0

0
0

文字

分享

0
0
0

2012年科學回顧

PanSci_96
・2013/02/16 ・6422字 ・閱讀時間約 13 分鐘 ・SR值 582 ・九年級

2012年是科學界史詩般的一年,許多重要的研究成果都在這年呈現,以下讓我們分段回顧2012年全世界的重要科學研究斬獲。

2012年是科學界史詩般的一年,研究者發現了希格斯玻色子,也有好奇號登上火星。在這飛躍的一年中,兩個最大的突破有賴於驚人的數據量。在過去五年來ENCODE計畫(Encyclopedia of DNA Elements)–由440位科學家組成–已產生15個太位元(Terabyte)的數據,以研究人類DNA序列的功能;而歐洲核子研究組織(CERN)已儲存了26個拍(10的15次方)位元由大型強子對撞機(LHC)所產生的數據,物理學家用它來尋找希格斯玻色子存在的證據。

但如同資料是發現的泉源一般,它也是矛盾的來源,矛盾可能如下:有潛在危險的感冒病毒資訊應不應該被公開?或者資助者、出版社、研究人員討論到底要如何展現資料,還有同儕審查的老問題,以及研究資料的更開放等議題。同時,可疑或偽造的研究成果重新提醒了我們,研究的發現必須得值得信任。

— 最後的希格斯–

掌聲、欣慰、喜悅和淚水。7月,世界上最大的物理實驗正式發現希格斯玻色子PanSci報導)。在物理學家可以自信地宣布他們發現了質量為125千兆電子伏特的新的玻色子PanSci介紹)之前,這項研究使用了位於日內瓦的大型強子撞擊機500兆次的質子撞擊。

大約50年前,彼得希格斯 (Peter Higgs) 與其他理論物理學家提出了一個理論–一個充滿在宇宙中的量子場賦予了一些粒子質量。

而這個量子場的化身–希格斯玻色子–看起來卻令人失望地普通,它的行為並未超出粒子標準模型所預測的。而LHC也尚未找到超對稱理論所預測的其他粒子,該理論能夠拓展人們對次原子世界的理解並且解開暗物質的神祕面紗。

–奔向極限–

2012年各國歡慶奧運的同時,科學界也締造了多項紀錄:

歷經二十年的鑽探,俄羅斯的工作隊終於在去年二月鑿穿深達3.8公里的南極冰冠,直達孤立了數百萬年的地下水體沃斯托克湖。經過初步檢驗,並未在水體樣本中發現之前許多科學家預測應有的生命跡象。嘗試以高壓熱水柱法探勘南極洲另一個冰下湖—埃爾斯沃斯湖的英國工作隊,則面臨了技術層面的挑戰

導演詹姆斯. 柯麥隆日前駕駛單人潛水器到達地球的最深處—距海平面下11公里處,馬里亞納海溝的底部,成為全球獨自完成此任務的第一人。

同樣令人感到刺激緊張的是高空跳傘運動員 Felix Baumgartner ,儘管可能在科學上沒那麼有價值,他由美國新墨西哥州上空39,000公尺處一躍而下PanSci報導),打破音速並刷新自1960年來人類最高跳傘高度。

然而,並非所有的紀錄挑戰都是成功的:花費35億美金位於美國加州的「國家點火設施(NIF)」經過六年的不斷嘗試,雖擁有世界上最強大雷射光束,但其「點火」計畫終究未能成功。該實驗若成功,將是人造核融的里程碑:超強雷射光束將施加高溫高壓於一小氫燃料球而啟動核融反應,並產生與輸入的雷射光同等的能量。

–反思能源政策–

福島核災事故(PanSci報導)促使各國能源政策持續調整。日本政府朝向未來零核電目標進行各項規劃(PanSci相關報導)。2012年五月日本關閉最後一座運營中的核電廠以作檢修,同時遭到國內民眾大規模示威抗議,反對重啟任何一座反應爐。儘管如此,其中的兩座仍在七月時恢復運作

