。在希格斯玻色子被發現後的十年裡,透過在對撞機實驗中對它的深入探測,我們對希格斯場和希格斯玻色子有了更豐富的認識。至今,一切有關希格斯玻色子的量度均與標準模型預測一致。我們可以肯定的說,正如標準模型所述,希格斯場的確賦予質量給W、Z玻色子以及第三世代費米子。這證明宇宙中存在第五種基本交互作用——希格斯交互作用。在未來的實驗裡,對希格斯玻色子的進一步探測將有助解開一些未解決的物理學謎團。

註釋

  1. 對於基本粒子,電磁交互作用的強度約為重力交互作用的 1030 至 1043 倍。因此,在粒子物理裡,重力交互作用可以完全被忽略。
  2. 希格斯場能具有非零真空期望值,關鍵在於它的自旋為零,從而非零真空期望值不會與勞侖茲不變性抵觸。希格斯場取非零真空期望值,是一種自發規範對稱破缺,這使得 W Z 既是傳遞交互作用的粒子,又帶有質量。這種賦予規範玻色子質量的機制稱為希格斯機制(Higgs mechanism),是弱電理論能成為一自恰理論的關鍵。
  3. 事實上,我們可以把希格斯玻色子與其他粒子的直接交互作用視為第五種基本交互作用,稱為希格斯交互作用,或湯川交互作用(Yukawa interaction)。
  4. 注意,質子和中子內除了夸克還有大量膠子,而質子和中子的質量絕大部分源於這些膠子的交互作用能,但這部分的貢獻在質子和中子裡是幾乎相等的。
  5. 歸一化耦合強度 κ 定義為耦合強度除以標準模型的耦合強度。因此,對於標準模型,歸一化耦合強度為 1。
  6. 關於層級問題是否一個合理的物理學問題,學術界仍存在爭論。
  7. 超對稱是一種理論上可能存在的時空對稱和內在對稱的混合,至今未被實驗發現。
  8. 反粒子與其對應的正粒子有相同質量和自旋,但帶相反的荷,如電荷。

參考文獻

  1. G. P. Salam, L. T. Wang, and G. Zanderighi, Nature 607 (2022) 7917, 41-47
  2. ATLAS Collaboration, Nature 607 (2022) 7917, 52-59 
  3. CMS Collaboration, Nature 607 (2022) 7917, 60-68
所有討論 1
PanSci_96
1214 篇文章 ・ 2072 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。