歐盟也為境內核電廠作壓力檢測,發現超過140座反應爐需要全面性的安全升級PanSci 相關報導)。在此同時,美國核能管理委員會批准了一座核電廠以雷射技術提煉濃縮鈾,反對者則擔憂有心人士將暗地裡以此技術製造核彈。

為了供應日常生活所需能源,各國持續探索非傳統的石油及天然氣來源。因應日漸興盛的頁岩氣開採工業,美國對使用水力壓裂法提出了相關規定。頁岩氣的發展,使得美國10%的發電供應由原本的煤炭轉為天然氣。

根據國際能源署估計,2020年美國將成為最大的石油生產國,並有望在2035年自給自足國內能源所需。但過去發生的石油鑽探事故,也為尋找新石油庫存的人們敲了警鐘:由於其鑽井船遇風暴擱淺受損,殼牌將無法如期在北極冰洋實行鑽探計畫;而BP則因其於2010年發生的墨西哥灣鑽油平台「深水地平線」漏油事件遭刑事罰款40億美金。然而,剛起步不久的純淨能源工業也有自己的問題:由於電動車市場規模無法擴大,麻省的鋰電池製造商A123 Systems已於去年十月宣告破產PanSci相關報導)。

–資料展現–

科學聲譽卓著之處就在於能自我修正。三月時, 科學家確定地反駁前一年所提出的–微中子可能跑得比光速快PanSci報導其他報導)。同時,許多實驗也反駁了2010年所聲稱的某種細菌的DNA中有「砷」相關報導)。

但修正總不是每次都來得這麼快:當研究不是那麼容易重複,偏見和錯誤就可以存在數年。日本麻醉學學者Yoshitaka Fujii 營養學學者 Eric Smart 數十年的研究瀆職到最近才雙雙被發現而遭受譴責。諸多關於資料數據操弄的指控使心理學門遭遇特別嚴厲的指責,許多重量級人事因此辭職下台。科學家更廣泛地擔心無法重複的結果,為此,科學社群推動「可重複實驗倡議」,設置了獨立實驗室去重複重要研究成果的研究。

在今年,科學家應該多溝通且資料應該更公開的想法也獲得了重視(相關文章)。基於這個想法,兩個線上開放期刊 eLife 和PeerJ 啟動了,同時,開放進用研究論文的行動在英國有所突破,政府與私人研究贊助者在2012年七月時表示將會為期刊開放上線使用的政策付款,從2013四月份開始。

— 好奇號登陸火星–

「就是那個輪子!就是那個輪子!」,NASA的科學家們看著「好奇號」像在天空中盤旋的鶴一般優雅地登陸火星表面PanSci報導)時這樣歡呼著。好奇號在八月登陸火星表面的蓋爾撞擊坑(Gale Crater)後,就開始提供火星表面與大氣初步的影像與分析,但尚未發現任何甲烷或其他有機分子等與生命現象相關的跡象。

在太陽系外,克卜勒太空望遠鏡(Kepler Space Telescope)已經發現許多新的行星,大約蒐集到了三千個有潛力的新世界。而地面望遠鏡同樣也是搜尋系外行星工作的主力,近來已經在太陽系周遭4.4光年遠的人馬座α處發現一顆跟地球大小差不多的系外行星PanSci報導)。

另外其他的太空斬獲如黎明號(Dawn)發現了灶神星(Vesta)上面存在水的證據PanSci報導),中國送出他們第一位女性太空人劉洋上太空

不過,今年的頭條並不是來自於政府,而是一間私人企業,SpaceX是間位在美國加州霍桑的太空運輸公司,在十月成功地送出第一發私人太空艙Capsule Dragon至國際太空站完成商業補給的任務PanSci相關報導),據說這家公司正在考慮是否也進行火星之旅

–地球有壓力–

夏天北極戲劇性的海冰融化破了氣候模型預測上的記錄PanSci相關報導),美國也面臨近半世紀以來最嚴峻的乾旱(PanSci相關報導),不過對於許多居住東岸的美國人來說,2012年十月的超級颶風珊迪PanSci報導、另一則報導)恐怕才真讓人對若有似無的全球暖化危機有感。這場造成500億美金損失的風暴也將話題導向究竟該如何適應可能性不斷攀升的極端天氣,而非該如何避免氣候變遷。

全球性的環境話題總蒙上經濟顧慮。六月的里約聯合國地球高峰會PanSci相關報導另一則報導)中,發展中國家認為不該限制他們的成長,而先進國家則不願意承諾對其發展的協助。即使代表團在十二月的杜哈氣候大會上同意將弱化版本的京都議定書延伸到2020,但相似的政治慣性依然發生

個別國家自己對此有較大的處理空間,例如墨西哥在四月立法減排。雖然巴西在十月通過一項可能弱化森林保護的爭議性法案,但其亞馬遜雨林遭砍伐的速率已在2012年達歷史新低。澳洲則在六月發表一個世界最大的海洋保護區網絡計畫,不過這個環南極洲三大水域的國際保存計畫卻在十一月被打了回票。

加拉巴哥群島的最後一隻明星陸生巨龜寂寞喬治(Lonesome George)於六月辭世,他是他所屬亞種中的最後一隻,而他的辭世也喚起全世界對於瀕臨絕種物種遭受困境的注意。(PanSci相關報導

–科學家發聲–

過去當科學研究具有社會爭議時,科學家通常選擇沉默。但現在有越多的科學家選擇反擊,捍衛研究的價值。2012年五月,英國科學家們公開捍衛在小麥基因改造上的研究成果,原因在於一反基改團體「Take The Flour Back」揚言摧毀這些成果。

十月也有跨國的科學家共同聲援義大利研究團隊,該團隊被義大利法院判決六年徒刑,罪刑是誤判2009年拉奎拉(L’Aquila)地震的嚴重性。輿論也批評這項判決將會使得科學家不敢發聲、提供專業意見。(PanSci報導:123

然而,有些議題,科學家依然保持沉默。緩慢但確定地,動物權行動者在2012年成功阻止多家貨運業者運輸實驗用動物,並且未遭遇有效的阻礙。

–人類百科全書–

人類基因組的3億個DNA鹼基中只有少於1%,也就是約2萬個基因參與蛋白質的編碼。不過大量的非編碼序列區域仍有其至關重要的功能,如在不同細胞類型中影響基因組的裝配、調節與解讀方式。

一個由440位科學家組成的ENCODE計畫(Encyclopedia of DNA Elements)團隊在九月發表30篇論文(PanSci相關報導),估計至少有20%的基因組可以影響基因表現。其他極具野心壓縮大量生物數據的計畫包括老鼠全腦的迴路圖譜的初步研究結果,及追蹤人腦內約900個解剖區內的基因活動

在細胞層次上,幹細胞的可塑性依然讓人驚艷。美國研究人員發現女性卵巢內的幹細胞似乎可以再生新的卵子,這違反了傳統教條所認為的女性出生就註定了他們一生配子的數量。而日本科學家則示範如何從老鼠身上取出幹細胞轉化成可繁殖的卵子,受精後再植入任代理孕母的母鼠身上,並且產生健康的後代。

–病毒研究的衝突–

兩篇研究報告顯示,高致病性的H5N1變異病毒可以在雪貂間互相傳染(PanSci相關報導)。這項結果造成國際緊張,部分認為這些報告提供了恐怖分子製作H5N1生化武器的可能性,或者因意外而使得這些可在哺乳類之間傳染的病毒外流(PanSci相關報導)。

2011年底,美國國家生化安全委員會(NSABB)建議這些研究不應該全文公開;然而有人批評這樣的審查制度將會阻礙科學研究的討論性,影響抗病毒藥物的研究。NSABB於2012年三月一改先前的態度,而兩篇報告也在五月六月相繼被發表(PanSci相關報導)。

然而爭議性仍持續著,政治人物批評美國政府太過輕率即讓研究發表;部分科學家則批評NSABB花太多時間做出決定。而現在美國立法部門也考慮加強限制這些病毒類的研究工作。美國國家過敏與傳染疾病研究所(NIAID)便提倡「自主性暫停」流感相關研究,同時也觸怒了渴望持續相關研究的科學家。(PanSci相關報導

–勒緊褲帶的一年–

2012年,富國紛紛裁減了公共支出,許多國家也緊縮研究預算。加拿大對其環境削減開支:關閉一系列研究計畫,包含已運作40年、著名的實驗湖泊區—安大略省的58個偏僻的淡水湖泊, 這個實驗湖泊區曾提供科學家們進行操作以研究汙染物輸入湖泊造成的影響。

延續去年刪減25%的研究經費,西班牙2013年的預算案,將邁入第四年持續刪減

在美國,去年科學家們擔心計畫經費將在2013年一個全面性的刪減中遭砍,NASA行星科學家為此舉辦了杯子蛋糕特賣會以凸顯航太領域收到日益減少的支持。

由歐盟提出、將於2014-20年間實行的大型科學研究計畫 “Horizon 2020″,其所提出的800億歐元預算案在11月遭駁回,並將於2013年繼續進行討論。

而即使在研究預算一年比一年高的印度,也感受到國內通貨膨脹的警訊,減緩了2012-13年的預算成長

但也不是每個國家的科研都面臨財政吃緊的窘境:中國政府在新的一年將多花近12.5%在科學研究預算上;採樽節措施的法國,仍想辦法調高了比去年多2.2%的經費給科學研究;德國聯邦政府撥更多款項給大學 (例如在柏林設立一所大型健康科學研究中心);美國的生技業也因公共市場投資者的參與而見到復興的曙光

–醫藥的發展–

美國食品藥物監督管理局(FDA), 自1999年以來, 第一次核準了兩款減重藥物上市,BelviqQsymia。也核准了Truvada,Truvada為第一款可預防愛滋病毒(HIV)感染的上市藥物。然而兩款抗阿茲海默症的抗體bapineuzumab和solanezumab,並未通過臨床試驗,雖然,某些試驗結果顯示solanezuma能減緩認知喪失的症狀。研究人員認為預防阿茲海默症於病之初可能是較為有效的策略,並冀望能於2013年建立早期偵測試驗。 2012年有許多重要的商業交易,

中國生化公司BGI以1億1千8百萬美元買下美國基因測序公司Complete Genomics,擊敗了競爭對手Illumina;美國生化大廠Amgen將以4億1千5百萬美元購買冰島生化公司deCODE Genetics;美國醫藥公司BMS(Bristol-Myers Squibb)和阿斯利康製藥(AstraZeneca)以53億美元共同收購生化公司Amylin;以及英國製藥公司GlaxoSmithKline以36億美元買下基因公司Human Genome Sciences。另外,許多製藥公司在美國被判決創下歷年紀錄的罰款

 

原文:366 days: 2012 in review-Nature News

Nature 492, 324–327 (doi:10.1038/492324a

譯文整理編輯自Taiwan EU Watch(1,2,3,4,5,6)

文章難易度
PanSci_96
1015 篇文章 ・ 1238 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!免疫功能低下病患防疫新解方—長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2882字 ・閱讀時間約 6 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022 年美、法、英、澳及歐盟等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示該藥品針對 Omicron、BA.4、BA.5 等變異株具療效。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
帕克斯洛維德
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度

0

3
0

文字

分享

0
3
0
微擾理論:我們有沒有可能遮蔽了新的物理?——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/27 ・2632字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

對撞機能夠給出什麼答案?

物理學家想用大型強子對撞機來解答的重要問題,可以總結如下:在大型強子對撞機的能量級下,粒子物理的標準模型是否有效?「對撞機能量級」是個大大的躍進,因為其能量大小超越了電弱對稱破缺尺度;在這個尺度之上,兩種基本作用力相互統一,而 W 和 Z 玻色子、甚至所有其他基本粒子的質量,也許都是起源於此。

從空中鳥瞰大型強子對撞機的地理環境。圖/wikipedia

如果標準模型可以成功描述新能量範疇的現象,希格斯粒子應該就會存在,但看來不會有什麼其他的新發現;反之,如果標準模型失效,也許就沒有希格斯粒子了,不過背後一定會藏著稀奇古怪的事物。其實有個不易察覺的問題會左右這件事:我們究竟有多了解標準模型在此能量級下預測的現象?這並不容易回答。

一般而言我們並沒有能耐百分之百準確地解出標準模型。所有人都是用近似法。而絕大多數的近似方法之所以可行,是因為基本作用力的「耦合」,也就是強度,沒有很大。「耦合」就是在物理過程對應的費曼圖中,每個作用頂點帶有的值。(參見【科學解釋 8】)

微擾理論的應用

作用力的強度可以用一個數值來表示。如果說這個數值是 0.1,那麼兩個粒子交互作用的機率就會和 0.1 乘上 0.1,也就是 0.01 成正比。要是有三個粒子,機率就變成 0.1 的三次方,0.001,四個粒子的話就是 0.0001,如此這般。由此可知,如果耦合值很小,你就可以忽略比方說四個粒子以上的粒子交互作用―超過這個臨界值的項對於主要結果都只是極小的微擾罷了,因為前面至少會乘上 0.1 的五次方,也就是 0.00001。

可見更多粒子的反應項只會些微改變原本的結果而已。這就是「微擾理論」的例子,微擾理論廣泛運用於解決物理界和化學界中許多的問題。只要耦合值很小、也就是作用力很弱,這個理論就十分準確。

然而,這種近似法並不是永遠有效。微擾理論失效的地方大多涉及強核力、也就是量子色動力學。這就是為何大家要把這種作用力稱為強核力。我們不是故意要混淆視聽的,強核力的確和它的名字一樣難以應付。

舉例來說,在我們對撞質子,想一探其內部夸克及膠子的種類分布時,某些方面的資訊其實無法從先前所提的原則計算得到(參見 4.5 節)。除此之外,我們也無法算出夸克和膠子最後是如何結合成新的強子的。雖然大家手上有量子色動力學的限制條件,也有一些基本的能量守恆、及動量守恆定律,以及不少從其他地方得到的數據,卻無法用微擾理論。

由二個上夸克及一個下夸克所構成的質子。圖/wikipedia

原因在於強核力的耦合值非常接近一,不論幾次方都還是一。因此,不管你計算的對象是幾個粒子,得到的結果都不會收斂到某個可信的值。最終我們只好依據自己的經驗來猜測結果、或建立模型。而這樣的結論一直都有調整空間。

因此我們要嚴肅看待一個問題:大家在調整模型的時候,實際上可能會遮蔽了令人興奮的新物理。要避免這個問題,你得拿自己熟悉、以微擾理論計算的結果,連結上自己還不太明白、有調整空間的模型。我想像出一個比較毛骨悚然的情景來譬喻這件事――一具以精準預測架構的骨架,嵌在以最佳猜想組成的濕軟肉體內。

肉體的形狀可以改變。你可以重搥它的肚子,或捏它的臉頰(相對來說比較不痛);但是它有兩隻手兩隻腳,如果你打斷了某根骨頭,自己一定會知道。

用既有的知識探索未知

無論如何,大家利用電腦程式來把可塑的模型、與不易動搖的微擾理論整合在一起,而且絕大部分的工作都已經完成了;這種程式就是蒙地卡羅事件產生器(Monte Carlo event generator)。程式不但能編譯大部分我們擁有的粒子對撞現象的相關知識,同時也是個珍貴的工具,能協助物理學家設計新的實驗,並釐清既有的實驗對不同模擬數據會如何反應與解讀。「蒙地卡羅」這個名字有其典故,因為就和俄羅斯輪盤賭注一樣,這種事件產生器用上了很多隨機的數字。

這一切其實都牽涉到一點有趣的科學社會學。身為一位理論學家,有時你會因為投入某類蒙地卡羅事件產生器相關的研究而吃虧。你的一篇論文可能已經被引用了數千次,大家還是會說:「不過是電腦軟體罷了。」或是「這只是蒙地卡羅那類的玩意兒。」反之,要是你是發表一篇弦論的論文,又被引用這麼多次的話,你就能像個巨人般橫行全世界了。但說到底,弦論努力想預測的現象距離實證還是很遙遠,蒙地卡羅事件產生器卻可以實際解釋數據。

蒙地卡羅事件產生器雖然不是唯一的辦法,大致上仍是物理學家在理解標準模型的意義、與儘量試著利用模型精確預測現象時,所付出的一份心血。

粒子物理標準模型。圖/wikipedia

雖然和大型強子對撞機的學界相比,蒙地卡羅事件產生器的研究社群規模較小,但相對來說,這個領域的成員盡的心力甚至不會比大家建造對撞機的付出還要少。美國物理學會也許是考量到了這一點,將 2011 年的櫻井獎(J.J. Sakurai Prize)頒給在這個領域工作的三位理論學家,分別是韋伯(Bryan Webber)、阿塔瑞利(Guido Altarelli)、斯舍斯特蘭(Torbjörn Sjöstrand)。頒獎典禮的引言如下:

因為三位物理學家的洞見,我們得以縝密驗證粒子物理的標準模型,實現高能物理實驗的目標、並從中學習量子色動力學、電弱交互作用、與可能的新物理的確切知識。

我很開心他們獲獎,因為其中兩位是我很親近的朋友,也更是因為三人所寫的計算方法及程式對大型強子對撞機幾乎所有的研究都十分重要,像是確保大家不會在不知情的情況下遮蔽任何新的物理。當前,我們正在嘗試確認希格斯粒子搜尋實驗的不定變數大小,並縮減其數量;人人都在尋找關鍵的三標準差證據、甚至是五標準差的大發現。為了這個目標,許多人夜以繼日持續比對新的數據和蒙地卡羅事件產生器的結果。

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

貓頭鷹出版社_96
50 篇文章 ・ 20 位粉絲
貓頭鷹是智慧的象徵。1992年創社,以出版工具書為主。經過十多年的耕耘,逐步擴及各大知識領域的開發與深耕。現在貓頭鷹是全台灣最重要的彩色圖解工具書出版社。最富口碑的書系包括「自然珍藏、文學珍藏、台灣珍藏」等圖鑑系列,不但在國內贏得許多圖書獎,市場上也深受讀者喜愛。貓頭鷹的工具書還包括單卷式百科全書,以及「大學辭典」等專業辭典。貓頭鷹還有幾個個性鮮明的小類型,包括《從空中看台灣》等高成本的視覺影像書;純文字類的「貓頭鷹書房」,是得獎連連的知性人文書系;「科幻推進實驗室」則是重新站穩台灣科幻小說市場的新系列,其中艾西莫夫的科幻小說,已經成為台灣讀者的口碑選擇。

5

1
2

文字

分享

5
1
2
八爪博士 4ni!?《蜘蛛人》裡的人造太陽或將問世?(下)
科學大抖宅_96
・2022/04/14 ・3339字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

說明:此篇文章原本乃為泛科學 Youtube 影片所寫,經簡化之後,拍攝成〈缺電、輻射、核廢料有解嗎?「核融合發電」有可能嗎?〉和〈最受期待的核融合發電在哪裡?能源數據誰在膨風?〉兩部作品。又,本文並不針對核融合的技術性問題多做解釋,而是想用最少的字數,讓讀者瞭解核融合發展的全貌與大致進程。同時,此文主題也跟「世界是否應該採用核能發電」、「臺灣是否該使用核能發電」、「台灣是否該重啟核四」無關;這是三個完全不同的問題,核融合發電跟現有的核能發電技術也有所不同,無法一概而論。

核融合發電的最低要求

現實中,不管使用什麼方法進行核融合,都需要消耗大量的能量。如果產生的能量比消耗的能量還少、或者只大一點,那麼就沒有商業發電的價值。在討論核融合發電時,我們需要知道「融合能量增益因子」(Fusion energy gain factor)這個詞彙;它常用符號 Q 來表示,代表的是核融合反應爐產出的能量,和為讓反應爐運作所輸入能量的比值:

Q=Pfus/Pheat= 核融合反應爐產出的能量/為讓反應爐運作所輸入的能量

換句話說,如果 Q=1,表示核融合反應產出的能量,和輸入反應爐的能量相等,稱為損益平衡(breakeven)——當然,在這種狀況下,沒有多餘的能量能夠拿來發電。而且,再考慮到核融合反應產出的能量,並不可能全部都被收集並拿來維持反應爐的運作,一般認為,Q 的最低限度也要大於 5,才有機會收入與支出平衡。對核融合發電來說,Q 是越高越好,代表有更多比例的產出能量可作為發電之用,也是所有研究單位努力的目標。

核融合發電的現實

就 2022 年的現在來說,實際上還未有 Q 大於 1 的核融合反應爐出現。但我們確實會在科技新聞中,看到一些聲稱做出重大突破、輸出能量大於輸入能量的研究出現,這是怎麼回事呢?

2014年權威期刊Nature上的新聞提及,有研究團隊成功在核融合過程中產生多於輸入的能量。圖/截圖自 Nature

原因之一是,有些單位在設計實驗的時候,因為許多考量,僅使用氘做燃料,而非目前主流核融合發電使用的氘氚混合燃料;而根據僅使用氘的實驗結果,就可以在理論上推估,若使用氘氚混合燃料可以達到的 Q 值。這樣子推估出來的數字,目前最高記錄是日本的 JT-60 實驗,得到 Q=1.25。

另外一種情形,則是對輸入能量的定義有所不同。舉例來說,2013 年,BBC 刊載報導,表示位於美國加州的國家點火設施,達到「核融合反應的里程碑」,「透過核融合反應所釋出的總能量超過由燃料所吸收的總能量——這是在世上所有的核融合設施中,第一次辦到。」然而,在該實驗中,雷射對裝有核融合燃料膠囊的金屬空腔標靶(稱為「環空器」,hohlraum),輸入了 1 百 80 萬焦耳的能量,最後僅產出約 1 萬 4 千焦耳的核融合能量;換算起來,Q 值為 0.0077。但是,根據計算,雷射輸入的能量當中,只有1萬焦耳真正在燃料膠囊的核心起作用,促成了核融合發生——從這個角度來說,也是一種「核融合反應所釋出的總能量超過由燃料所吸收的總能量」,但總有作弊之嫌。

目前,融合能量增益因子的最高紀錄,是由美國國家點火設施所創下,於 2021 年達到的 0.7,由 1 百 90 萬焦耳的雷射能量,獲得1百35萬焦耳的核融合能量。只是,這樣的計算方式仍然有個問題:若要產生具有 1 百 90 萬焦耳能量的雷射,我們事實上必須使用到遠超其上的能量——如果要拿來發電,這個能量消耗也是必須考慮進去的。

目前最受期待的核融合設施

在近未來之內,最接近商業發電的核融合設施,應屬位在法國南部的國際熱核融合實驗反應爐(International Thermonuclear Experimental Reactor,ITER)。它是跨國出資、合作的核融合設施,成員包括歐盟、印度、日本、中華人民共和國、俄羅斯、韓國和美國,目前仍在建造中,預計於 2025 年開始進行初步電漿測試,並於 2035 年進行氘和氚的核融合實驗。

2020年ITER空照。圖/wikipedia

根據一般說法,ITER 產出能量的功率會達到 5 億瓦特,但只需要五千萬瓦特的能量輸入功率,亦即,融合能量增益因子 Q 會高達 10。這聽起來很不錯,似乎可以作為商業發電之用,或者至少很接近商業發電的目標了。是這樣嗎?

But,人生最重要就是這個 But,5 億瓦特的能量輸出功率,是指核融合反應釋出的能量,而非實際上能夠獲得的電力;有很大一部份比例的能量,都會在轉換成電力時漏失。同時,五千萬瓦特的能量輸入功率,也只是整間電廠營運需求的一部份——根據 ITER 的報告,運作整間電廠約需要 4 億 4 千萬瓦特的能量功率。換言之,儘管 ITER 應該會是近未來 Q 值最高、最成功的核融合設施,但距離商業發電,仍然有一段差距。這也是目前全球的科學家在努力克服的問題。

自己在家做出核融合反應爐?

儘管核融合發電於現實中仍存在許多問題。但是,我們卻也偶爾會看到,媒體大肆渲染,某某青少年在自家做出小型核融合反應爐的新聞,難道全球科學家都被不世出的天才青少年打臉了嗎?

媒體上對青少年自製核融合反應爐的報導。圖/截圖自ETtoday

這類所謂自製的核融合反應爐,大體來說,就是將氘氣引入真空容器內,再利用高電壓使其互撞,並在過程中藉由測得中子,推論核融合反應存在。然而,雖然核融合反應會產生中子,但測到中子並不表示就一定是核融合反應。高速的氘原子互撞,就算沒有成功融合,仍然可能經由其他作用產生中子

另一方面,就算真的有零星的核融合反應出現,其能量產出效率必定極低,輸入的能量遠大於輸出的能量。我們可以說,要人工地讓核融合反應發生,在現代並不是問題;如何讓輸出大於輸入,且持續穩定運作,才是主要的問題。

科學的進步與成功,事實上仰賴許多前人的鋪路,後人才能在前人的基礎上順利抵達終點。如果沒有知識的累積,就期待一蹴可及、出現某個天才打臉所有人,完成前無古人的成果,雖然很有戲劇性,但幾乎是不可能的事情,現代科學研究尤其更是如此。

我們是否將見證歷史性的一刻?

核融合作為未來可能的能源選項之一,無疑是值得研究的課題。過程中花費的金錢與人力縱然可觀,但天下沒有不勞而獲的事,總是要嘗試了,才會知道結果怎麼樣。人類的科學文明,就是這樣不斷地在諸多失敗和成功下,累積成現在的成果。

核融合研究,多年下來有著長足的進步,距離商業發電的目標越來越近。儘管目前看起來,核融合發電距離實用化,還有一段距離,而還要多久才能克服這最後一哩路,也很難說。但搞不好,或許數十年之內,我們就有機會目睹人類能源的歷史性突破。

美國能源部科學家最近發表的統計。橫軸為年代,縱軸則是核融合裝置的效率指標。最上面的黑色和棕色水平線條,則是商業發電需要達到的目標。在數十年來,由不同顏色實線代表的核融合裝置,已有了長足的進步。圖/Progress toward fusion energy breakeven and gain as measured against the Lawson criterion

參考資料

所有討論 5
科學大抖宅_96
36 篇文章 ・ 1189 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/